1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Addendum to “Phase selection and transition in Hf-rich hafnia-titania nanolaminates” (on SiO2) [J. Appl. Phys.109, 123523 (2011)]: Hafnon formation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/111/10/10.1063/1.4719968
1.
1. M. C. Cisneros-Morales and C. R. Aita, Appl. Phys. Lett. 98, 051909 (2011).
http://dx.doi.org/10.1063/1.3551543
2.
2. M. C. Cisneros-Morales and C. R. Aita, J. Appl. Phys. 109, 123523 (2011).
http://dx.doi.org/10.1063/1.3597321
3.
3. M. C. Cisneros-Morales and C. R. Aita, J. Vac. Sci. Technol. 28, 1161 (2010).
http://dx.doi.org/10.1116/1.3474973
4.
4.Joint Commission on Powder Diffraction Standards Card No. 05-0565.
5.
5.Joint Commission on Powder Diffraction Standards Card No. 78-0050.
6.
6.Joint Commission on Powder Diffraction Standards Card No. 73-1765.
7.
7.Joint Commission on Powder Diffraction Standards Card No. 40-0794.
8.
8. J. Uhrmann and J. Pickardt, Z. Anorg. Chem. 532, 171 (1986); see also www-MINCRYST HAFNON-1835, http://database.iem.ac.ru/mincryst.
http://dx.doi.org/10.1002/zaac.19865320123
9.
9. A. Jayaraman, S. Y. Wang, S. K. Sharma, and L. C. Ming, Phys. Rev. B 48, 9205 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.9205
10.
10. S. P. S. Porto, P. A. Fleury, and T. C. Damen, Phys. Rev. 154, 522 (1967).
http://dx.doi.org/10.1103/PhysRev.154.522
11.
11. M. A. Krebs and R. A. Condrate, Sr., J. Mater. Sci. Lett. 7, 1327 (1988).
http://dx.doi.org/10.1007/BF00719973
12.
12. J. H. Nicola and H. N. Rutt, J. Phys. C 7, 1381 (1974).
http://dx.doi.org/10.1088/0022-3719/7/7/029
13.
13. P. W. O. Hoskin and K. A. Rodgers, Eur. J. Solid State Inorg. Chem. 33, 1111 (1996).
14.
14. G.-M. Rignanese, X. Gonze, G. Jun, K. Cho, and A. Pasquarello, Phys. Rev. B 69, 184301 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.184301
15.
15. B. Manoun, R. T. Downs, and S. K. Saxena, Am. Mineral. 91, 1888 (2006).
http://dx.doi.org/10.2138/am.2006.2070
16.
16. M. Gutowski, J. E. Jaffe, C.-L. Liu, M. Stoker, R. I. Hegde, R. S. Rai, and P. J. Tobin, Appl. Phys. Lett. 80, 1897 (2002).
http://dx.doi.org/10.1063/1.1458692
17.
17. D. Shin and Z.-K. Liu, Scr. Mater. 57, 201 (2007).
http://dx.doi.org/10.1016/j.scriptamat.2007.04.011
18.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/111/10/10.1063/1.4719968
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The high resolution XRD patterns for film 5H4T, the bare substrate, and a single layer HfO2 film subjected to a similar annealing regimen. Vertical lines indicate the position of standard positions listed in Table I. H = HfO2, T = TiO2, HT = HfTiO4, HS = HfSiO4. Peaks labeled A = (110) TiO2, B = (200)  =  HfSiO4, C = (101) HfSiO4.

Image of FIG. 2.

Click to view

FIG. 2.

Optical microscope image showing features appearing circular in-plane, embedded in a matrix after stage IV annealing.

Image of FIG. 3.

Click to view

FIG. 3.

Raman shift spectra after all annealing stages. F indicates spectrum from feature. M indicates spectrum from matrix. Bar graphs indicate the position of m-HfO2 (H),9 t-TiO2 (T),10 o-HfTiO4 (HT),11 and t-HfSiO4 (HS)12 standards. Dashed lines indicate Eg and A1g modes in HfSiO4.

Tables

Generic image for table

Click to view

Table I.

Crystallographic parameters of relevant standards for comparison with observed XRD peaks.

Loading

Article metrics loading...

/content/aip/journal/jap/111/10/10.1063/1.4719968
2012-05-23
2014-04-18

Abstract

Continued investigation of hafnia-titania nanolaminates on silica substrates after long term annealing shows that hafnon (HfSiO4) is formed, in addition to the previously reported phases. Here, a 293 nm-thick stack of 5 nm HfO2-4 nm TiO2 bilayers (0.51 mole fraction HfO2) is sputter deposited on fused SiO2 and annealed in air at 1173 K for up to 192 h and then at 1273 K for up to 96 h. X-ray diffraction shows that hafnon crystallizes after 24 h at 1273 K. Micro-Raman spectroscopy/microscopy shows that hafnon crystallization is heterogeneous. No film-substrate reaction is observed for single layer HfO2 on SiO2annealed under similar conditions. We suggest the nanolaminate’s complex annealed microstructure provides fast diffusion paths that enable hafnon formation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/111/10/1.4719968.html;jsessionid=xrtwwtuzvs37.x-aip-live-03?itemId=/content/aip/journal/jap/111/10/10.1063/1.4719968&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Addendum to “Phase selection and transition in Hf-rich hafnia-titania nanolaminates” (on SiO2) [J. Appl. Phys.109, 123523 (2011)]: Hafnon formation
http://aip.metastore.ingenta.com/content/aip/journal/jap/111/10/10.1063/1.4719968
10.1063/1.4719968
SEARCH_EXPAND_ITEM