1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Will we exceed 50% efficiency in photovoltaics?
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/110/3/10.1063/1.3600702
1.
1. J. R. Frisch, Future Stresses for Energy Ressources (Graham and Trottman, London, 1986).
4.
5.
5. S. Hegedus and A. Luque, in Handbook of Photovoltaic Science and Engineering, 2nd ed., edited by A. Luque and S. Hegedus (John Wiley and Sons, Chichester, 2011).
6.
6. A. Luque and A. Martí, in Handbook of Photovoltaic Science and Engineering, 2nd ed., edited by A. Luque and S. Hegedus (John Wiley and Sons, Chichester, 2011).
7.
7. R. Winston, Sol. Energy 16, 89 (1974).
http://dx.doi.org/10.1016/0038-092X(74)90004-8
8.
8. P. T. Landsberg and G. Tonge, J. Appl. Phys. 51, R1 (1980).
http://dx.doi.org/10.1063/1.328187
9.
9. R. Winston and W. T. Welford, Optics of Non Inmaging Concentrators (Academic, New York, 1979).
10.
10. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
11.
11. J. L. Balenzategui and A. Martí, Sol. Energy Mater. Sol. Cells 90, 1068 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.06.004
12.
12. G. L. Araujo and A. Marti, Sol. Energy Mater. Sol. Cells 33, 213 (1994).
http://dx.doi.org/10.1016/0927-0248(94)90209-7
13.
13. R. Hulstrom, R. Bird, and C. Riordan, Sol. Cells 15, 365 (1985).
http://dx.doi.org/10.1016/0379-6787(85)90052-3
14.
14. A. Martí and G. L. Araújo, Sol. Energy Mater. Sol. Cells 43, 203 (1996).
http://dx.doi.org/10.1016/0927-0248(96)00015-3
15.
15. A. Marti, P. A. Davies, J. Olivan, C. Algora, M. J. Terron, J. Alonso, J. C. Maroto, G. L. Araujo, J. C. Minano, G. Sala, and A. Luque, in Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (IEEE, New York, 1993), p. 768773.
16.
16. X. T. Wang, N. Waite, P. Murcia, K. Emery, M. Steiner, F. Kiamilev, K. Goossen, C. Honsberg, and A. Barnett, in 2009 34th IEEE Photovoltaic Specialists Conference, Vols 1–3 (IEEE, New York, 2009), pp. 223228.
17.
17. D. J. Friedman, J. M. Olson, and S. Kurtz, in Handbook of Photovoltaic Science and Engineering, 2nd ed., edited by A. Luque and S. Hegedus (John Wiley and Sons, Chichester, 2011).
18.
18. I. Tobías and A. Luque, Prog. Photovoltaics: Res. Appl. 10, 323 (2002).
http://dx.doi.org/10.1002/pip.v10:5
19.
19. W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, Appl. Phys. Lett. 94, 223504 (2009).
http://dx.doi.org/10.1063/1.3148341
20.
20. M. A. Green, K. Emery, D. L. King, Y. Hisikawa, and W. Warta, Prog. Photovoltaics Res. Appl. 14, 45 (2006).
http://dx.doi.org/10.1002/pip.v14:1
21.
21. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics 18, 346 (2010).
http://dx.doi.org/10.1002/pip.1021
22.
22. S. Wojtczuk, P. Chiu, X. Zhang, D. Derkacs, C. Harris, D. Pulver, and M. Timmons, in 35 IEEE Photovoltaic Specialists Conference (IEEE, |Honolulu, 2010), pp. 12591264.
23.
23. J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T. E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M. Jones, Appl. Phys. Lett. 93, 3 (2008).
http://dx.doi.org/10.1063/1.2988497
24.
24. K. W. J. Barnham and G. Duggan, J. Appl. Phys. 67, 3490 (1990).
http://dx.doi.org/10.1063/1.345339
25.
25. N. J. Ekins-Daukes, K. W. J. Barnham, J. P. Connolly, J. S. Roberts, J. C. Clark, G. Hill, and M. Mazzer, Appl. Phys. Lett. 75, 4195 (1999).
http://dx.doi.org/10.1063/1.125580
26.
26. R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam, in 24th European Photovoltaic Solar Energy Conference (Hamburg, Germany, 2009), p. 5561.
27.
27. E. Antolín, A. Martí, and A. Luque, in Proc. of the 21st European Photovoltaic Solar Energy Conference, edited by J. Poortmans, H. Ossenbrink, E. Dunlop, and P. Helm (WIP-Renewable Energies, Munich, 2006), pp. 412415.
28.
28. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, Appl. Phys. Lett. 90, 183516 (2007).
http://dx.doi.org/10.1063/1.2734507
29.
29. N. S. Lewis, G. Crabtree, A. J. Nozik, M. R. Wasielewski, and P. Alivisatos, Basic Research Needs for Solar Energy Utilization, (2005).
30.
30. S. Kolodinski, J. H. Werner, T. Wittchen, and H. J. Queisser, Appl. Phys. Lett. 63, 2405 (1993).
http://dx.doi.org/10.1063/1.110489
31.
31. A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.5014
32.
32. R. T. Ross and A. J. Nozik, J. Appl. Phys. 53, 3813 (1982).
http://dx.doi.org/10.1063/1.331124
33.
33. A. Luque and A. Martí, Prog. Photovoltaics 9, 73 (2001).
http://dx.doi.org/10.1002/pip.v9:2
34.
34. E. Cánovas, A. Martí, N. López, E. Antolín, P. G. Linares, C. D. Farmer, C. R. Stanley, and A. Luque, Thin Solid Films 516, 6943 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.12.038
35.
35. E. Antolin, “Development of Experimental Techniques for the Demonstration of the Operation Principles of the Intermediate Band Solar Cell,” Doctoral Thesis, UPM, Madrid, 2010.
36.
36. E. Canovas, A. Martí, D. Fuertes-Marrón, E. Antolin, G.-L. P. , and A. Luque, in Proc. 23th Ruropean Photovoltaic Conference (WIP, Valencia, 2008), pp. 298303.
37.
37. A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou, and A. Mc-Kee, J. Appl. Phys. 96, 903 (2004).
http://dx.doi.org/10.1063/1.1760836
38.
38. S. A. Blokhin, A. V. Sakharov, A. M. Nadtochy, A. S. Pauysov, M. V. Maximov, N. N. Ledentsov, A. R. Kovsh, S. S. Mikhrin, V. M. Lantratov, S. A. Mintairov, N. A. Kaluzhniy, and M. Z. Shvarts, Semiconductors 43, 514 (2009).
http://dx.doi.org/10.1134/S1063782609040204
39.
39. A. Marti, E. Antolin, C. R. Stanley, C. D. Farmer, N. Lopez, P. Diaz, E. Canovas, P. G. Linares, and A. Luque, Phys. Rev. Lett. 97, 247701 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.247701
40.
40. A. Luque, A. Marti, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, L. J. Caballero, L. Cuadra, and J. L. Balenzategui, Appl. Phys. Lett. 87, 083505 (2005).
http://dx.doi.org/10.1063/1.2034090
41.
41. S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, Appl. Phys. Lett. 92, 123512 (2008).
http://dx.doi.org/10.1063/1.2903699
42.
42. R. Oshima, A. Takata, and Y. Okada, Appl. Phys. Lett. 93, 083111 (2008).
http://dx.doi.org/10.1063/1.2973398
43.
43. V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, Phys. Rev. B 78, 205321 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.205321
44.
44. D. Zhou, G. Sharma, S. F. Thomassen, T. W. Reenaas, and B. O. Fimland, Appl. Phys. Lett. 96, 061913 (2010).
http://dx.doi.org/10.1063/1.3313938
45.
45. D. Alonso-Alvarez, A. G. Taboada, J. M. Ripalda, B. Alen, Y. Gonzalez, L. Gonzalez, J. M. Garcia, F. Briones, A. Marti, A. Luque, A. M. Sanchez, and S. I. Molina, Appl. Phys. Lett. 93, 123114 (2008).
http://dx.doi.org/10.1063/1.2978243
46.
46. J. Phillips, K. Kamath, X. Zhou, N. Chervela, and P. Bhattacharya, J. Vac. Sci. Technol. B 16, 12431346 (1997).
47.
47. P. G. Linares, A. Marti, E. Antolin, and A. Luque, J. Appl. Phys. 109, 014313 (2011).
http://dx.doi.org/10.1063/1.3527912
48.
48. K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, Phys. Rev. Lett. 91, 246403 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.246403
49.
49. K. M. Yu, W. Walukiewicz, J. W. Ager, Iii D. , Bour, R. Farshchi, O. D. Dubon, S. X. Li, I. D. Sharp, and E. E. Haller, Appl. Phys. Lett. 88, 092110 (2006).
http://dx.doi.org/10.1063/1.2181627
50.
50. N. Lopez, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewic, Phys. Rev. Lett. 106, 028701 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.028701
51.
51. R. Lucena, I. Aguilera, P. Palacios, P. Wahnon, and J. C. Conesa, Chem. Mater. 20, 5125 (2008).
http://dx.doi.org/10.1021/cm801128b
52.
52. G. Gonzalez-Diaz, J. Olea, I. Martil, D. Pastor, A. Marti, E. Antolin, and A. Luque, Sol. Energy Mater. Sol. Cells 93, 1668 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.05.014
53.
53. W. Wang, A. S. Lin, and J. D. Phillips, Appl. Phys. Lett. 95, 011103 (2009).
http://dx.doi.org/10.1063/1.3166863
54.
54. A. Luque and A. Marti, Adv. Mater. 22, 160 (2009).
http://dx.doi.org/10.1002/adma.200902388
55.
55. R. Winston, J. C. Miñano, and P. Benítez, Non Imaging Optics (Elsevier, Burlington, 2005).
56.
56. A. Luque, Solar Cells and Optics for Photovoltaic Concentration (Adam Hilger, Bristol, 1989).
57.
57. G. Sala and I. Antón, in Handbook of Photovoltaic Science and Engineering, 2nd ed., edited by A. Luque and S. Hegedus (John Wiley and Sons, Chichester, 2011).
58.
58. R. Leutz and A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators (Springer, Berlin, 2001).
59.
59. M. Victoria, C. Dominguez, I. Anton, and G. Sala, Opt. Express 17, 6487 (2009).
http://dx.doi.org/10.1364/OE.17.006487
60.
60. P. Benitez, J. C. Minano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernandez, Opt. Express 18, A25 (2010).
http://dx.doi.org/10.1364/OE.18.000A25
61.
61. R. Winston and J. R. M. Gordon, Opt. Letters 30, 2617 (2005).
http://dx.doi.org/10.1364/OL.30.002617
62.
62. A. Barnett, D. Kirkpatrick, C. B. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, T. Moriarty, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, in Milestones Toward 50% Efficient Solar Cell Modules, Milano, 2007 (WIP), pp. 95100.
63.
63. A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, Prog. Photovoltaics 17, 75 (2009).
http://dx.doi.org/10.1002/pip.852
64.
64. P. Benitez, R. Mohedano, M. Buljan, J. C. Minano, Y. Sun, W. Falicoff, J. Vilaplana, J. Chaves, G. Biot, and J. Lopez, in 7th International Conference on Concentrating Photovoltaic Systems, CPV-7 (Las Vegas, 2011).
65.
65. J. C. Minano, A. Luque, and I. Tobias, Applied Optics 31, 31143122 (1992).
http://dx.doi.org/10.1364/AO.31.003114
66.
66. C. Dominguez, I. Anton, G. Sala, and Ieee, in Pvsc: 2008 33rd Ieee Photovoltaic Specialists Conference, Vols 1–4 (Ieee, New York, 2008), p. 15751579.
67.
67. C. Dominguez, S. Askins, I. Anton, G. Sala, and Ieee, in 2009 34th Ieee Photovoltaic Specialists Conference, Vols 1-3 (Ieee, New York, 2009), p. 123127.
68.
68. I. Luque-Heredia, Autocalibrated Sun Tracking Control Systems. From theory & implementation to volume production (Dr. Thesis, UPM, Madrid, 2010).
69.
69. I. Luque-Heredia, C. Martin, M. T. Mananes, J. M. Moreno, J. L. Auger, V. Bodin, J. Alonso, V. Diaz, and G. Sala, in Proceedings of 3rd World Conference on; Vol. 1 (2003), pp. 857860.
70.
70. I. Luque-Heredia, G. Quéméré, P. H. Magalhães, L. Hermanns, A. F. d. Lerma, and A. Luque, in Proceedings of the 21st European Photovoltaic Solar Energy Conference (WIP, |Munich, 2006), pp. 21052109.
71.
71. F. Rubio, M. Martinez, J. Perea, D. Sanchez, and P. Banda, in 2009 34th IEEE Photovoltaic Specialists Conference, Vols. 1–3 (IEEE, New York, 2009), pp. 707712.
72.
72. F. Rubio, M. Martínez, A. Martin, A. Hipólito, and P. Banda, in 6th International Conference on Concentrating Photovoltaic Systems (American Institute of Physics, |Freiburg, 2010), pp. 252255.
73.
73. F. Rubio, M. Martínez, A. Hipólito, A. Martín, and P. Banda, in 25th EU Photovoltaiccs Solar Energy Conference (WIP, |Valencia, 2010), pp. 10081011.
74.
74. L. Narvarte and E. Lorenzo, Prog. Photovoltaics 16, 703 (2008).
http://dx.doi.org/10.1002/pip.847
75.
75. E. Lorenzo, in Handbook of Photovoltaic Science and Engineering, edited by A. Luque and S. Hegedus (John Wiley and Sons, Chichester, 2003), Chap 20.
76.
76. M. Yamaguchi and A. Luque, IEEE Trans. Electron Dev. 46, 2139 (1999).
http://dx.doi.org/10.1109/16.792009
77.
77. C. Algora, in Next Generation Photovoltaics: High Efficiency Through Full Spectrum Utilization, edited by A. Marti and A. Luque (Institute of Physics, Bristol, 2004).
78.
78. A. Luque, Prog. Photovoltaics 9, 303 (2001).
http://dx.doi.org/10.1002/pip.v9:4
79.
79. A. Luque and A. Martí, in Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization, edited by A. Martí and A. Luque (Institute of Physics Publishing, Bristol, 2003), pp. 118.
80.
80. G. Sala and A. Luque, in Concentrator Photovoltaics, edited by A. Luque and V. M. Andreev (Springer, Berlin, 2007), pp. 124.
81.
81. T. B. Johansson, H. Kelly, A. K. N. Reddy, R. H. Williams, and L. Burnham, Renewable Energy Sources for Fuel and Electricity (Island Press, Washington, DC, 1993).
82.
82.Available at http://www.fao.org/fileadmin/templates/ess/img/chartroom/151.jpg, edited by FAO. See the average world consumption of calories.
http://aip.metastore.ingenta.com/content/aip/journal/jap/110/3/10.1063/1.3600702
Loading
/content/aip/journal/jap/110/3/10.1063/1.3600702
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/110/3/10.1063/1.3600702
2011-08-08
2014-10-25

Abstract

Solar energy is the most abundant and reliable source of energy we have to provide for the multi-terawatt challenge we are facing. Although huge, this resource is relatively dispersed. High conversion efficiency is probably necessary for cost effectiveness. Solar cell efficiencies above 40% have been achieved with multijunction (MJ) solar cells. These achievements are here described. Possible paths for improvement are hinted at including third generation photovoltaics concepts. It is concluded that it is very likely that the target of 50% will eventually be achieved. This high efficiency requires operating under concentrated sunlight, partly because concentration helps increase the efficiency but mainly because the cost of the sophisticated cells needed can only be paid by extracting as much electric power form each cell as possible. The optical challenges associated with the concentrator optics and the tools for overcoming them, in particular non-imaging optics, are briefly discussed and the results and trends are described. It is probable that optical efficiency over 90% will be possible in the future. This would lead to a module efficiency of 45%. The manufacturing of a concentrator has to be addressed at three levels of integration: module, array, and photovoltaic(PV) subfield. The PV plant as a whole is very similar than a flat module PV plant with two-axes tracking. At the module level, the development of tools for easy manufacturing and quality control is an important topic. Furthermore, they can accommodate in different position cells with different spectral sensitivities so complementing the effort in manufacturing MJ cells. At the array level, a proper definition of the nameplate watts, since the diffuse light is not used, is under discussion. The cost of installation of arrays in the field can be very much reduced by self aligning tracking control strategies. At the subfield level, aspects such as the self shadowing of arrays causes the CPV subfields to be sparsely packed leading to a ground efficiency, in the range of 10%, that in some cases will be below that of fixed modules of much lower cell efficiency. All this taken into account, High Concentration PV (HCPV) has the opportunity to become the cheapest of the PV technologies and beat the prevalent electricity generation technologies. Of course the way will be paved with challenges, and success is not guaranteed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/110/3/1.3600702.html;jsessionid=b55mledr8joc.x-aip-live-02?itemId=/content/aip/journal/jap/110/3/10.1063/1.3600702&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Will we exceed 50% efficiency in photovoltaics?
http://aip.metastore.ingenta.com/content/aip/journal/jap/110/3/10.1063/1.3600702
10.1063/1.3600702
SEARCH_EXPAND_ITEM