1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Effects of grain size and boundary structure on the dynamic tensile response of copper
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/110/3/10.1063/1.3607294
1.
1. T. Antoun, L. Seaman, D. Curran, G. Kanel, S. Razorenov, and A. Utkin, Spall Fracture (Springer, New York, 2002), p. 26.
2.
2. L. M. Barker and H. Re, J. Appl. Phys. 43, 4669 (1972).
http://dx.doi.org/10.1063/1.1660986
3.
3. O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, Rev. Sci. Instrum. 77, 083108 (2006).
http://dx.doi.org/10.1063/1.2336749
4.
4. W. F. Hemsing, Rev. Sci. Instrum. 50, 73 (1979).
http://dx.doi.org/10.1063/1.1135672
5.
5. R. S. Hixson, G. T. Gray, P. A. Rigg, L. B. Addessio, and C. A. Yablinsky, AIP Conf. Proc. 706, 469 (2004).
http://dx.doi.org/10.1063/1.1780279
6.
6. G. T. Gray and C. E. Morris, J. Phys. IV 1, 191 (1991).
http://dx.doi.org/10.1051/jp4:1991325
7.
7. J. N. Johnson, G. T. Gray, and N. K. Bourne, J. Appl. Phys. 86, 4892 (1999).
http://dx.doi.org/10.1063/1.371527
8.
8. D. D. Koller, R. S. Hixson, G. T. Gray, P. A. Rigg, L. B. Addessio, E. K. Cerreta, J. D. Maestas, and C. A. Yablinsky, J. Appl. Phys. 98, 103518 (2005).
http://dx.doi.org/10.1063/1.2128493
9.
9. J. N. Johnson, J. Appl. Phys. 52, 2812 (1981).
http://dx.doi.org/10.1063/1.329011
10.
10. D. R. Curran, L. Seaman, and D. A. Shockey, Phys. Today 30, 46 (1977).
http://dx.doi.org/10.1063/1.3037367
11.
11. T. W. Barbee, L. Seaman, R. Crewdson, and D. Curran, J. Mater. 7, 393 (1972).
http://dx.doi.org/10.1007/BF02403402
12.
12. L. Seaman, D. R. Curran, and D. A. Shockey, J. Appl. Phys. 47, 4814 (1976).
http://dx.doi.org/10.1063/1.322523
13.
13. M. A. Meyers and C. T. Aimone, Prog. Mater. Sci. 28, 1 (1983).
http://dx.doi.org/10.1016/0079-6425(83)90003-8
14.
14. R. W. Minich, J. U. Cazamias, M. Kumar, and A. J. Schwartz, Metall. Mater. Trans. A 35A, 2663 (2004).
http://dx.doi.org/10.1007/s11661-004-0212-7
15.
15. R. W. Minich, M. Kumar, A. Schwarz, and J. Cazamias, AIP Conf. Proc. 845, 642 (2006).
http://dx.doi.org/10.1063/1.2263404
16.
16. A. J. Schwartz, J. U. Cazamias, P. S. Fiske, and R. W. Minich, AIP Conf. Proc. 620, 491 (2002).
http://dx.doi.org/10.1063/1.1483584
17.
17. P. Peralta, S. DiGiacomo, S. Hashemian, S. N. Luo, D. Paisley, R. Dickerson, E. Loomis, D. Byler, and K. J. McClellan, Int. J. Damage Mech. 18, 393 (2009).
http://dx.doi.org/10.1177/1056789508097550
18.
18. D. L. Tonks, J. Bingert, V. Livescu, and P. Peralta, AIP Conf. Proc. 1195, 1081 (2009).
http://dx.doi.org/10.1063/1.3294989
19.
19. L. Wayne, K. Krishnan, S. DiGiacomo, N. Kovvali, P. Peralta, S. N. Luo, S. Greenfield, D. Byler, D. Paisley, K. J. McClellan, A. Koskelo and R. Dickerson, Scr. Mater. 63, 1065 (2010).
http://dx.doi.org/10.1016/j.scriptamat.2010.08.003
20.
20. J. Buchar, M. Elices, and R. Cortez, J. Phys. IV 1, 623 (1991).
21.
21. W. R. Thissell, A. K. Zurek, D. A. S. Macdougall, D. Miller, R. Everett, A. Geltmacher, R. Brooks, and D. Tonks, AIP Conf. Proc. 620, 475 (2002).
http://dx.doi.org/10.1063/1.1483580
22.
22. A. L. Gurson, ASME J. Eng. Mater. Technol. 99, 2 (1977).
http://dx.doi.org/10.1115/1.3443401
23.
23. V. Tvergaard, Int. J. Fract. 17, 389 (1981).
http://dx.doi.org/10.1007/BF00036191
24.
24. V. Tvergaard, Int. J. Fract. 18, 237 (1982).
25.
25. V. Tvergaard and A. Needleman, Acta Metall. Mater. 32, 157 (1984).
http://dx.doi.org/10.1016/0001-6160(84)90213-X
26.
26. E. N. Harstad, P. J. Maudlin, and J. B. McKirgan, AIP Conf. Proc. 706, 569 (2004).
http://dx.doi.org/10.1063/1.1780303
27.
27. G. T. Gray, E. Cerreta, C. A. Yablinsky, L. B. Addessio, B. L. Henrie, B. H. Sencer, M. Burkett, P. J. Maudlin, S. A. Maloy, C. P. Trujillo, and M. F. Lopez, AIP Conf. Proc. 845, 725 (2006).
http://dx.doi.org/10.1063/1.2263424
28.
28. G. T. Gray III, Influence of Shock-Wave Deformation on the Structure/Property Behavior of Materials, in High Pressure Shock Compression of Solids, edited by J. R. Asay and M. Shahinpoor (Springer-Verlag, New York, 1993), pp. 187.
29.
29. A. L. Stevens and O. E. Jones, J. Appl. Mech. 39, 359 (1972).
http://dx.doi.org/10.1115/1.3422683
30.
30. G. T. Gray III, Influence of Shock-Wave Deformation on the Structure/Property Behavior of Materials, in High Pressure Shock Compression of Solids, edited by J. R. Asay and M. Shahinpoor (Springer-Verlag, New York, 1993), pp. 187.
31.
31. B. M. Patterson and C. E. Hamilton, Anal. Chem. 82, 8537 (2010).
http://dx.doi.org/10.1021/ac101522q
32.
32. B. P. Patterson, J. P. Escobedo, D. Dennis-Koller, and E. K. Cerreta, “Dimensional quantification of embedded voids or objects in three dimensions” Microscopy and Microanalysis (submitted).
33.
33. G. R. Fowles, J. Appl. Phys. 32, 1475 (1961).
http://dx.doi.org/10.1063/1.1728382
34.
34. G. I. Kanel, J. Appl. Mech. Tech. Phys. 42, 358 (2001).
http://dx.doi.org/10.1023/A:1018804709273
35.
35. S. Cochran and D. Banner, J. Appl. Phys. 48, 2729 (1977).
http://dx.doi.org/10.1063/1.324125
36.
36. G. I. Kanel, S. V. Razorenov, A. V. Utkin, and D. E. Grady, AIP Conf. Proc. 370, 503 (1996).
http://dx.doi.org/10.1063/1.50646
37.
37. L. N. Brewer, D. P. Field, and C. C. Merriman, in Electron Backscatter Diffraction in Materials Science (Springer Science + Business Media, New York, (2009), p. 251262.
38.
38. J. P. Escobedo and Y. M. Gupta, J. Appl. Phys. 107, 123502 (2010).
http://dx.doi.org/10.1063/1.3447751
39.
39. R. E. Rudd and J. F. Belak, Comp. Mater. Sci. 24, 148 (2002).
http://dx.doi.org/10.1016/S0927-0256(02)00181-7
40.
40. J. Belak, AIP Conf. Proc. 429, 211 (1998).
http://dx.doi.org/10.1063/1.55642
41.
41. R. Becker, Int. J. Plast. 20, 1983 (2004).
http://dx.doi.org/10.1016/j.ijplas.2003.09.002
42.
42. T. J. Vogler and J. D. Clayton, J. Mech. Phys. Solids 56, 297 (2008).
http://dx.doi.org/10.1016/j.jmps.2007.06.013
43.
43. C. A. Bronkhorst, B. L. Hansen, E. K. Cerreta, and J. F. Bingert, J. Mech. Phys. Solids 55, 2351 (2007).
http://dx.doi.org/10.1016/j.jmps.2007.03.019
44.
44. G. I. Kanel and A. V. Utkin, AIP Conf. Proc. 370, 487 1996.
http://dx.doi.org/10.1063/1.50685
45.
45. G. R. Irwin, J. Appl. Mech. 24, 361 (1957).
46.
46. G. R. Irwin, “Plastic zone near a crack and fracture toughness”, in Proceedings of the 7th Sagamore Army Materials Research Conference, edited by W. A. Backofen (Syracuse Univ. Press, Syracuse, N. Y., 1960), p. 63.
47.
47. R. A. Lebensohn, M. I. Idiart, P. Ponte Castañeda, and P. G. Vincent, Philos. Mag. 91, 3038 (2011).
http://dx.doi.org/10.1080/14786430701432619
http://aip.metastore.ingenta.com/content/aip/journal/jap/110/3/10.1063/1.3607294
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Wave shape affects the volume under tension, causing different damage fields: (a) narrow/localized = complete spall, (b) wide/spread = incipient spall.

Image of FIG. 2.

Click to view

FIG. 2.

(Color) Microstructures tested: (a) 450°C – 30 min (30 μm), (b) 600°C – 1 h (60 μm), (c) 850°C – 1h (100 μm), (d) 900°C – 35 min (200 μm).

Image of FIG. 3.

Click to view

FIG. 3.

(Color) Experimental configuration used for soft recovery experiments with VISAR diagnostics.

Image of FIG. 4.

Click to view

FIG. 4.

(Color) (a) Free surface velocity histories, (b) Pull-back wave, for the four different grain sizes, (c) free surface velocity after the minima.

Image of FIG. 5.

Click to view

FIG. 5.

Optical micrographs of the cross sections of the recovered: (a)–(d) bright field images of Exp. 1–4, respectively, (e)–(h) processed images.

Image of FIG. 6.

Click to view

FIG. 6.

(Color) (a) Void area fraction as function of the grain size, (b) void size distribution.

Image of FIG. 7.

Click to view

FIG. 7.

(Color) EBSD orientation maps (IPF) of the selected areas in Fig. 4: (a) Exp. 1, (b) Exp. 2, (c) Exp. 3, (d) Exp 4.

Image of FIG. 8.

Click to view

FIG. 8.

(Color) High magnification orientation (a)–(d) and average kernel misorientation (e)–(h) maps of Exps. 1–4, respectively.

Image of FIG. 9.

Click to view

FIG. 9.

(Color) Calculated properties from the EBSD data collected on the samples from Exp. 4. (a) Orientation map, (b) Taylor factor, (c) Schmid factor, (d) elastic stiffness, (d) CSL boundaries, (e) misorientation profiles as indicated by the arrows.

Image of FIG. 10.

Click to view

FIG. 10.

(Color) Calculated properties from the EBSD data collected on sample from Exp. 3. (a) Orientation map, (b) Taylor factor, (c) Schmid factor, (d) elastic stiffness, (e) CSL boundaries, (f) misorientation profiles as indicated by the arrows.

Image of FIG. 11.

Click to view

FIG. 11.

(Color) Results from a columnar grained Cu sample. (a) Sample, (b) optical micrograph of the cross section, (c)–(d) Orientation maps of the selected areas. (e)–(f) Misorientation profiles as indicated by the arrows.

Image of FIG. 12.

Click to view

FIG. 12.

(Color) Micro x-ray tomography results for: (a) Exp. 1, (b) Exp. 2, (c) Exp. 3, (c) Exp. 4. The color holds no physical significance other than allowing to distinguish between individual voids.

Image of FIG. 13.

Click to view

FIG. 13.

(Color online) Mechanisms proposed: (a) initial configuration of the grain boundaries ≠ Σ3, (b) microstructure during void nucleation stage, (c) resultant microstructure after void growth plus coalescence.

Image of FIG. 14.

Click to view

FIG. 14.

(Color online) Analogous Irwins’ model for damage growth. (a) Stress state, (b) development of plastic field. Void separation dictating: (c) plastic dissipation vs (d) coalescence.

Tables

Generic image for table

Click to view

Table I.

Experimental parameters for the plate impact experiments.

Generic image for table

Click to view

Table II.

Calculated values from free surface velocity traces.

Generic image for table

Click to view

Table III.

Damage statistics from optical analysis.

Loading

Article metrics loading...

/content/aip/journal/jap/110/3/10.1063/1.3607294
2011-08-05
2014-04-16

Abstract

Plate impact experiments have been carried out to examine the influence of grain boundarycharacteristics on the dynamic tensile response of Cu samples with grain sizes of 30, 60, 100, and 200 μm. The peak compressive stress is ∼1.50 GPa for all experiments, low enough to cause an early stage of incipient spall damage that is correlated to the surrounding microstructure in metallographic analysis. The experimental configuration used in this work permits real-time measurements of the sample free surfacevelocity histories, soft-recovery, and postimpact examination of the damaged microstructure. The resulting tensile damage in the recovered samples is examined using optical and electron microscopy along with micro x-raytomography. The free surfacevelocity measurements are used to calculate spall strength values and show no significant effect of the grain size. However, differences are observed in the free surfacevelocity behavior after the pull-back minima, when reacceleration occurs. The magnitude of the spall peak and its acceleration rate are dependent upon the grain size. The quantitative, postimpact, metallographic analyses of recovered samples show that for the materials with grain sizes larger than 30 μm, the void volume fraction and the average void size increase with increasing grain size. In the 30 and 200 μm samples, void coalescence is observed to dominate the void growth behavior, whereas in 60 and 100 μm samples, void growth is dominated by the growth of isolated voids. Electron backscatter diffraction (EBSD) observations show that voids preferentially nucleate and grow at grain boundaries with high angle misorientation. However, special boundaries corresponding to Σl (low angle, < 5 °) and Σ3 (∼60 ° <111> misorientation) types are more resistant to void formation. Finally, micro x-raytomography results show three dimensional (3D) views of the damage fields consistent with the two dimensional (2D) surface observations. Based on these findings, mechanisms for the void growth and coalescence are proposed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/110/3/1.3607294.html;jsessionid=ahvf1xr1wwxp.x-aip-live-01?itemId=/content/aip/journal/jap/110/3/10.1063/1.3607294&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effects of grain size and boundary structure on the dynamic tensile response of copper
http://aip.metastore.ingenta.com/content/aip/journal/jap/110/3/10.1063/1.3607294
10.1063/1.3607294
SEARCH_EXPAND_ITEM