1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Effects of grain size and boundary structure on the dynamic tensile response of copper
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/110/3/10.1063/1.3607294
1.
1. T. Antoun, L. Seaman, D. Curran, G. Kanel, S. Razorenov, and A. Utkin, Spall Fracture (Springer, New York, 2002), p. 26.
2.
2. L. M. Barker and H. Re, J. Appl. Phys. 43, 4669 (1972).
http://dx.doi.org/10.1063/1.1660986
3.
3. O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, Rev. Sci. Instrum. 77, 083108 (2006).
http://dx.doi.org/10.1063/1.2336749
4.
4. W. F. Hemsing, Rev. Sci. Instrum. 50, 73 (1979).
http://dx.doi.org/10.1063/1.1135672
5.
5. R. S. Hixson, G. T. Gray, P. A. Rigg, L. B. Addessio, and C. A. Yablinsky, AIP Conf. Proc. 706, 469 (2004).
http://dx.doi.org/10.1063/1.1780279
6.
6. G. T. Gray and C. E. Morris, J. Phys. IV 1, 191 (1991).
http://dx.doi.org/10.1051/jp4:1991325
7.
7. J. N. Johnson, G. T. Gray, and N. K. Bourne, J. Appl. Phys. 86, 4892 (1999).
http://dx.doi.org/10.1063/1.371527
8.
8. D. D. Koller, R. S. Hixson, G. T. Gray, P. A. Rigg, L. B. Addessio, E. K. Cerreta, J. D. Maestas, and C. A. Yablinsky, J. Appl. Phys. 98, 103518 (2005).
http://dx.doi.org/10.1063/1.2128493
9.
9. J. N. Johnson, J. Appl. Phys. 52, 2812 (1981).
http://dx.doi.org/10.1063/1.329011
10.
10. D. R. Curran, L. Seaman, and D. A. Shockey, Phys. Today 30, 46 (1977).
http://dx.doi.org/10.1063/1.3037367
11.
11. T. W. Barbee, L. Seaman, R. Crewdson, and D. Curran, J. Mater. 7, 393 (1972).
http://dx.doi.org/10.1007/BF02403402
12.
12. L. Seaman, D. R. Curran, and D. A. Shockey, J. Appl. Phys. 47, 4814 (1976).
http://dx.doi.org/10.1063/1.322523
13.
13. M. A. Meyers and C. T. Aimone, Prog. Mater. Sci. 28, 1 (1983).
http://dx.doi.org/10.1016/0079-6425(83)90003-8
14.
14. R. W. Minich, J. U. Cazamias, M. Kumar, and A. J. Schwartz, Metall. Mater. Trans. A 35A, 2663 (2004).
http://dx.doi.org/10.1007/s11661-004-0212-7
15.
15. R. W. Minich, M. Kumar, A. Schwarz, and J. Cazamias, AIP Conf. Proc. 845, 642 (2006).
http://dx.doi.org/10.1063/1.2263404
16.
16. A. J. Schwartz, J. U. Cazamias, P. S. Fiske, and R. W. Minich, AIP Conf. Proc. 620, 491 (2002).
http://dx.doi.org/10.1063/1.1483584
17.
17. P. Peralta, S. DiGiacomo, S. Hashemian, S. N. Luo, D. Paisley, R. Dickerson, E. Loomis, D. Byler, and K. J. McClellan, Int. J. Damage Mech. 18, 393 (2009).
http://dx.doi.org/10.1177/1056789508097550
18.
18. D. L. Tonks, J. Bingert, V. Livescu, and P. Peralta, AIP Conf. Proc. 1195, 1081 (2009).
http://dx.doi.org/10.1063/1.3294989
19.
19. L. Wayne, K. Krishnan, S. DiGiacomo, N. Kovvali, P. Peralta, S. N. Luo, S. Greenfield, D. Byler, D. Paisley, K. J. McClellan, A. Koskelo and R. Dickerson, Scr. Mater. 63, 1065 (2010).
http://dx.doi.org/10.1016/j.scriptamat.2010.08.003
20.
20. J. Buchar, M. Elices, and R. Cortez, J. Phys. IV 1, 623 (1991).
21.
21. W. R. Thissell, A. K. Zurek, D. A. S. Macdougall, D. Miller, R. Everett, A. Geltmacher, R. Brooks, and D. Tonks, AIP Conf. Proc. 620, 475 (2002).
http://dx.doi.org/10.1063/1.1483580
22.
22. A. L. Gurson, ASME J. Eng. Mater. Technol. 99, 2 (1977).
http://dx.doi.org/10.1115/1.3443401
23.
23. V. Tvergaard, Int. J. Fract. 17, 389 (1981).
http://dx.doi.org/10.1007/BF00036191
24.
24. V. Tvergaard, Int. J. Fract. 18, 237 (1982).
25.
25. V. Tvergaard and A. Needleman, Acta Metall. Mater. 32, 157 (1984).
http://dx.doi.org/10.1016/0001-6160(84)90213-X
26.
26. E. N. Harstad, P. J. Maudlin, and J. B. McKirgan, AIP Conf. Proc. 706, 569 (2004).
http://dx.doi.org/10.1063/1.1780303
27.
27. G. T. Gray, E. Cerreta, C. A. Yablinsky, L. B. Addessio, B. L. Henrie, B. H. Sencer, M. Burkett, P. J. Maudlin, S. A. Maloy, C. P. Trujillo, and M. F. Lopez, AIP Conf. Proc. 845, 725 (2006).
http://dx.doi.org/10.1063/1.2263424
28.
28. G. T. Gray III, Influence of Shock-Wave Deformation on the Structure/Property Behavior of Materials, in High Pressure Shock Compression of Solids, edited by J. R. Asay and M. Shahinpoor (Springer-Verlag, New York, 1993), pp. 187.
29.
29. A. L. Stevens and O. E. Jones, J. Appl. Mech. 39, 359 (1972).
http://dx.doi.org/10.1115/1.3422683
30.
30. G. T. Gray III, Influence of Shock-Wave Deformation on the Structure/Property Behavior of Materials, in High Pressure Shock Compression of Solids, edited by J. R. Asay and M. Shahinpoor (Springer-Verlag, New York, 1993), pp. 187.
31.
31. B. M. Patterson and C. E. Hamilton, Anal. Chem. 82, 8537 (2010).
http://dx.doi.org/10.1021/ac101522q
32.
32. B. P. Patterson, J. P. Escobedo, D. Dennis-Koller, and E. K. Cerreta, “Dimensional quantification of embedded voids or objects in three dimensions” Microscopy and Microanalysis (submitted).
33.
33. G. R. Fowles, J. Appl. Phys. 32, 1475 (1961).
http://dx.doi.org/10.1063/1.1728382
34.
34. G. I. Kanel, J. Appl. Mech. Tech. Phys. 42, 358 (2001).
http://dx.doi.org/10.1023/A:1018804709273
35.
35. S. Cochran and D. Banner, J. Appl. Phys. 48, 2729 (1977).
http://dx.doi.org/10.1063/1.324125
36.
36. G. I. Kanel, S. V. Razorenov, A. V. Utkin, and D. E. Grady, AIP Conf. Proc. 370, 503 (1996).
http://dx.doi.org/10.1063/1.50646
37.
37. L. N. Brewer, D. P. Field, and C. C. Merriman, in Electron Backscatter Diffraction in Materials Science (Springer Science + Business Media, New York, (2009), p. 251262.
38.
38. J. P. Escobedo and Y. M. Gupta, J. Appl. Phys. 107, 123502 (2010).
http://dx.doi.org/10.1063/1.3447751
39.
39. R. E. Rudd and J. F. Belak, Comp. Mater. Sci. 24, 148 (2002).
http://dx.doi.org/10.1016/S0927-0256(02)00181-7
40.
40. J. Belak, AIP Conf. Proc. 429, 211 (1998).
http://dx.doi.org/10.1063/1.55642
41.
41. R. Becker, Int. J. Plast. 20, 1983 (2004).
http://dx.doi.org/10.1016/j.ijplas.2003.09.002
42.
42. T. J. Vogler and J. D. Clayton, J. Mech. Phys. Solids 56, 297 (2008).
http://dx.doi.org/10.1016/j.jmps.2007.06.013
43.
43. C. A. Bronkhorst, B. L. Hansen, E. K. Cerreta, and J. F. Bingert, J. Mech. Phys. Solids 55, 2351 (2007).
http://dx.doi.org/10.1016/j.jmps.2007.03.019
44.
44. G. I. Kanel and A. V. Utkin, AIP Conf. Proc. 370, 487 1996.
http://dx.doi.org/10.1063/1.50685
45.
45. G. R. Irwin, J. Appl. Mech. 24, 361 (1957).
46.
46. G. R. Irwin, “Plastic zone near a crack and fracture toughness”, in Proceedings of the 7th Sagamore Army Materials Research Conference, edited by W. A. Backofen (Syracuse Univ. Press, Syracuse, N. Y., 1960), p. 63.
47.
47. R. A. Lebensohn, M. I. Idiart, P. Ponte Castañeda, and P. G. Vincent, Philos. Mag. 91, 3038 (2011).
http://dx.doi.org/10.1080/14786430701432619
http://aip.metastore.ingenta.com/content/aip/journal/jap/110/3/10.1063/1.3607294
Loading
/content/aip/journal/jap/110/3/10.1063/1.3607294
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/110/3/10.1063/1.3607294
2011-08-05
2014-10-25

Abstract

Plate impact experiments have been carried out to examine the influence of grain boundarycharacteristics on the dynamic tensile response of Cu samples with grain sizes of 30, 60, 100, and 200 μm. The peak compressive stress is ∼1.50 GPa for all experiments, low enough to cause an early stage of incipient spall damage that is correlated to the surrounding microstructure in metallographic analysis. The experimental configuration used in this work permits real-time measurements of the sample free surfacevelocity histories, soft-recovery, and postimpact examination of the damaged microstructure. The resulting tensile damage in the recovered samples is examined using optical and electron microscopy along with micro x-raytomography. The free surfacevelocity measurements are used to calculate spall strength values and show no significant effect of the grain size. However, differences are observed in the free surfacevelocity behavior after the pull-back minima, when reacceleration occurs. The magnitude of the spall peak and its acceleration rate are dependent upon the grain size. The quantitative, postimpact, metallographic analyses of recovered samples show that for the materials with grain sizes larger than 30 μm, the void volume fraction and the average void size increase with increasing grain size. In the 30 and 200 μm samples, void coalescence is observed to dominate the void growth behavior, whereas in 60 and 100 μm samples, void growth is dominated by the growth of isolated voids. Electron backscatter diffraction (EBSD) observations show that voids preferentially nucleate and grow at grain boundaries with high angle misorientation. However, special boundaries corresponding to Σl (low angle, < 5 °) and Σ3 (∼60 ° <111> misorientation) types are more resistant to void formation. Finally, micro x-raytomography results show three dimensional (3D) views of the damage fields consistent with the two dimensional (2D) surface observations. Based on these findings, mechanisms for the void growth and coalescence are proposed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/110/3/1.3607294.html;jsessionid=54oo6alp2v4ig.x-aip-live-03?itemId=/content/aip/journal/jap/110/3/10.1063/1.3607294&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effects of grain size and boundary structure on the dynamic tensile response of copper
http://aip.metastore.ingenta.com/content/aip/journal/jap/110/3/10.1063/1.3607294
10.1063/1.3607294
SEARCH_EXPAND_ITEM