Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Antoun, L. Seaman, D. Curran, G. Kanel, S. Razorenov, and A. Utkin, Spall Fracture (Springer, New York, 2002), p. 26.
2. L. M. Barker and H. Re, J. Appl. Phys. 43, 4669 (1972).
3. O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, Rev. Sci. Instrum. 77, 083108 (2006).
4. W. F. Hemsing, Rev. Sci. Instrum. 50, 73 (1979).
5. R. S. Hixson, G. T. Gray, P. A. Rigg, L. B. Addessio, and C. A. Yablinsky, AIP Conf. Proc. 706, 469 (2004).
6. G. T. Gray and C. E. Morris, J. Phys. IV 1, 191 (1991).
7. J. N. Johnson, G. T. Gray, and N. K. Bourne, J. Appl. Phys. 86, 4892 (1999).
8. D. D. Koller, R. S. Hixson, G. T. Gray, P. A. Rigg, L. B. Addessio, E. K. Cerreta, J. D. Maestas, and C. A. Yablinsky, J. Appl. Phys. 98, 103518 (2005).
9. J. N. Johnson, J. Appl. Phys. 52, 2812 (1981).
10. D. R. Curran, L. Seaman, and D. A. Shockey, Phys. Today 30, 46 (1977).
11. T. W. Barbee, L. Seaman, R. Crewdson, and D. Curran, J. Mater. 7, 393 (1972).
12. L. Seaman, D. R. Curran, and D. A. Shockey, J. Appl. Phys. 47, 4814 (1976).
13. M. A. Meyers and C. T. Aimone, Prog. Mater. Sci. 28, 1 (1983).
14. R. W. Minich, J. U. Cazamias, M. Kumar, and A. J. Schwartz, Metall. Mater. Trans. A 35A, 2663 (2004).
15. R. W. Minich, M. Kumar, A. Schwarz, and J. Cazamias, AIP Conf. Proc. 845, 642 (2006).
16. A. J. Schwartz, J. U. Cazamias, P. S. Fiske, and R. W. Minich, AIP Conf. Proc. 620, 491 (2002).
17. P. Peralta, S. DiGiacomo, S. Hashemian, S. N. Luo, D. Paisley, R. Dickerson, E. Loomis, D. Byler, and K. J. McClellan, Int. J. Damage Mech. 18, 393 (2009).
18. D. L. Tonks, J. Bingert, V. Livescu, and P. Peralta, AIP Conf. Proc. 1195, 1081 (2009).
19. L. Wayne, K. Krishnan, S. DiGiacomo, N. Kovvali, P. Peralta, S. N. Luo, S. Greenfield, D. Byler, D. Paisley, K. J. McClellan, A. Koskelo and R. Dickerson, Scr. Mater. 63, 1065 (2010).
20. J. Buchar, M. Elices, and R. Cortez, J. Phys. IV 1, 623 (1991).
21. W. R. Thissell, A. K. Zurek, D. A. S. Macdougall, D. Miller, R. Everett, A. Geltmacher, R. Brooks, and D. Tonks, AIP Conf. Proc. 620, 475 (2002).
22. A. L. Gurson, ASME J. Eng. Mater. Technol. 99, 2 (1977).
23. V. Tvergaard, Int. J. Fract. 17, 389 (1981).
24. V. Tvergaard, Int. J. Fract. 18, 237 (1982).
25. V. Tvergaard and A. Needleman, Acta Metall. Mater. 32, 157 (1984).
26. E. N. Harstad, P. J. Maudlin, and J. B. McKirgan, AIP Conf. Proc. 706, 569 (2004).
27. G. T. Gray, E. Cerreta, C. A. Yablinsky, L. B. Addessio, B. L. Henrie, B. H. Sencer, M. Burkett, P. J. Maudlin, S. A. Maloy, C. P. Trujillo, and M. F. Lopez, AIP Conf. Proc. 845, 725 (2006).
28. G. T. Gray III, Influence of Shock-Wave Deformation on the Structure/Property Behavior of Materials, in High Pressure Shock Compression of Solids, edited by J. R. Asay and M. Shahinpoor (Springer-Verlag, New York, 1993), pp. 187.
29. A. L. Stevens and O. E. Jones, J. Appl. Mech. 39, 359 (1972).
30. G. T. Gray III, Influence of Shock-Wave Deformation on the Structure/Property Behavior of Materials, in High Pressure Shock Compression of Solids, edited by J. R. Asay and M. Shahinpoor (Springer-Verlag, New York, 1993), pp. 187.
31. B. M. Patterson and C. E. Hamilton, Anal. Chem. 82, 8537 (2010).
32. B. P. Patterson, J. P. Escobedo, D. Dennis-Koller, and E. K. Cerreta, “Dimensional quantification of embedded voids or objects in three dimensions” Microscopy and Microanalysis (submitted).
33. G. R. Fowles, J. Appl. Phys. 32, 1475 (1961).
34. G. I. Kanel, J. Appl. Mech. Tech. Phys. 42, 358 (2001).
35. S. Cochran and D. Banner, J. Appl. Phys. 48, 2729 (1977).
36. G. I. Kanel, S. V. Razorenov, A. V. Utkin, and D. E. Grady, AIP Conf. Proc. 370, 503 (1996).
37. L. N. Brewer, D. P. Field, and C. C. Merriman, in Electron Backscatter Diffraction in Materials Science (Springer Science + Business Media, New York, (2009), p. 251262.
38. J. P. Escobedo and Y. M. Gupta, J. Appl. Phys. 107, 123502 (2010).
39. R. E. Rudd and J. F. Belak, Comp. Mater. Sci. 24, 148 (2002).
40. J. Belak, AIP Conf. Proc. 429, 211 (1998).
41. R. Becker, Int. J. Plast. 20, 1983 (2004).
42. T. J. Vogler and J. D. Clayton, J. Mech. Phys. Solids 56, 297 (2008).
43. C. A. Bronkhorst, B. L. Hansen, E. K. Cerreta, and J. F. Bingert, J. Mech. Phys. Solids 55, 2351 (2007).
44. G. I. Kanel and A. V. Utkin, AIP Conf. Proc. 370, 487 1996.
45. G. R. Irwin, J. Appl. Mech. 24, 361 (1957).
46. G. R. Irwin, “Plastic zone near a crack and fracture toughness”, in Proceedings of the 7th Sagamore Army Materials Research Conference, edited by W. A. Backofen (Syracuse Univ. Press, Syracuse, N. Y., 1960), p. 63.
47. R. A. Lebensohn, M. I. Idiart, P. Ponte Castañeda, and P. G. Vincent, Philos. Mag. 91, 3038 (2011).

Data & Media loading...


Article metrics loading...



Plate impact experiments have been carried out to examine the influence of grain boundarycharacteristics on the dynamic tensile response of Cu samples with grain sizes of 30, 60, 100, and 200 μm. The peak compressive stress is ∼1.50 GPa for all experiments, low enough to cause an early stage of incipient spall damage that is correlated to the surrounding microstructure in metallographic analysis. The experimental configuration used in this work permits real-time measurements of the sample free surfacevelocity histories, soft-recovery, and postimpact examination of the damaged microstructure. The resulting tensile damage in the recovered samples is examined using optical and electron microscopy along with micro x-raytomography. The free surfacevelocity measurements are used to calculate spall strength values and show no significant effect of the grain size. However, differences are observed in the free surfacevelocity behavior after the pull-back minima, when reacceleration occurs. The magnitude of the spall peak and its acceleration rate are dependent upon the grain size. The quantitative, postimpact, metallographic analyses of recovered samples show that for the materials with grain sizes larger than 30 μm, the void volume fraction and the average void size increase with increasing grain size. In the 30 and 200 μm samples, void coalescence is observed to dominate the void growth behavior, whereas in 60 and 100 μm samples, void growth is dominated by the growth of isolated voids. Electron backscatter diffraction (EBSD) observations show that voids preferentially nucleate and grow at grain boundaries with high angle misorientation. However, special boundaries corresponding to Σl (low angle, < 5 °) and Σ3 (∼60 ° <111> misorientation) types are more resistant to void formation. Finally, micro x-raytomography results show three dimensional (3D) views of the damage fields consistent with the two dimensional (2D) surface observations. Based on these findings, mechanisms for the void growth and coalescence are proposed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd