1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/111/3/10.1063/1.3679521
1.
1. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971).
2.
2. A. J. Moulson and J. M. Herbert, Electroceramics (Wiley, London, 2003).
3.
3. S. E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997).
http://dx.doi.org/10.1063/1.365983
4.
4. H. Fu and R. E. Cohen, Nature 403, 281 (2000).
http://dx.doi.org/10.1038/35002022
5.
5. M. Davis, J. Electroceram. 19, 23 (2007).
http://dx.doi.org/10.1007/s10832-007-9046-1
6.
6. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys. 100, 051606 (2006).
http://dx.doi.org/10.1063/1.2336999
7.
7. D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998).
http://dx.doi.org/10.1088/0034-4885/61/9/002
8.
8. S. Trolier-Mckinstry and P. Muralt, J. Electroceram. 12, 7 (2004).
http://dx.doi.org/10.1023/B:JECR.0000033998.72845.51
9.
9. G. L. Messing, S. Trolier-McKinstry, E. M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P. W. Rehrig, K. B. Eitel, E. Suvaci, M. Seabaugh, and K. S. Oh, Crit. Rev. Solid State Mater. Sci. 29, 45 (2004).
http://dx.doi.org/10.1080/10408430490490905
10.
10. Q. M. Zhang, V. Bharti, and X. Zhao, Science 280, 2101 (1998).
http://dx.doi.org/10.1126/science.280.5372.2101
11.
11. R. E. Newnham, D. P. Skinner, and L. E. Cross, Mater. Res. Bull. 13, 525 (1978).
http://dx.doi.org/10.1016/0025-5408(78)90161-7
12.
12. W. A. Smith and B. A. Auld, IEEE. Trans. Ultrason. Ferroelectr. Freq. Control 38, 40 (1991).
http://dx.doi.org/10.1109/58.67833
13.
13. W. A. Smith and A. A. Shaulov, Ferroelectrics 87, 309 (1988).
http://dx.doi.org/10.1080/00150198808201393
14.
14. R. E. Newnham, Ann. Rev. Mater. Sci. 16, 47 (1986).
http://dx.doi.org/10.1146/annurev.ms.16.080186.000403
15.
15. J. Curie and P. Curie, Bull. Soc. Fr. Mineral. 3, 90 (1880).
16.
16. G. Lippman, Ann. Chim. Phys. 24, 145 (1881).
17.
17. N. Setter, “ABC of piezoelectricity and piezoelectric materials,” in Piezoelectric Materials in Devices, edited by N. Setter (Lausanne, Switzerland, 2002), pp. 127.
18.
18. R. E. Newnham, Properties of Materials-Anisotropy, Symmetry, Structure (Oxford University Press, NY, 2005).
19.
19. D. Berlincourt, “Piezoelectric crystals and ceramics,” in Ultrasonic Transducer Materials: Piezoelectric Crystals and Ceramics, edited by O. E. Mattiat (Plenum, London, 1971), pp. 63124.
20.
20. Y. H. Xu, Ferroelectric Materials and their Applications (Elsevier, NY, 1991).
21.
21. W. G. Cady, Piezoelectricity (Dover, NY, 1964).
22.
22. T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, NY, 1990).
23.
23. W. P. Mason, Piezoelectric Crystals and their Application to Ultrasonics (Van Nostrand Co., New York, 1950).
24.
24. D. Berlincourt, D. R. Curran, and H. Jaffe, “Piezoelectric and piezomagnetic materials and their function in transducers,” in Physical Acoustics, edited by W. P. Mason (Academic, New York, 1964), Vol. IA, pp. 169270.
25.
25. A. Safari and E. K. Akdogan, Piezoelectric and Acoustic Materials for Transducer Applications (Springer, NY, 2008).
26.
26. K. Uchino, Ferroelectric Devices (CRC, NY, 2009).
27.
27. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).
28.
28. L. E. Cross, “Ferroelectric ceramics: Tailoring properties for specific applications,” in Ferroelectric Ceramics: Tutorial Reviews, Theory, Processing and Applications, edited by N. Setter and E. L. Colla (Birkhauser, Basel, 1993), pp. 187.
29.
29. J. Valasek, Phys. Rev. 17, 475 (1921).
http://dx.doi.org/10.1103/PhysRev.17.475
30.
30. S. Wada, “Domain wall engineering in piezoelectric crystals with engineered domain configuration,” in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications, edited by Z. G. Ye (Woodhead, Cambridge, England, 2008), pp. 266303.
31.
31. W. W. Cao, “Full-set material properties and domain engineering principles of ferroelectric single crystals,” in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications, edited by Z. G. Ye (Woodhead, Cambridge, England, 2008), pp. 235265.
32.
32. J. Erhart, Phase Transitions 77, 989 (2004).
http://dx.doi.org/10.1080/01411590410001710744
33.
33. M. Davis, “Phase transitions, anisotropy and domain engineering: The piezoelectric properties of realxor-ferroelectric single crystals,” Ph.D. dissertation (Swiss Federal Institute of Technology-EPFL, Lausanne, Switzerland, 2006).
34.
34. K. G. Webber, “Effect of domain wall motion and phase transformations on nonlinear hysteretic constitutive behavior in ferroelectric materials,” Ph. D. dissertation (Georgia Institute of Technology, 2008).
35.
35. T. Q. Liu, “Electromechanical behavior of relaxor ferroelectric crystals,” Ph.D. dissertation (Georgia Institute of Technology, 2004).
36.
36. D. Damjanovic, “Hysteresis in piezoelectric and ferroelectric materials,” in The Science of Hysteresis, edited by I. Mayergoyz and G. Bertotti (Elsevier, NY, 2005), Vol. 3, pp. 337465.
37.
37. F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, and T. Shrout, Appl. Phys. Lett. 97, 252903 (2010).
http://dx.doi.org/10.1063/1.3529952
38.
38. F. Li, S. J. Zhang, Z. Xu, X. Y. Wei, and T. R. Shrout, Adv. Funct. Mater. 21, 2118 (2011).
http://dx.doi.org/10.1002/adfm.201002711
39.
39. A. J. Bell, J. Appl. Phys. 89, 3907 (2001).
http://dx.doi.org/10.1063/1.1352682
40.
40. M. Davis, D. Damjanovic, D. Hayem, and N. Setter, J. Appl. Phys. 98, 014102 (2005).
http://dx.doi.org/10.1063/1.1929091
41.
41. S. Wada, K. Yato, H. Kakemoto, T. Tsurumi, and T. Kiguchi, J. Appl. Phys. 98, 014109 (2005).
http://dx.doi.org/10.1063/1.1957130
42.
42. Y. Yamashita, N. Yamamoto, K. Itsumi, and Y. Hosono, Jpn. J. Appl. Phys. 50, 09NC05 (2011).
http://dx.doi.org/10.1143/JJAP.50.09NC05
43.
43. D. Lin, S. J. Zhang, Z. Li, F. Li, Z. Xu, S. Wada, J. Luo, and T. R. Shrout, J. Appl. Phys. 100, 084110 (2011).
http://dx.doi.org/10.1063/1.3654137
44.
44. E. Wainer and A. N. Salomon, Titanium Alloy. Mfg. Co. Elect. Report No. 8, 1942.
45.
45. A. V. Hippel, R. Breckenridge, F. Chesley, and L. Tisza, Ind. Eng. Chem. 38, 1097 (1946).
http://dx.doi.org/10.1021/ie50443a009
46.
46. R. E. Newnham and L. E. Cross, Mater. Res. Bull. 30, 845 (2005).
http://dx.doi.org/10.1557/mrs2005.272
47.
47. B. Jaffe, R. Roth, and S. Marzullo, J. Appl. Phys. 25, 809 (1954).
http://dx.doi.org/10.1063/1.1721741
48.
48. G. H. Haetling, J. Am. Ceram. Soc. 82, 797 (1999).
http://dx.doi.org/10.1111/j.1151-2916.1999.tb01840.x
49.
49. D. Berlincourt, C. Cmolik, and H. Jaffe, Proc. IRE. 48, 220 (1960).
http://dx.doi.org/10.1109/JRPROC.1960.287467
50.
50. G. A. Smolenskii and A. I. Agranovskii, Sov. Phys. Solid State 1, 1429 (1960).
51.
51. A. A. Bokov and Z. G. Ye, J. Mater. Sci. 41, 31 (2006).
http://dx.doi.org/10.1007/s10853-005-5915-7
52.
52. Z. G. Ye, Key Eng. Mater. 155, 81 (1998).
http://dx.doi.org/10.4028/www.scientific.net/KEM.155-156.81
53.
53. S. J. Jang, K. Uchino, S. Nomura, and L. E. Cross, Ferroelectrics 27, 31 (1979).
http://dx.doi.org/10.1080/00150198008226059
54.
54. L. E. Cross, Ferroelectrics 76, 241 (1987).
http://dx.doi.org/10.1080/00150198708016945
55.
55. S. W. Choi, T. R. Shrout, S. J. Jang, and A. S. Bhalla, Mater. Lett. 8, 253 (1989).
http://dx.doi.org/10.1016/0167-577X(89)90115-8
56.
56. S. L. Swartz and T. R. Shrout, Mater. Res. Bull. 17, 1245 (1982).
http://dx.doi.org/10.1016/0025-5408(82)90159-3
57.
57. J. Kuwata, K. Uchino, and S. Nomura, Ferroelectrics 37, 579 (1981).
http://dx.doi.org/10.1080/00150198108223490
58.
58. J. Kuwata, K. Uchino, and S. Nomura, Jpn. J. Appl. Phys. 21, 1298 (1982).
http://dx.doi.org/10.1143/JJAP.21.1298
59.
59. T. R. Shrout, Z. P. Chang, N. Kim, and S. Markgraf, Ferroelectr., Lett. Sect. 12, 63 (1990).
http://dx.doi.org/10.1080/07315179008201118
60.
60. Z. G. Ye, P. Tissot, and H. Schmid, Mater. Res. Bull. 25, 739 (1990).
http://dx.doi.org/10.1016/0025-5408(90)90202-D
61.
61. S. E. Park and T. R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44, 1140 (1997).
http://dx.doi.org/10.1109/58.655639
62.
62. S. E. Park and T. R. Shrout, Mater. Res. Innovations 1, 20 (1997).
http://dx.doi.org/10.1007/s100190050014
63.
63. Z. G. Ye, Curr. Opin. Solid State Mater. Sci. 6, 35 (2002).
http://dx.doi.org/10.1016/S1359-0286(02)00019-0
64.
64. S. E. Park and W. Hackenberger, Curr. Opin. Solid State Mater. Sci. 6, 11 (2002).
http://dx.doi.org/10.1016/S1359-0286(02)00023-2
65.
65. S. J. Zhang, L. Lebrun, L. S. F. Liu, S. Rhee, C. A. Randall, and T. R. Shrout, Jpn. J. Appl. Phys. 41, L1099 (2002).
http://dx.doi.org/10.1143/JJAP.41.L1099
66.
66. R. Zhang. B. Jiang, W. H. Jiang, and W. W. Cao, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1622 (2002).
http://dx.doi.org/10.1109/TUFFC.2002.1159841
67.
67. S. J. Zhang, L. Lebrun, D. Y. Jeong, C. A. Randall, Q. M. Zhang, and T. R. Shrout, J. Appl. Phys. 93, 9257 (2003).
http://dx.doi.org/10.1063/1.1571966
68.
68. S. J. Zhang, L. Lebrun, C. A. Randall, and T. R. Shrout, Phys. Status Solidi A 202, 151 (2005).
http://dx.doi.org/10.1002/pssa.v202:1
69.
69. M. Shanthi, K. H. Hoe, C. Y. H. Lim, and L. C. Lim, Appl. Phys. Lett. 86, 262908 (2005).
http://dx.doi.org/10.1063/1.1957114
70.
70. S. J. Zhang, J. Luo, R. Xia, P. W. Rehrig, C. A. Randall, and T. R. Shrout, Solid State Commun. 137, 16 (2006).
http://dx.doi.org/10.1016/j.ssc.2005.10.023
71.
71. R. Zhang, B. Jiang, and W. W. Cao, J. Appl. Phys. 90, 3471 (2001).
http://dx.doi.org/10.1063/1.1390494
72.
72. R. Zhang, B. Jiang, and W. W. Cao, Appl. Phys. Lett. 82, 787 (2003).
http://dx.doi.org/10.1063/1.1541937
73.
73. M. Davis, D. Damjanovic, and N. Setter, Phys. Rev. B 73, 014115 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.014115
74.
74. H. Dammak, A. Renault, P. Gaucher, M. Thi, and G. Calvarin, Jpn. J. Appl. Phys. 42, 6477 (2003).
http://dx.doi.org/10.1143/JJAP.42.6477
75.
75. D. Damjanovic, M. Davis, and M. Budimir, “Enhancement of piezoelectric properties in perovskite crystals by thermally, compositionally, electric field and stress-induced instabilities,” in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications, edited by Z. G. Ye (Woodhead, Cambridge, England, 2008), pp. 304332.
76.
76. S. J. Zhang, J. Luo, D. W. Snyder, and T. R. Shrout, “High performance, high temperature piezoelectric crystals,” in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications, edited by Z. G. Ye (Woodhead, Cambridge, England, 2008), pp. 130157.
77.
77. Y. Yamashita and K. Harada, Jpn. J. Appl. Phys. 36, 6039 (1997).
http://dx.doi.org/10.1143/JJAP.36.6039
78.
78. Y. H. Bing and Z. G. Ye, J. Cryst. Growth 250, 118 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)02237-6
79.
79. Y. H. Bing and Z. G. Ye, J. Cryst. Growth 287, 326 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.11.024
80.
80. Y. H. Bing and Z. G. Ye, Mater. Sci. Eng. B 120, 72 (2005).
http://dx.doi.org/10.1016/j.mseb.2005.02.019
81.
81. Y. Yamashita and S. Shimanuki, Mater. Res. Bull. 31, 887 (1996).
http://dx.doi.org/10.1016/0025-5408(96)00072-4
82.
82. Y. Yamashita, Y. Hosono, K. Harada, and Z. G. Ye, “Relaxor Ferroelectric crystals-recent development and application,” in Piezoelectric Materials in Devices, edited by N. Setter (Lausanne, Switzerland, 2002), pp. 455466.
83.
83. Y. H. Bing and Z. G. Ye, “Piezo-and ferroelectric (1-x)PSN-xPT solid solution system,” in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications, edited by Z. G. Ye (Woodhead, Cambridge, England, 2008), pp. 173204.
84.
84. Y. Guo, H. Luo, T. He, and Z. Yin, Solid State Commun. 123, 417 (2002).
http://dx.doi.org/10.1016/S0038-1098(02)00311-3
85.
85. N. Yasuda, H. Ohwa, M. Kume, K. Hayashi, Y. Hosono, and Y. Yamashita, J. Cryst. Growth 229, 299 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)01161-7
86.
86. N. Yasuda, H. Ohwa, M. Kume, and Y. Yamashita, Jpn. J. Appl. Phys. 39, L66 (2000).
http://dx.doi.org/10.1143/JJAP.39.L66
87.
87. N. Yasuda, N. Mori, H. Ohwa, Y. Hosono, Y. Yamashita, M. Iwata, M. Maeda, I. Suzuki, and Y. Ishibashi, Jpn. J. Appl. Phys. 41, 7007 (2002).
http://dx.doi.org/10.1143/JJAP.41.7007
88.
88. Y. Guo, H. Luo, T. He, X. Pan, and Z. Yin, Mater. Res. Bull. 38, 857 (2003).
http://dx.doi.org/10.1016/S0025-5408(03)00043-6
89.
89. Z. Q. Duan, G. S. Xu, X. F. Wang, D. F. Yang, X. M. Pan, and P. C. Wang, Solid State Commun. 134, 559 (2005).
http://dx.doi.org/10.1016/j.ssc.2005.02.022
90.
90. N. Yasuda, H. Ohwa, M. Kume, Y. Hosono, Y. Yamashita, S. Ishino, H. Terauchi, M. Iwata, and Y. Ishibashi, Jpn. J. Appl. Phys. 40, 5664 (2001).
http://dx.doi.org/10.1143/JJAP.40.5664
91.
91. S. J. Zhang, P. W. Rehrig, C. A. Randall, and T. R. Shrout, J. Cryst. Growth 234, 415 (2002).
http://dx.doi.org/10.1016/S0022-0248(01)01696-7
92.
92. S. J. Zhang, S. Priya, E. Furman, T. Shrout and C. Randall, J. Appl. Phys., 91, 6002 (2002).
http://dx.doi.org/10.1063/1.1467399
93.
93. S. J. Zhang, S. Rhee, C. A. Randall, and T. R. Shrout, Jpn. J. Appl. Phys. 41, 722 (2002).
http://dx.doi.org/10.1143/JJAP.41.722
94.
94. S. Zhang, L. Lebrun, S. Rhee, C. Randall, and T. R. Shrout, Appl. Phys. Lett. 81, 892 (2002).
http://dx.doi.org/10.1063/1.1497435
95.
95. S. J. Zhang, C. A. Randall, and T. R. Shrout, Jpn. J. Appl. Phys. 43, 6199 (2004).
http://dx.doi.org/10.1143/JJAP.43.6199
96.
96. S. J. Zhang, C. A. Randall, and T. R. Shrout, Jpn. J. Appl. Phys. 42, L1152 (2003).
http://dx.doi.org/10.1143/JJAP.42.L1152
97.
97. S. J. Zhang, C. A. Randall, and T. R. Shrout, J. Appl. Phys. 95, 4291 (2004).
http://dx.doi.org/10.1063/1.1682694
98.
98. S. J. Zhang, L. Lebrun, S. Rhee, R. E. Eitel, C. A. Randall, and T. R. Shrout, J. Cryst. Growth 236, 210 (2002).
http://dx.doi.org/10.1016/S0022-0248(01)02093-0
99.
99. S. J. Zhang, C. A. Randall, and T. R. Shrout, Solid State Commun. 131, 41 (2004).
http://dx.doi.org/10.1016/j.ssc.2004.04.016
100.
100. S. J. Zhang, C. A. Randall, and T. R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 52, 564 (2005).
http://dx.doi.org/10.1109/TUFFC.2005.1428037
101.
101. S. J. Zhang, C. A. Randall, and T. R. Shrout, Appl. Phys. Lett. 83, 3150 (2003).
http://dx.doi.org/10.1063/1.1619207
102.
102. Y. Hosono, K. Harada, Y. Yamashita, M. Dong, and Z. G. Ye, Jpn. J. Appl. Phys. 39, 5589 (2000).
http://dx.doi.org/10.1143/JJAP.39.5589
103.
103. Y. J. Yamashita and Y. Hosono, “High Curie temperature piezoelectric single crystals of the PIN-PMN-PT ternary materials system,” in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications, edited by Z. G. Ye (Woodhead, Cambridge, England, 2008), pp. 205234.
104.
104. Y. Hosono, Y. Yamashita, H. Sakamoto, and N. Ichinose, Jpn. J. Appl. Phys. 42, 5681 (2003).
http://dx.doi.org/10.1143/JJAP.42.5681
105.
105. Y. Hosono, Y. Yamashita, H. Sakamoto, and N. Ichinose, Jpn. J. Appl. Phys. 41, L1240 (2002).
http://dx.doi.org/10.1143/JJAP.41.L1240
106.
106. J. Luo, W. Hackenberger, S. Zhang, and T. Shrout, in IEEE Ultrasonic Symposium (IEEE, Piscataway, NJ, 2008), pp. 261264.
107.
107. G. S. Xu, K. Chen, D. F. Yang, and J. B. Li, Appl. Phys. Lett. 90, 032901 (2007).
http://dx.doi.org/10.1063/1.2431706
108.
108. J. Tian, P. D. Han, X. L. Huang, and H. X. Pan, Appl. Phys. Lett. 91, 222903 (2007).
http://dx.doi.org/10.1063/1.2817743
109.
109. S. J. Zhang, J. Luo, W. Hackenberger, and T. R. Shrout, J. Appl. Phys. 104, 064106 (2008).
http://dx.doi.org/10.1063/1.2978333
110.
110. X. Z. Liu, S. J. Zhang, J. Luo, T. R. Shrout, and W. W. Cao, J. Appl. Phys. 106, 074112 (2009).
http://dx.doi.org/10.1063/1.3243169
111.
111. S. J. Zhang, J. Luo, W. Hackenberger, N. P. Sherlock, R. J. Meyer, Jr., and T. R. Shrout, J. Appl. Phys. 105, 104506 (2009).
http://dx.doi.org/10.1063/1.3131622
112.
112. F. Li, S. J. Zhang, Z. Xu, X. Y. Wei, J. Luo, and T. Shrout, J. Appl. Phys. 107, 054107 (2010).
http://dx.doi.org/10.1063/1.3331407
113.
113. F. Li, S. Zhang, Z. Xu, X. Y. Wei, J. Luo, and T. Shrout, J. Am. Ceram. Soc. 93, 2731 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2010.03760.x
114.
114. E. W. Sun, S. J. Zhang, J. Luo, T. R. Shrout, and W. W. Cao, Appl. Phys. Lett. 97, 032902 (2010).
http://dx.doi.org/10.1063/1.3466906
115.
115. X. Z. Liu, S. J. Zhang, J. Luo, T. R. Shrout, and W. W. Cao, Appl. Phys. Lett. 96, 012907 (2010).
http://dx.doi.org/10.1063/1.3275803
116.
116. F. Li, S. J. Zhang, D. B. Lin, J. Luo, Z. Xu, X. Y. Wei, and T. R. Shrout, J. Appl. Phys. 109, 014108 (2011).
http://dx.doi.org/10.1063/1.3530617
117.
117. S. J. Zhang, F. Li, N. P. Sherlock, J. Luo, H. J. Lee, R. Xia, R. J. Meyer, Jr., W. Hackenberger, and T. R. Shrout, J. Cryst. Growth 318, 846 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2010.11.043
118.
118. P. Finkel, H. Robinson, J. Stace, and A. Amin, Appl. Phys. Lett. 97, 122903 (2010).
http://dx.doi.org/10.1063/1.3491218
119.
119. P. Zhao, S. Goljahi, W. Dong, T. Wu, P. Finkel, R. Sahul, K. Snook, J. Luo, W. Hackenberger, and C. S. Lynch, Smart Mater. Struct. 20, 055006 (2011).
http://dx.doi.org/10.1088/0964-1726/20/5/055006
120.
120. P. Finkel, K. Benjamin, and A. Amin, Appl. Phys. Lett. 98, 192902 (2011).
http://dx.doi.org/10.1063/1.3585088
121.
121. W. Wang, D. Liu, Q. H. Zhang, B. Ren, Y. Y. Zhang, J. Jiao, D. Lin, and H. S. Luo, J. Appl. Phys. 107, 084101 (2010).
http://dx.doi.org/10.1063/1.3385427
122.
122. Y. Y. Zhang, D. A. Liu, Q. H. Zhang, W. Wang, B. Ren, X. Y. Zhao, and H. S. Luo, J. Electr. Mater. 40, 92 (2011).
http://dx.doi.org/10.1007/s11664-010-1390-2
123.
123. Y. Y. Zhang, X. B. Li, D. A. Liu, Q. H. Zhang, W. Wang, B. Ren, D. Lin, X. Y. Zhao, and H. S. Luo, J. Cryst. Growth 318, 890 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2010.11.045
124.
124. E. Sun, W. Cao, W. Jiang, and P. Han, Appl. Phys. Lett. 99, 032901 (2011).
http://dx.doi.org/10.1063/1.3615684
125.
125. D. Zhou, K. Cheung, K. Lam, Y. Chen, Y. Chiu, J. Dai, H. Chan, and H. Luo, Rev. Sci. Instrum. 82, 055110 (2011).
http://dx.doi.org/10.1063/1.3583746
126.
126. J. Gao, Z. Xu, F. Li, C. Zhang, Y. Liu, G. Liu, and H. He, Appl. Phys. Lett. 99, 062903 (2011).
http://dx.doi.org/10.1063/1.3622479
127.
127. S. Zhang, S. Lee, D. Kim, H. Lee, and T. Shrout, J. Appl. Phys. 102, 114103 (2007).
http://dx.doi.org/10.1063/1.2817641
128.
128. S. Zhang, S. Lee, D. Kim, H. Lee, and T. Shrout, Appl. Phys. Lett. 90, 232911 (2007).
http://dx.doi.org/10.1063/1.2746055
129.
129. A. Amin, H. Y. Lee, and B. Kelly, Appl. Phys. Lett. 90, 242912 (2007).
http://dx.doi.org/10.1063/1.2748857
130.
130. S. Zhang, S. Lee, D. Kim, H. Lee, and T. Shrout, J. Am. Ceram. Soc. 90, 3859 (2007).
131.
131. Z. G. Xia, Q. Li, and S. F. Zhang, Solid State Commun. 145, 38 (2008).
http://dx.doi.org/10.1016/j.ssc.2007.10.004
132.
132. Q. Li, Y. L. Zhang, Z. G. Xia, and X. C. Chu, J. Cryst. Growth 318, 851 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2010.10.208
133.
133. W. A. Smith, continuing advocacy of the fundamental studies on ferroelectric materials for more than 20 years, first proposed the nomenclature of the varieties of piezocrystals at Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, 11-13 May 2010.
134.
134. S. J. Zhang, L. Lebrun, C. A. Randall, and T. R. Shrout, J. Cryst. Growth 267, 204 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2004.03.063
135.
135. S. Priya, H. W. Kim, J. H. Ryu, S. J. Zhang, T. R. Shrout, and K. Uchino, J. Appl. Phys. 92, 3923 (2002).
http://dx.doi.org/10.1063/1.1503411
136.
136. S. J. Zhang, S. M. Lee, D. H. Kim, H. Y. Lee, and T. R. Shrout, Appl. Phys. Lett. 93, 122908 (2008).
http://dx.doi.org/10.1063/1.2992081
137.
137. N. P. Sherlock, S. J. Zhang, J. Luo, H. Y. Lee, T. R. Shrout, and R. J. Meyer, Jr., J. Appl. Phys. 107, 074108 (2010).
http://dx.doi.org/10.1063/1.3359716
138.
138. D. T. J. Huerle, Handbook of Crystal Growth, Bulk Crystal Growth Vol. 2 (Elsevier, NY, 1994).
139.
139. J. Y. Xu and M. Jin, New Type Relaxor Ferroelectric Crystals (Chemical Industry Press, Beijing, 2007) [in Chinese].
140.
140. I. E. Myl’nikova and V. A. Bokov, Kristallografiya 4, 443 (1959) [in Russian].
141.
141. V. A. Bokov and I. E. Myl’nikova, Sov. Phys. Solid State 2, 2428 (1961).
142.
142. S. Nomura, T. Takahashi, and Y. Yokomizo, Jpn. J. Appl. Phys. 27, 262 (1969).
143.
143. Y. Yokomizo, T. Takahashi, and S. Nomura, J. Phys. Soc. Jpn. 28, 1278 (1970).
http://dx.doi.org/10.1143/JPSJ.28.1278
144.
144. N. Setter and L. E. Cross, J. Cryst. Growth 50, 555 (1980).
http://dx.doi.org/10.1016/0022-0248(80)90108-6
145.
145. L. C. Lim, M. Shanthi, K. K. Rajan, and C. Y. H. Lim, J. Cryst. Growth 282, 330 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2005.05.011
146.
146. L. C. Lim, “Flux growth of PZN-PT and PMN-PT single crystals,” in Piezoelectric Single Crystals and Their Applications, edited by S. Trolier-McKinstry, L. E. Cross, and Y. Yamashita (Pennsylvania State University, State College, 2004), pp. 117137.
147.
147. L. C. Lim, “Flux growth and characterization of PZN-PT and PMN-PT single crystals,” in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications, edited by Z. G. Ye (Woodhead, Cambridge, England, 2008), pp. 3872.
148.
148. M. L. Mulvihill, S. E. Park, G. Risch, Z. Li, K. Uchino, and T. R. Shrout, Jpn. J. Appl. Phys. 35, 3984 (1996).
http://dx.doi.org/10.1143/JJAP.35.3984
149.
149. S. Saitoh, T. Kobayashi, K. Harada, S. Shimanuki, and Y. Yamashita, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1071 (1998).
http://dx.doi.org/10.1109/58.710590
150.
150. S. Saitoh, T. Takeuchi, T. Kobayashi, K. Harada, S. Shimanuki, and Y. Yamashita, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 414 (1999).
http://dx.doi.org/10.1109/58.753031
151.
151. D. Elwell and H. J. Scheel, Crystal Growth from High –Temperature Solutions (Academic, NY, 1975).
152.
152. F. J. Kumar, L. C. Lim, C. Chilong, and M. J. Tan, J. Cryst. Growth 216, 311 (2000).
http://dx.doi.org/10.1016/S0022-0248(00)00446-2
153.
153. G. Sandrine, R. Gilles, S. Nava, and R. Jean-Pierre, Ann. Chim. Sci. Mater. 26, 107 (2001).
http://dx.doi.org/10.1016/S0151-9107(01)90021-2
154.
154. L. C. Lim, R. Liu, and F. J. Kumar, J. Am. Ceram. Soc. 85, 2817 (2002).
http://dx.doi.org/10.1111/j.1151-2916.2002.tb00534.x
155.
155. L. C. Lim, F. J. Kumar, and A. Amin, J. Appl. Phys. 93, 3671 (2003).
http://dx.doi.org/10.1063/1.1555841
156.
156. X. J. Wu, J. Y. Xu, X. H. Li, M. Jin, A. H. Wu, M. L. Shi, and S. J. Fan, Mater. Chem. Phys. 99, 220 (2006).
http://dx.doi.org/10.1016/j.matchemphys.2005.10.015
157.
157. M. Dong and Z. G. Ye, Jpn. J. Appl. Phys. 40, 4604 (2001).
http://dx.doi.org/10.1143/JJAP.40.4604
158.
158. S. J. Zhang, D. Y. Jeong, Q. M. Zhang, and T. R. Shrout, J. Cryst. Growth 247, 131 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)01944-9
159.
159.See http://www.microfine-piezo.com for “World leader in PZN-PT single crystals and devices.”
160.
160. K. Harada, S. Shimanuki, T. Kobayashi, S. Saitoh, and Y. Yamashita, J. Am. Ceram. Soc. 81, 2785 (1998).
http://dx.doi.org/10.1111/j.1151-2916.1998.tb02697.x
161.
161. S. Shimanuki, S. Saitoh, and Y. Yamashita, Jpn. J. Appl. Phys. 37, 3382 (1998).
http://dx.doi.org/10.1143/JJAP.37.3382
162.
162. K. Harada, Y. Hosono, S. Saitoh, and Y. Yamashita, Jpn. J. Appl. Phys. 39, 3117 (2000).
http://dx.doi.org/10.1143/JJAP.39.3117
163.
163. K. Harada, Y. Hosono, Y. Yamashita, and K. Miwa, J. Cryst. Growth 229, 294 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)01156-3
164.
164. S. Shimanuki, S. Saito, and Y. Yamashita, Jpn. J. Appl. Phys. 37, 3382 (1998).
http://dx.doi.org/10.1143/JJAP.37.3382
165.
165. M. Matsushita, T. Tachi, and K. Echizenya, J. Cryst. Growth 237–239, 853 (2002).
http://dx.doi.org/10.1016/S0022-0248(01)02052-8
166.
166. B. J. Fang, H. Q. Xu, T. H. He, H. S. Luo, and Z. W. Yin, J. Cryst. Growth 244, 318 (2002).
http://dx.doi.org/10.1016/S0022-0248(02)01662-7
167.
167. J. Y. Xu, S. J. Fan, B. Lu, J. Tong, and A. Zhang, Jpn. J. Appl. Phys. 41, 7000 (2002).
http://dx.doi.org/10.1143/JJAP.41.7000
168.
168. J. Y. Xu, J. Tong, M. Shi, A. Wu, and S. J. Fan, J. Cryst. Growth 253, 274 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01011-X
169.
169. J. Y. Xu, X. Wu, J. Tong, M. Shi, and G. Qian, J. Cryst. Growth 280, 107 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2005.02.067
170.
170. X. J. Wu, J. Y. Xu, M. L. Shi, J. Tong, S. J. Fan, A. H. Wu, X. H. Li, X. H. Zeng, X. Yao, and X. H. Zeng, Mater. Sci. Eng. B 117, 129 (2005).
http://dx.doi.org/10.1016/j.mseb.2004.11.002
171.
171. A. Benayad, D. Kobor, L. Lebrun, B. Guiffard, and D. Guyomar, J. Cryst. Growth 270, 137 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2004.06.017
172.
172. W. Chen and Z. G. Ye, J. Cryst. Growth 233, 503 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)01596-2
173.
173. W. Chen and Z. G. Ye, J. Mater. Sci. 36, 4393 (2001).
http://dx.doi.org/10.1023/A:1017914331989
174.
174. R. Bertram, G. Reck, and R. Uecker, J. Cryst. Growth 253, 212 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)00972-2
175.
175. T. Karaki, M. Nakamoto, and M. Adachi, Jpn. J. Appl. Phys. 41, 6997 (2002).
http://dx.doi.org/10.1143/JJAP.41.6997
176.
176. W. A. Bonner and L. G. V. Uitert, Mater. Res. Bull. 2, 131 (1967).
http://dx.doi.org/10.1016/0025-5408(67)90051-7
177.
177. P. W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 305 (1925).
http://dx.doi.org/10.2307/25130058
178.
178. D. C. Stockbarger, Rev. Sci. Instrum. 7, 133 (1936).
http://dx.doi.org/10.1063/1.1752094
179.
179. D. T. J. Hurle, Prog. Mater. Sci. 10, 79 (1962).
180.
180. W. G. Pfann, Trans. AIME 194, 747 (1952).
181.
181. K. T. Zawilski, R. C. DeMattei, and R. S. Feigelson, J. Cryst. Growth 277, 393 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2005.01.090
182.
182. W. G. Pfann, Zone Melting (Wiley, NY, 1966), pp. 827.
183.
183. H. Luo, G. Shen, P. Wang, X. Le, and Z. Yin, J. Inorg. Mater. 12, 768 (1997).
184.
184. R. S. Feigelson, “Growth of large single crystals of relaxor ferroelectrics under controlled conditions,” in Proceedings of the Piezoelectric Crystal Planning Workshop, Washington, DC, 14–16 May 1997.
185.
185. P. Han, J. Tian, and W. Yan, “Bridgman growth and properties of PMN-PT based single crystals,” in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications, edited by Z. G. Ye (Woodhead, Cambridge, England, 2008), pp. 337.
186.
186. W. Hackenberger, J. Luo, X. N. Jiang, K. A. Snook, P. W. Rehrig, S. J. Zhang, and T. R. Shrout, “Recent developments and applications of piezoelectric crystals,” in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications, edited by Z. G. Ye (Woodhead, Cambridge, England, 2008), pp. 73100.
187.
187. P. Han, “Growth and characterization of large PMN–PT crystals,” in Proccedings of the US Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, 13–15 April 1999.
188.
188. P.M. Bridenbaugh, J. Rottenberg, and G. Ruland, “Single crystal growth of PMN–PT,” in Proccedings of the US Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, 13–15 April 1999.
189.
189. S.G. Lee, R. Monteiro, M.C. Custodio, and R.S. Feigelson, “Growth of PMN and PMN–PT by the vertical Bridgman method,” in Proccedings of the US Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, 13–15 April 1999.
190.
190. A. Benayad, G. Sebald, L. Lebrun, B. Guiffard, S. Pruvost, D. Guyomar, and L. Beylat, Mater. Res. Bull. 41, 1069 (2006).
http://dx.doi.org/10.1016/j.materresbull.2005.11.012
191.
191. Z. W. Yin, H. S. Luo, P. C. Wang, and G. S. Xu, Ferroelectrics 229, 207 (1999).
http://dx.doi.org/10.1080/00150199908224341
192.
192. H. S. Luo, G. S. Xu, P. C. Wang, and Z. W. Yin, Ferroelectrics 231, 97 (1999).
http://dx.doi.org/10.1080/00150199908014518
193.
193. K. T. Zawilski, M. C. C. Custodio, R. C. DeMattei, S. G. Lee, R. G. Monteiro, H. Odagawa, and R. F. Feigelson, J. Cryst. Growth 258, 353 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01552-5
194.
194. G. Xu, H. Luo, H. Xu, Z. Qi, P. Wang, W. Zhong, and Z. Yin, J. Cryst. Growth 222, 202 (2001).
http://dx.doi.org/10.1016/S0022-0248(00)00917-9
195.
195. P. Han and J. Tian, “Progress in growth of 3-inch diameter PMN–PT crystals,” in Proceedings of the US Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, 9–11 May 2006.
196.
196. P. Han, “Progress in commercialization of large sized (up to 4 inch diameter) PMN-PT based piezoelectric crystals,” in Proccedings of the US Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, 13–15 May 2008.
197.
197. J. Luo, W. Hackenberger, S. J. Zhang and T. R. Shrout, “Progresses in manufacturing large size binary and ternary relaxor piezoelectric single crystals,” in Proceedings of the US Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, 13–15 May 2008.
198.
198. J. Luo, S. J. Zhang, W. Hackenberger and T. R. Shrout, “Bridgman growth and characterization of relaxor-PT piezoelectric crystals,” in Proceedings of the US Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, 11–13 May 2010.
199.
199.See http://www.trstechnologies.com for “A leader in the development of high performance materials.”
200.
200.See http://www.hcmat.com for “A leader in the development and manufacture of high-performance single crystals.”
201.
201. K. Echizenya, M. Matsushita, Y. Tachi, and T. Addona, “Characterization of PMN-PT single crystals grown by continuous feed technique,” in proceedings of the US Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, 11–13 May 2010.
202.
202. J. Luo, W. Hackenberger, S. J. Zhang, and T. R. Shrout, “An update on development and manufacture of relaxor-based piezoelectric crystals,” in proceedings of the International Workshop on Acoustic Transduction Materials and Devices, State College, PA, 10–12 May 2011.
203.
203. P. D. Han, J. Tian, and H. Pan, “Auto-feeding Bridgman method for growth of large single crystals of PMN-PT and PIN-PMN-PT solid solutions,” in Proceedings of the International Workshop on Acoustic Transduction Materials and Devices, State College, PA, 10–12 May 2011.
204.
204. T. Yamamoto and T. Sakuma, J. Am. Ceram. Soc. 77, 1107 (1994).
http://dx.doi.org/10.1111/j.1151-2916.1994.tb07281.x
205.
205. Y. S. Yoo, M. K. Kang, J. H. Han, H. Kim, and D. Y. Kim, J. Eur. Ceram. Soc. 17, 1725 (1997).
http://dx.doi.org/10.1016/S0955-2219(97)00017-4
206.
206. P. W. Rehrig, G. L. Messing, and S. Trolier-McKinstry, J. Am. Ceram. Soc. 83, 2654 (2000).
http://dx.doi.org/10.1111/j.1151-2916.2000.tb01610.x
207.
207. H. Y. Lee, J. S. Kim, and D. Y. Kim, J. Eur. Ceram. Soc. 20, 1595 (2000).
http://dx.doi.org/10.1016/S0955-2219(00)00030-3
208.
208. T. Li, A. M. Scotch, H. M. Chan, and M. P. Harmer, J. Am. Ceram. Soc. 81, 244 (1998).
http://dx.doi.org/10.1111/j.1151-2916.1998.tb02325.x
209.
209. A. Khan, F. A. Meschke, T. Li, A. M. Scotch, H. M. Chan, and M. P. Harmer, J. Am. Ceram. Soc. 82, 2958 (1999).
http://dx.doi.org/10.1111/j.1151-2916.1999.tb02188.x
210.
210. E. M. Sabolsky, A. R. James, S. Kwon, S. Trolier-McKinstry, and G. L. Messing, Appl. Phys. Lett. 78, 2551 (2001).
http://dx.doi.org/10.1063/1.1367291
211.
211. E. M. Sabolsky, S. Trolier-McKinstry, and G. L. Messing, J. Appl. Phys. 93, 4072 (2003).
http://dx.doi.org/10.1063/1.1554488
212.
212. K. H. Brosnan, S. F. Poterala, R. J. Meyer, S. Misture, and G. L. Messing, J. Am. Ceram. Soc. 92, S133 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2008.02628.x
213.
213. K. H. Brosnan, G. L. Messing, R. J. Meyer, and M. D. Vaudin, J. Am. Ceram. Soc. 89, 1965 (2006).
http://dx.doi.org/10.1111/j.1551-2916.2006.01049.x
214.
214. H. Y. Lee, H. M. Chan, and M. P. Harmer, J. Korean Ceram. Soc. 35, 905 (1998).
215.
215. H. Y. Lee, “Solid-state single crystal growth method: A cost-effective way of growing piezoelectric single crystals,” in Piezoelectric Single Crystals and Their Applications, edited by S. Trolier-McKinstry, L. E. Cross, and Y. Yamashita (Pennsylvania State University, State College, 2004), pp. 160177.
216.
216. H. Y. Lee, “Development of high performance piezoelectric single crystals by using solid-state single crystal growth (SSCG) method,” in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications, edited by Z. G. Ye (Woodhead, Cambridge, England, 2008), pp. 158172.
217.
217.See http://Ceracomp.com for “Korea supplier of piezoelectric single crystals.”
218.
218. B. Noheda, Curr. Opin. Solid State Mater. Sci. 6, 27 (2002).
http://dx.doi.org/10.1016/S1359-0286(02)00015-3
219.
219. J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1976).
220.
220. G. S. Xu, H. S. Luo, H. Q. Xu, and Z. W. Yin, Phys. Rev. B 64, 020102 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.020102
221.
221. R. R. Chien, V. H. Schmidt, L.-W. Hung, and C. Tu, J. Appl. Phys. 97, 114112 (2005).
http://dx.doi.org/10.1063/1.1927288
222.
222. J. J. Yao, Y. D. Yang, W. W. Ge, J. F. Li, and D. Viehland, J. Am. Ceram. Soc. 94, 2497 (2011).
223.
223. C.-S. Tu, R. Chien, F.-T. Wang, V. H. Schmidt, and P. Han, Phys. Rev. B 70, 220103 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.220103
224.
224. D. B. Lin, Z. R. Li, S. J. Zhang, Z. Xu, and X. Yao, J. Appl. Phys. 108, 034112 (2010).
http://dx.doi.org/10.1063/1.3467774
225.
225. F. Li, S. J. Zhang, Z. Xu, X. Wei, J. Luo, and T. R. Shrout, J. Appl. Phys. 108, 034106 (2010).
http://dx.doi.org/10.1063/1.3466978
226.
226. Y. P. Guo, H. S. Luo, D. Ling, H. Q. Xu, T. H. He, and Z. W. Yin, J. Phys.: Condens. Matter. 15, L77 (2003).
http://dx.doi.org/10.1088/0953-8984/15/2/110
227.
227. IEEE Standard on Piezoelectricity, “IEEE Standard on Piezoelectricity,” ANSI/IEEE Std 176 (1987).
228.
228. S. Liu, W. Ren, B. Mukherjee, S. J. Zhang, T. R. Shrout, P. W. Rehrig and W. Hackenberger, Appl. Phys. Lett., 83 2886 (2003).
http://dx.doi.org/10.1063/1.1615839
229.
229. K. Yao and F. E. H. Tay, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 113 (2003).
http://dx.doi.org/10.1109/TUFFC.2003.1182115
230.
230. S. Emeterio, Ferroelectrics 293, 237 (2003).
http://dx.doi.org/10.1080/00150190390238450
231.
231. R. Holland and E. P. EerNisse, IEEE Trans. Sonics Ultrason. SU–16, 173 (1969).
232.
232. K. W. Kwok, H. Chan, and C. Choy, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 733 (1997).
http://dx.doi.org/10.1109/58.655188
233.
233. J. G. Smits, IEEE Trans. Sonics Ultrason. SU–23, 393 (1976).
234.
234. F. Li, Z. Xu, X. Wei, L. Jin, C. H. Zhang, J. J. Gao, and X. Yao, J. Phys. D: Appl. Phys. 42, 072001 (2009).
http://dx.doi.org/10.1088/0022-3727/42/7/072001
235.
235. S. J. Zhang, F. Li, J. Luo, R. Xia, W. Hackenberger, and T. R. Shrout, Appl. Phys. Lett. 97, 132903 (2010).
http://dx.doi.org/10.1063/1.3494532
236.
236. H. Cao, V. H. Schmidt, R. Zhang, W. Cao, and H. Luo, J. Appl. Phys. 96, 549 (2004).
http://dx.doi.org/10.1063/1.1712020
237.
237. K. Uchino and S. Hirose, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 307 (2001).
http://dx.doi.org/10.1109/58.896144
238.
238. X. H. Du, Q. M. Wang, and K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 312 (2003).
http://dx.doi.org/10.1109/TUFFC.2003.1193625
239.
239. R. Sabat, B. K. Mukherjee, W. Ren, and G. M. Yang, J. Appl. Phys. 101, 064111 (2007).
http://dx.doi.org/10.1063/1.2560441
240.
240. X. C. Geng, T. Ritter, and S. Park, in IEEE Ultrasonic Symposium (IEEE, Piscataway, NJ, 1998), pp. 571574.
241.
241. S. Zhang, S. Lee, D. Kim, H. Lee, and T. R. Shrout, J. Am. Ceram. Soc. 91, 683 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2007.02190.x
242.
242. W. Jiang, R. Zhang, B. Jiang, and W. Cao, Ultrasonics 41, 55 (2003).
http://dx.doi.org/10.1016/S0041-624X(02)00436-5
243.
243. S. Zhang, G. Liu, W. Jiang, J. Luo, W. Cao, and T. Shrout, J. Appl. Phys. 110, 064108 (2011).
http://dx.doi.org/10.1063/1.3639316
244.
244. G. Liu, W. H. Jiang, J. Q. Zhu, and W. W. Cao, Appl. Phys. Lett. 99, 162901 (2011).
http://dx.doi.org/10.1063/1.3652703
245.
245. R. Zhang, B. Jiang, W. Jiang, and W. Cao, Appl. Phys. Lett. 89, 242908 (2006).
http://dx.doi.org/10.1063/1.2404613
246.
246. D. Damjanovic, M. Budimir, M. Davis, and N. Setter, Appl. Phys. Lett. 83, 527 (2003).
http://dx.doi.org/10.1063/1.1592880
247.
247. M. Davis, M. Budimir, D. Damjanovic, and N. Setter, J. Appl. Phys. 101, 054112 (2007).
http://dx.doi.org/10.1063/1.2653925
248.
248. R. Zhang, B. Jiang, and W. Cao, Appl. Phys. Lett. 82, 3737 (2003).
http://dx.doi.org/10.1063/1.1576510
249.
249. M. Davis, D. Damjanovic, and N. Setter, J. Appl. Phys. 100, 084103 (2006).
http://dx.doi.org/10.1063/1.2358408
250.
250. S. Zhang, N. Sherlock, R. Meyer, Jr., and T. Shrout, Appl. Phys. Lett. 94, 162906 (2009).
http://dx.doi.org/10.1063/1.3125431
251.
251. P. Han, W. Yan, J. Tian, X. Huang, and H. Pan, Appl. Phys. Lett. 86, 052902 (2005).
http://dx.doi.org/10.1063/1.1857085
252.
252. D. J. V. Tol and R. J. Meyer, Jr., “Acoustic transducer,” US patent 7615912 (10 November 2009).
253.
253. S. J. Zhang, F. Li, W. H. Jiang, J. Luo, R. J. Meyer, Jr., W. W. Cao, and T. R. Shrout, Appl. Phys. Lett. 98, 182903 (2011).
http://dx.doi.org/10.1063/1.3584851
254.
254. S. J. Zhang, W. H. Jiang, R. J. Meyer, Jr., F. Li, J. Luo, and W. W. Cao, J. Appl. Phys. 110, 064106 (2011).
http://dx.doi.org/10.1063/1.3638691
255.
255. S. Goljahi, J. Gallagher, S. J. Zhang, J. Luo, R. Sahul, W. Hackenberger, and C. S. Lynch, “A relaxor ferroelectric single crystal cut resulting in large d36 and zero d31 for shear mode accelerometer applications,” Smart Materials and Structures (submitted).
256.
256. K. K. Deng, “Underwater acoustic vector sensor using transverse response free, shear mode, PMN-PT crystal,” US patent US7066026 (27 June 2006).
257.
257. Z. Y. Feng, X. Y. Zhao, and H. S. Luo, J. Appl. Phys. 100, 024104 (2006).
http://dx.doi.org/10.1063/1.2220490
258.
258. X. Y. Zhao, B. J. Fang, H. Cao, Y. P. Guo, and H. S. Luo, Mater. Sci. Eng. B 96, 254 (2002).
http://dx.doi.org/10.1016/S0921-5107(02)00354-9
259.
259. Y. P. Guo, H. S. Luo, K. Chen, H. Q. Xu, X. W. Zhang, and Z. W. Yin, J. Appl. Phys. 92, 6134 (2002).
http://dx.doi.org/10.1063/1.1516256
260.
260. J. Tian and P. D. Han, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1895 (2007).
http://dx.doi.org/10.1109/TUFFC.2007.474
261.
261. M. Budimir, D. Damjanovic, and N. Setter, J. Appl. Phys. 94, 6753 (2003).
http://dx.doi.org/10.1063/1.1625080
262.
262. M. J. Haun, E. Furman, S. J. Jang, and L. E. Cross, Ferroelectrics 99, 13 (1989).
http://dx.doi.org/10.1080/00150198908221436
263.
263. M. Davis, D. Damjanovic, and N. Setter, J. Appl. Phys. 96, 2811 (2004).
http://dx.doi.org/10.1063/1.1775308
264.
264. R. W. Whatmore, Rep. Prog. Phys. 49, 1335 (1986).
http://dx.doi.org/10.1088/0034-4885/49/12/002
265.
265. Y. X. Tang, X. M. Wan, X. Y. Zhao, X. M. Pan, D. Lin, H. S. Luo, J. L. Sun, X. J. Meng, and J. H. Zhu, J. Appl. Phys. 98, 084104 (2005).
http://dx.doi.org/10.1063/1.2106014
266.
266. Y. X. Tang, X. Y. Zhao, X. Q. Feng, W. Q. Jin, and H. S. Luo, Appl. Phys. Lett. 86, 082901 (2005).
http://dx.doi.org/10.1063/1.1865337
267.
267. L. H. Liu, X. Wu, X. Y. Zhao, X. Q. Feng, W. P. Jing, and H. S. Luo, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2154 (2010).
http://dx.doi.org/10.1109/TUFFC.2010.1672
268.
268. L. Liu, X. Li, X. Wu, Y. Wang, W. Di, D. Lin, X. Zhao, H. Luo, and N. Neumann, Appl. Phys. Lett. 95, 192903 (2009).
http://dx.doi.org/10.1063/1.3263139
269.
269. X. Y. Zhao, X. Wu, L. H. Liu, H. S. Luo, N. Neumann, and P. Yu, Phys. Status Solidi A 208, 1061 (2011).
http://dx.doi.org/10.1002/pssa.201000051
270.
270. Y. X. Tang, L. H. Luo, Y. M. Jia, H. S. Luo, X. Y. Zhao, H. Q. Xu, D. Lin, J. L. Sun, X. J. Meng, J. H. Zhu, and M. Es-Souni, Appl. Phys. Lett. 89, 162906 (2006).
http://dx.doi.org/10.1063/1.2363149
271.
271. Y. Lu, Z. Cheng, S. E. Park, S. F. Liu, and Q. M. Zhang, Jpn. J. Appl. Phys., Part 1. 39, 141 (2000).
http://dx.doi.org/10.1143/JJAP.39.141
272.
272. X. Wan, D. Y. Wang, X. Y. Zhao, H. S. Luo, H. L. W. Chan, and C. L. Choy, Solid State Conmmun. 134, 547 (2005).
http://dx.doi.org/10.1016/j.ssc.2005.02.033
273.
273. E. W. Sun, Z. Wang, R. Zhang, and W. W. Cao, Opt. Mater. 33, 549 (2011).
http://dx.doi.org/10.1016/j.optmat.2010.10.047
274.
274. X. Wan, H. Xu, T. He, D. Lin, and H. S. Luo, J. Appl. Phys. 93, 4766 (2003).
http://dx.doi.org/10.1063/1.1561991
275.
275. B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross, and S.-E. Park, Appl. Phys. Lett. 74, 2059 (1999).
http://dx.doi.org/10.1063/1.123756
276.
276. L. Bellaiche, A. Garcia, and D. Vanderbilt, Phys. Rev. B 64, 060103 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.060103
277.
277. D. Damjanovic, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1574 (2009).
http://dx.doi.org/10.1109/TUFFC.2009.1222/mm2
278.
278. G. Y. Xu, J. S. Wen, C. Stack, and P. M. Gehring, Nature Mater. 7, 562 (2008).
http://dx.doi.org/10.1038/nmat2196
279.
279. R. Guo, L. Cross, S. Park, B. Noheda, D. Cox, and G. Shirane, Phys. Rev. Lett. 84, 5423 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5423
280.
280. G. S. Xu, H. S. Luo, H. Q. Xu, and Z. W. Yin, Phys. Rev. B. 64, 020102R (2002).
281.
281. B. Noheda, D. E. Cox, G. Shirane, S.-E. Park, L. E. Cross, and Z. Zhong, Phys. Rev. Lett. 86, 3891 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3891
282.
282. B. Noheda, D. E. Cox, G. Shirane, J. Gao, and Z.-G. Ye, Phys. Rev. B. 66, 054104 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.054104
283.
283. D. La-Orauttapong, B. Noheda, Z.-G. Ye, P. M. Gehring, J. Toulouse, D. E. Cox, and G. Shirane, Phys. Rev. B. 65, 144101 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144101
284.
284. D. Vanderbilt and M. H. Cohen, Phys. Rev. B. 63, 094108 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.094108
285.
285. Y. Jin, Y. Wang, A. Khachaturyan, J. Li, and D. Viehland, Phys. Rev. Lett. 91, 197601 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.197601
286.
286. H. F. Wang, B. Jiang, T. Shrout, and W. Cao, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 908 (2004).
http://dx.doi.org/10.1109/TUFFC.2004.1320751
287.
287. B. Noheda, Z. Zhong, D. E. Cox, G. Shirane, S. E. Park, and P. Rehrig, Phys. Rev. B 65, 224101 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.224101
288.
288. D. Viehland, J. Appl. Phys. 88, 4794 (2000).
http://dx.doi.org/10.1063/1.1289789
289.
289. E. H. Kisi, R. O. Piltz, J. S. Forrester, and C. J. Howard, J. Phys.: Condens. Matter 15, 3631 (2003).
http://dx.doi.org/10.1088/0953-8984/15/21/311
290.
290. C. Boulesteix, F. Varnier, A. Llebaria, and E. Husson, J. Solid State Chem. 108, 141 (1994).
http://dx.doi.org/10.1006/jssc.1994.1021
291.
291. J. S. Wen, G. Y. Xu, C. Stock, and P. M. Gehring, Appl. Phys. Lett. 93, 082901 (2008).
http://dx.doi.org/10.1063/1.2959077
292.
292. D. Damjanovic, Appl. Phys. Lett. 97, 062906 (2010).
http://dx.doi.org/10.1063/1.3479479
293.
293. K. Carl and K. H. Hardtl, Ferroelectrics 17, 473 (1978).
http://dx.doi.org/10.1080/00150197808236770
294.
294. S. Priya and K. Uchino, Jpn. J. Appl. Phys. 42, 531 (2003).
http://dx.doi.org/10.1143/JJAP.42.531
295.
295. N. P. Sherlock, “Relaxor-PT single crystals for broad bandwidth, high power sonar projectors,” Ph.D. dissertation (The Pennsylvania State University, PA, 2010).
296.
296. Y. Zhuang, S. O. Ural, R. Gosain, S. Tuncdemir, A. Amin, and K. Uchino, Appl. Phys. Express 2, 121402 (2009).
http://dx.doi.org/10.1143/APEX.2.121402
297.
297. F. Li, S. J. Zhang, Z. Xu, X. Wei, J. Luo, and T. R. Shrout, Appl. Phys. Lett. 96, 192903 (2010).
http://dx.doi.org/10.1063/1.3430059
298.
298. W. Gao, D. F. Jin, W. C. Wei, H. J. Maris, J. Tian, X. L. Huang, and P. D. Han, J. Appl. Phys. 102, 084104 (2007).
http://dx.doi.org/10.1063/1.2798879
299.
299. Z. R. Li, Z. Xu, X. Yao, and Z.-Y. Cheng, J. Appl. Phys. 104, 024112 (2008).
http://dx.doi.org/10.1063/1.2957080
300.
300. F. Wang, S. Or, X. Zhao, and H. Luo, J. Phys. D: Appl. Phys. 42, 182001 (2009).
http://dx.doi.org/10.1088/0022-3727/42/18/182001
301.
301. A. Amin, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 52, 1632 (2005).
http://dx.doi.org/10.1109/TUFFC.2005.1561618
302.
302. A. Amin, E. McLaughlin, H. Robinson, and L. Ewart, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54, 1090 (2007).
http://dx.doi.org/10.1109/TUFFC.2007.362
303.
303. A. Amin and L. E. Cross, J. Appl. Phys. 98, 094113 (2005).
http://dx.doi.org/10.1063/1.2127127
304.
304. C. Okawara and A. Amin, Appl. Phys. Lett. 95, 072902 (2009).
http://dx.doi.org/10.1063/1.3193547
305.
305. M. Shanthi and L. C. Lim, Appl. Phys. Lett. 95, 102901 (2009).
http://dx.doi.org/10.1063/1.3222870
306.
306. M. Shanthi, D.-H. Lin, R. See, W. S. Chang, and L. C. Lim, Sens. Actuators, A 168, 112 (2011).
http://dx.doi.org/10.1016/j.sna.2011.03.032
307.
307. M. Shanthi and L. C. Lim, J. Appl. Phys. 106, 114116 (2009).
http://dx.doi.org/10.1063/1.3264639
308.
308. A. A. Bokov and Z.-G. Ye, Appl. Phys. Lett. 92, 082901 (2008).
http://dx.doi.org/10.1063/1.2841816
309.
309. E. A. Mclaughlin, T. Q. Liu, and C. S. Lynch, Acta. Mater. 52, 3849 (2004).
http://dx.doi.org/10.1016/j.actamat.2004.04.034
310.
310. E. A. Mclaughlin, T. Q. Liu, and C. S. Lynch, Acta. Mater. 53, 4001 (2005).
http://dx.doi.org/10.1016/j.actamat.2005.05.002
311.
311. D. Damjanovic and M. Demartin, J. Phys.: Condens. Matter. 9, 4943 (1997).
http://dx.doi.org/10.1088/0953-8984/9/23/018
312.
312. F. Li, Z. Xu, X. Wei, X. Yao, and L. Jin, Appl. Phys. Lett. 93, 192904 (2008).
http://dx.doi.org/10.1063/1.3025842
313.
313. F. Li, S. J. Zhang, Z. Xu, Z. R. Li, and X. Y. Wei, J. Adv. Dielectr. 1, 303 (2011).
http://dx.doi.org/10.1142/S2010135X11000422
314.
314. D. Viehland, L. Ewart, J. Powers, and J. F. Li, J. Appl. Phys. 90, 2479 (2001).
http://dx.doi.org/10.1063/1.1389480
315.
315. D. Viehland and J. F. Li, J. Appl. Phys. 94, 7719 (2003).
http://dx.doi.org/10.1063/1.1618940
316.
316. D. Viehland, J. Am. Ceram. Soc. 89, 775 (2006).
http://dx.doi.org/10.1111/j.1551-2916.2005.00879.x
317.
317. D. Viehland and J. Powers, Appl. Phys. Lett. 78, 3112 (2001).
http://dx.doi.org/10.1063/1.1370544
318.
318. Q. Wan, C. Chen, and Y. P. Shen, J. Mater. Sci. 41, 2993 (2006).
http://dx.doi.org/10.1007/s10853-006-6766-6
319.
319. Q. Wan, C. Chen, and Y. P. Shen, J. Appl. Phys. 98, 024103 (2005).
http://dx.doi.org/10.1063/1.1985979
320.
320. S. J. Zhang, J. Luo, R. Shanta, D. W. Snyder, and T. R. Shrout, in 15th IEEE International Symposium Appl. Ferroeletr. (2006), pp. 261264.
321.
321. N. Yasuda, Y. Itoh, H. Ohwa, M. Matushita, Y. Yamashita, M. Iwata, and Y. Ishibashi, Jpn. J. Appl. Phys. 43, 6675 (2004).
http://dx.doi.org/10.1143/JJAP.43.6675
322.
322. N. Yasuda, M. D. M. Rahman, H. Ohwa, M. Matsushita, Y. Yamashita, M. Iwata, H. Terauchi, and Y. Ishibashi, Appl. Phys. Lett. 89, 192903 (2006).
http://dx.doi.org/10.1063/1.2387448
323.
323. N. Yasuda, S. Suzuki, M. M. Rahman, H. Ohwa, M. Matsushita, Y. Yamashita, M. Iwata, H. Terauchi, and Y. Ishibashi, J. Appl. Phys. 103, 064509 (2008).
http://dx.doi.org/10.1063/1.2896586
324.
324. A. Bernal, S. J. Zhang, and N. Bassiri-Gharb, Appl. Phys. Lett. 95, 142911 (2009).
http://dx.doi.org/10.1063/1.3245316
325.
325. M. Davis, D. Damjanovic, and N. Setter, J. Appl. Phys. 95, 5679 (2004).
http://dx.doi.org/10.1063/1.1703829
326.
326. S. J. Zhang, F. Li, J. Luo, R. Xia, W. Hackenberger, and T. R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 274 (2011).
http://dx.doi.org/10.1109/TUFFC.2011.1804
327.
327. X. J. Lou, Appl. Phys. Lett. 94, 072901 (2009).
http://dx.doi.org/10.1063/1.3082375
328.
328. M. Ozgul, S. Trolier-McKinstry, and C. A. Randall, J. Appl. Phys. 95, 4296 (2004).
http://dx.doi.org/10.1063/1.1687046
329.
329. M. Ozgul, K. Takemura, S. Trolier-McKinstry, and C. A. Randall, J. Appl. Phys. 89, 5100 (2001).
http://dx.doi.org/10.1063/1.1335819
330.
330. J. K. Lee, J. Y. Yi, and K. Hong, J. Appl. Phys. 96, 7471 (2004).
http://dx.doi.org/10.1063/1.1812815
331.
331. Y. Zhang, Z. Xu, T. Hung, H. Luo, and Q. Yin, J. Eur. Ceram. Soc. 24, 2983 (2004).
http://dx.doi.org/10.1016/j.jeurceramsoc.2003.10.017
332.
332. S. Zhang, J. Luo, F. Li, R. Meyer, W. Hackenberger, and T. Shrout, Acta Mater. 58, 3773 (2010).
http://dx.doi.org/10.1016/j.actamat.2010.03.018
333.
333. K. Takemura, M. Ozgul, V. Bornand, S. Trolier-McKinstry, and C. Randall, J. Appl. Phys. 88, 7272 (2000).
http://dx.doi.org/10.1063/1.1314325
334.
334. Z. Xu, X. Tan, P. Han, J. K. Shang, Appl. Phys. Lett. 76, 3732 (2000).
http://dx.doi.org/10.1063/1.126765
335.
335. X. Tan, Z. Xu, J. K. Shang, and P. Han, Appl. Phys. Lett. 77, 1529 (2000).
http://dx.doi.org/10.1063/1.1308060
336.
336. F. Fang, W. Yang, F. C. Zhang, and H. Qing, Appl. Phys. Lett. 91, 081903 (2007).
http://dx.doi.org/10.1063/1.2772765
337.
337. F. Fang, W. Yang, and X. Luo, J Appl. Phys. 106, 094107 (2009).
http://dx.doi.org/10.1063/1.3253741
338.
338. J. Chen and R. Panda, in IEEE Ultrasonic Symposium (IEEE, Piscataway, NJ, 2005), pp. 235240.
339.
339. S. M. Rhim, M. C. Shin, and S. G. Lee, “Piezoelectric single crystals for medical ultrasonic transducers,” in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials – Synthesis, Characterization and Applications, edited by Z. G. Ye (Woodhead, Cambridge, England, 2008), pp. 101129.
340.
340. X. C. Geng, T. Ritter, and K. K. Shung, Proc. SPIE 3664, 24 (1999).
http://dx.doi.org/10.1117/12.350682
341.
341. T. Ritter, X. C. Geng, K. K. Shung, P. D. Lopath, S. E. Park, and T. R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 792 (2000).
http://dx.doi.org/10.1109/58.852060
342.
342. K. A. Snook, X. N. Jiang, W. S. Hackenberger, X. C. Geng, A. Winder, and F. Forsberg, in IEEE Ultrasonic Symposium (IEEE, Piscataway, NJ, 2007), pp. 292295.
343.
343. T. Ritter, K. K. Shung, X. Geng, H. Wang, and T. R. Shrout, in IEEE Ultrasonic Symposium (IEEE, Piscataway, NJ, 1998), pp. 18511854.
344.
344. S. Saitoh, T. Kobayashi, K. Harada, S. Shimanuki, and Y. Yamashita, Jpn. J. Appl. Phys. 37, 3053 (1998).
http://dx.doi.org/10.1143/JJAP.37.3053
345.
345. Y. Hosono and Y. Yamashita, J. Electroceram. 17, 577 (2006).
http://dx.doi.org/10.1007/s10832-006-5415-4
346.
346. Q. F. Zhou, X. Xu, E. J. Gottlieb, L. Sun, J. M. Cannata, H. Ameri, M. S. Humayun, P. Han, and K. K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 668 (2007).
http://dx.doi.org/10.1109/TUFFC.2007.290
347.
347. K. C. Cheng, H. L. W. Chan, C. L. Choy, Q. R. Yin, H. S. Luo, and Z. W. Yin, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1177 (2003).
http://dx.doi.org/10.1109/TUFFC.2003.1235328
348.
348. T. R. Gururaja, R. K. Panda, J. Chen, and H. Beck, in IEEE Ultrasonic Symposium (IEEE, Piscataway, NJ, 1999), pp. 969972.
349.
349. F. J. Kumar, L. C. Lim, S. P. Lim and K. H. Lee, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 203 (2003).
http://dx.doi.org/10.1109/TUFFC.2003.1193612
350.
350. C. Okaley and M. Zipparo, in IEEE Ultrasonic Symposium (IEEE, Piscataway, NJ, 2000), pp. 11571160.
351.
351. S. Rhim, H. Jung, S. Kim and S. Lee, in IEEE Ultrasonic Symposium (IEEE, Piscataway, NJ, 2002), pp. 11431146.
352.
352. S. Rhim, H. Kim, H. Jung, S. Kim and S. Lee, in IEEE Ultrasonic Symposium (IEEE, Piscataway, NJ, 2003), pp. 782785.
353.
353. Z. Xu, F. Chen, Z. Xi, Z. Li, L. Cao, Y. Feng, and X. Yao, Ceram. Int. 30, 1777 (2004).
http://dx.doi.org/10.1016/j.ceramint.2003.12.121
354.
354. W. Hackenberger, X. Jiang, P. Rehrig, X. Geng, A. Winder, and F. Prosberg, in IEEE Ultrasonic Symposium (IEEE, Piscataway, NJ, 2003), pp. 778781.
355.
355. X. N. Jiang, K. Snook, C. Hu, X. Geng, R. Liu, J. Welter, K. Shung, and W. Hackenberger, Proc. SPIE 7294, 729403 (2009).
356.
356. X. N. Jiang, K. Snook, A. Cheng, W.S. , Hackenberger, and X. Geng, in IEEE Ultrasonics Symposium (IEEE, Piscataway, NJ, 2008), pp. 164167.
357.
357. J. Yuan, S. Rhee, and X.N. Jiang, in IEEE Ultrasonics Symposium (IEEE, Piscataway, NJ, 2008), pp. 682685.
358.
358. P. W. Rehrig, X. N. Jiang, W. S. Hackenberger, J. R. Yuan, and R. Romley, “Micromachined imaging transducer,” U.S. patent US7622853 (24 November 2009).
359.
359. X. N. Jiang, K. Snook, and W.S. Hackenberger, Proc. SPIE 6531, 65310F (2007).
http://dx.doi.org/10.1117/12.715150
360.
360. X. N. Jiang, K. Snook, T. Walker, A. Portune, R. Haber, X. Geng, J. Wetter, and W. S. Hackenberger, Proc. SPIE 6934, 69340D (2008).
http://dx.doi.org/10.1117/12.776186
361.
361. J. Yuan, X. N. Jiang, P. Cao, K. Snook, P. Rehrig, and W. Hackenberger, in IEEE Ultrasonics Symposium (IEEE, Piscataway, NJ, 2006), pp. 264268.
362.
362. D. Zhou, K. F. Cheung, Y. Chen, S. T. Lau, Q. F. Zhou, K. K. Shung, H. S. Luo, J. Y. Dai, and H. L. W. Chan, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 477 (2011).
http://dx.doi.org/10.1109/TUFFC.2011.1825
363.
363. P. Sun, Q. F. Zhou, B. P. Zhu, D. W. Wu, C. L. Hu, J. M. Cannata, J. Tian, P. D. Han, G. F. Wang, and K. K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2760 (2009).
http://dx.doi.org/10.1109/TUFFC.2009.1078
364.
364. Q. F. Zhou, D. W. Wu, J. Jin, C. H. Hu, X. C. Xu, J. Williams, J. M. Cannata, L. C. Lim, and K. K. Shung, IEEE Trans. Ultrason. Ferroeletr. Freq. Control 55, 1369 (2008).
365.
365. K. K. Shung, J. M. Cannata, and Q. F. Zhou, J. Electroceram. 19, 139 (2007).
http://dx.doi.org/10.1007/s10832-007-9044-3
366.
366. J. Chen, R. K. Panda, T. R. Gururaja, and H. Beck, “Single crystal thickness and width cuts for enhanced ultrasonic transducer,” U.S. patent US6465937 (15 October 2002).
367.
367. J. Chen, R. Panda, P. G. Rafter, and T. R. Gururaja, “Wideband piezoelectric transducer for harmonic imaging,” U.S. patent US6532819 (18 March 2003).
368.
368. X. N. Jiang, J. R. Yuan, A. Cheng, K. Snook, P. Cao, P. W. Rehrig, W. S. Hackenberger, G. Lavalelle, X. Geng, and T. Shrout, in IEEE Ultrasonic Symposium (IEEE, Piscataway, NJ, 2006), pp. 918921.
369.
369. J. Tian and P. D. Han, “PMN-PT based piezoelectric single crystals and composites,” in Proceedings of the 2011 IEEE Intern. Symp. Appl. Ferroeletr., Vancouver, Canada, 24–27 July 2011.
370.
370. J. F. Tressler, T. R. Howarth, and D. Huang, J. Acoust. Soc. Am. 119, 879 (2006).
http://dx.doi.org/10.1121/1.2150153
371.
371. J. M. Powers, M. B. Moffett, and F. Nussbaum, in 12th IEEE Intern. Symp. Appl. Ferroelectr. (IEEE, Piscataway, NJ, 2000), pp. 351354.
372.
372. K. A. Snook, P. W. Rehrig, W. S. Hackenberger, X. N. Jiang, R. J. Meyer, and D. Markley, Proc. SPIE 5761, 263 (2005).
http://dx.doi.org/10.1117/12.599928
373.
373. R. J. Meyer, Jr., T. Montgomery, and W. Hughes, in MTS/IEEE Oceans’02 (IEEE, Piscataway, NJ, 2002), pp. 23282331.
374.
374. K. A. Snook, P. W. Rehrig, W. S. Hackenberger, X. N. Jiang, R. J. Meyer, Jr., and D. Markley, Proc. SPIE 6170, 61700H (2006).
http://dx.doi.org/10.1117/12.659638
375.
375. K. A. Snook, P. W. Rehrig, W. S. Hackenberger, R. J. Meyer, Jr., and D. Markley, in IEEE Ultrasonic Symposium (IEEE, Piscataway, NJ, 2006), pp. 359361.
376.
376. R. J. Meyer, Jr., “Progress in single crystal sonar projector integration,” in 2011 IEEE Intern. Symp. Appl. Ferroelectr., Vancouver, Canada, 24-27 July 2011.
377.
377. H. C. Robinson, “Single crystal projectors for compact, broadband sonar,” in Proceedings of the 2011 IEEE Intern. Symp. Appl. Ferroelectr., Vancouver, Canada, 24−27 July 2011.
378.
378. H. C. Robinson, J. R. Torres, R. S. Janus, K. C. Benjamin, and J. A. Szelag, “Single crystal flexural transducers for broadband LF sonar,” in Proceedings of the US Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, 12–14 May 2009.
379.
379. M. B. Moffett, H. C. Robinson, J. M. Powers, and P. D. Baird, J. Acoust. Soc. Am. 121, 2591 (2007).
http://dx.doi.org/10.1121/1.2717496
380.
380. K. Snook, B. Dunkin, W. Hackenberger, R. Meyer, Jr., and D. Markley, “Production of single crystal transducers for sonar platforms,” in Proceedings of the US Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, 12–14 May 2009.
381.
381. R. J. Meyer, Jr., D. C. Markley, and N. P. Sherlock, “High power single crystal based projectors,” in Proceedings of the US Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, 12–14 May 2009.
382.
382. R. J. Meyer, Jr., T. M. Tremper, D. C. Markley, D. Van Tol, P. Han, and J. Tian, “Low profile, broad-bandwidth projector design using d36 shear mode,” in Proceedings of the US Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, 11–13 May 2010.
383.
383. L. C. Lim, J. Jin and K. K. Rajan, “PZN-PT single crystal underwater devices,” in proceedings of the US Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, 12–14 May 2009.
384.
384. L. C. Lim and J. Jing, “New generation single crystal underwater transducers,” in proceedings of the International Workshop on Acoustic Transduction Materials and Devices, State College, PA, 10–12 May 2011.
385.
385. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound (Springer, NY, 2007).
386.
386. D. P. Skinner, R. E. Newnham, and L. E. Cross, Mater. Res. Bull. 13, 599 (1978).
http://dx.doi.org/10.1016/0025-5408(78)90185-X
387.
387. R. E. Newnham, D. P. Skinner, and L. E. Cross, Mater. Res. Bull. 13, 525 (1978).
http://dx.doi.org/10.1016/0025-5408(78)90161-7
388.
388. A. Safari, J. Phys. III 4, 1129 (1994).
389.
389. V. F. Janas and A. Safari, J. Am. Ceram. Soc. 78, 2945 (1995).
http://dx.doi.org/10.1111/j.1151-2916.1995.tb09068.x
390.
390. H. J. Lee, S. J. Zhang, and T. R. Shrout, J. Appl. Phys. 107, 124107 (2010).
http://dx.doi.org/10.1063/1.3437068
391.
391. H. J. Lee, S. J. Zhang, J. Luo, F. Li, and T. R. Shrout, Adv. Funct. Mater. 20, 3154 (2010).
http://dx.doi.org/10.1002/adfm.201000390
392.
392. D. Lin, H. Lee, S. Zhang, F. Li, Z. Li, Z. Xu, and T. Shrout, Scr. Mater. 64, 1149 (2011).
http://dx.doi.org/10.1016/j.scriptamat.2011.03.018
393.
393. G. Gautschi, Piezoelectric Sensorics (Springer, Berlin, 2002).
394.
394. J. F. Fernandez, A. Dogan, J. T. Fielding, K. Uchino, and R. E. Newnham, Sens. Actuators, A 65, 228 (1998).
http://dx.doi.org/10.1016/S0924-4247(97)01668-3
395.
395. Z. Li, A. Huang, G. Luan, and J. Zhang, Ultrasonics 44, e759 (2006).
http://dx.doi.org/10.1016/j.ultras.2006.05.089
396.
396. W. A. Smith, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 41 (1993).
http://dx.doi.org/10.1109/58.184997
397.
397. V. Y. Topolov and A. V. Krivoruchko, J. App. Phys. 105, 074105 (2009).
http://dx.doi.org/10.1063/1.2956403
398.
398. V. Y. Topolov, A. V. Krivoruchko, C. R. Bowen, and A. A. Panich, Ferroelectrics 400, 410 (2010).
http://dx.doi.org/10.1080/00150193.2010.505888
399.
399. A. V. Krivoruchko and V. Y. Topolov, J. Phys. D: Appl. Phys. 40, 7113 (2007).
http://dx.doi.org/10.1088/0022-3727/40/22/038
400.
400. P. Wlodkowski, K. Deng, M. Kahn, and M. Chase, in 12th IEEE Intern. Symp. Appl. Ferroelectr. (IEEE, Piscataway, NJ, 2001), pp. 565567.
401.
401. P. Wlodkowski, K. Deng, and M. Kahn, Sens. Actuators, A 90, 125 (2001).
http://dx.doi.org/10.1016/S0924-4247(01)00449-6
402.
402. L. Zou and K. Deng, “High sensitivity, low noise piezoelectric flexural sensing structure using <011> poled relaxor-based piezoelectric single crystals,” U.S. patent US7104140 (12 September 2006).
403.
403. S. Tadigadaps and K. Mateti, Meas. Sci. Technol. 20, 092001 (2009).
http://dx.doi.org/10.1088/0957-0233/20/9/092001
404.
404. L. C. Lim, J. Jing, Y. X. Xia, and Z. M. Lee, in Proceedings of the Naval Technology Seminar, (NTS 2011), Singapore, 20 May 2011.
405.
405. S. C. Woody, S. Smith, X. Jiang, and P. W. Rehrig, Rev. Sci. Instrum. 76, 075112 (2005).
http://dx.doi.org/10.1063/1.1984974
406.
406. X. N. Jiang, W. Cook, and W. S. Hackenberger, Proc. SPIE 7439, 74390Z (2009).
http://dx.doi.org/10.1117/12.826341
407.
407. X. N. Jiang, P. W. Rehrig, J. Luo, W. Hackenberger, S. J. Zhang, and T. R. Shrout, Proc. SPIE 6170, 61700G (2006).
http://dx.doi.org/10.1117/12.659621
408.
408. X. N. Jiang, P. W. Rehrig, W. S. Hackenberger, S. Perini, M. Lanagan, X. X. Xi, E. Furman, E. Prophet, B. Willemsen, and B. Hammond, Adv. Cryog. Eng. 51A, 928 (2005).
409.
409. X. N. Jiang, P. W. Rehrig, W. S. Hackenberger, E. Smith, S. Dong, D. Viehland, J. Moore, and B. Patrick, Proc. SPIE 5761, 253 (2005).
http://dx.doi.org/10.1117/12.600019
410.
410. X. N. Jiang, P. W. Rehrig, W. S. Hackenberger, J. Moore, S. Chodimella, and B. Patrick, Proc. ASME 3, IMECE60504 (2004).
411.
411. Z. Y. Feng, T. H. He, H. Q. Xu, H. S. Luo, and Z. W. Yin, Solid State Commun. 130, 557 (2004).
http://dx.doi.org/10.1016/j.ssc.2004.03.006
412.
412. R. J. Meyer, Jr., A. Dogan, C. Yoon, S. M. Pilgrim, and R. E. Newnham, Sens. Actuators, A 87, 157 (2001).
http://dx.doi.org/10.1016/S0924-4247(00)00489-1
413.
413. X. N. Jiang, P. W. Rehrig, W. Hackenberger, and T. Shrout, Proc. SPIE 5053, 436 (2003).
http://dx.doi.org/10.1117/12.484199
414.
414. X. N. Jiang, S. Dong, P. W. Rehrig, W. S. Hackenberger, and D. Viehland, in IEEE Ultrasonic Symposium (IEEE, Piscataway, NJ, 2004), pp. 13141317.
415.
415. X. N. Jiang, P. W. Rehrig, W. S. Hackenberger, and T. R. Shrout, Adv. Cryog. Eng. 51B, 1783 (2005).
416.
416. S. X. Dong, L. Yan, D. Viehland, X. N. Jiang, and W. S. Hackenberger, Appl. Phys. Lett. 92, 153504 (2008).
http://dx.doi.org/10.1063/1.2908963
417.
417. S. X. Dong, L. Yan, N. G. Wang, D. Viehland, X. N. Jiang, P. W. Rehrig, and W. S. Hackenberger, Appl. Phys. Lett. 86, 053501 (2005).
http://dx.doi.org/10.1063/1.1855424
418.
418. L. Luo, H. Zhu, C. Zhao, H. Wang, and H. Luo, Appl. Phys. Lett. 90, 052904 (2007).
http://dx.doi.org/10.1063/1.2437093
419.
419. M. Guo, S. X. Dong, B. Ren, and H. S. Luo, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2596 (2010).
http://dx.doi.org/10.1109/TUFFC.2010.1726
420.
420. K. Uchino, Acta Mater. 46, 3745 (1998).
http://dx.doi.org/10.1016/S1359-6454(98)00102-5
421.
421. L. Lebrun, G. Sebald, B. Guiffard, C. Richard, D. Guyomar, and E. Pleska, Ultrasonics 42, 501 (2004).
http://dx.doi.org/10.1016/j.ultras.2004.01.028
422.
422. G. Sebald, L. Lebrun, B. Guiffard, and D. Guyomar, J. Eur. Ceram. Soc. 25, 2509 (2005).
http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.092
423.
423. F. F. Wang, W. Z. Shi, Y. X. Tang, X. M. Chen, T. Wang, and H. S. Luo, Appl. Phys. A 100, 1231 (2010).
http://dx.doi.org/10.1007/s00339-010-5904-9
424.
424. M. A. Karami, O. Bilgen, D. J. Inman, and M. I. Friswell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1508 (2011).
http://dx.doi.org/10.1109/TUFFC.2011.1969
425.
425. S. Priya and D. J. Inman, Energy Harvesting Technologies (Springer, NY, 2009).
426.
426. A. Erturk and D. J. Inman, Piezoelectric Energy Harvesting (Wiley, NY, 2011).
427.
427. K. Ren, Y. Liu, X. Geng, H. Hofmann, and Q. Zhang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 631 (2006).
http://dx.doi.org/10.1109/TUFFC.2006.1610572
428.
428. G. Sebald, E. Lefeuvre, and D. Guyomar, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 538 (2008).
http://dx.doi.org/10.1109/TUFFC.2008.680
429.
429. A. Khodayari, S. Pruvost, G. Sebald, D. Guyomar, and S. Mohammadi, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 693 (2009).
http://dx.doi.org/10.1109/TUFFC.2009.1092
430.
430. Y. X. Tang and H. S. Luo, J. Phys. D 42, 075406 (2009).
http://dx.doi.org/10.1088/0022-3727/42/7/075406
431.
431. Y. X. Tang and H. S. Luo, Infrared Phys. Technol. 52, 180 (2009).
http://dx.doi.org/10.1016/j.infrared.2009.07.004
432.
432. S. J. Zhang and T. R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2138 (2010).
http://dx.doi.org/10.1109/TUFFC.2010.1670
433.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/111/3/10.1063/1.3679521
Loading
/content/aip/journal/jap/111/3/10.1063/1.3679521
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/111/3/10.1063/1.3679521
2012-02-07
2014-07-24

Abstract

Ferroelectrics are essential components in a wide range of applications, including ultrasonic transducers, sensors, and actuators. In the single crystal form, relaxor-PbTiO3 (PT) piezoelectric materials have been extensively studied due to their ultrahigh piezoelectric and electromechanical properties. In this article, a perspective and future development of relaxor-PT crystals are given. Initially, various techniques for the growth of relaxor-PT crystals are reviewed, with crystals up to 100 mm in diameter and 200 mm in length being readily achievable using the Bridgman technique. Second, the characterizations of dielectric and electromechanical properties are surveyed. Boundary conditions, including temperature, electric field, and stress, are discussed in relation to device limitations. Third, the physical origins of the high piezoelectric properties and unique loss characteristics in relaxor-PT crystals are discussed with respect to their crystal structure, phase, engineered domain configuration, macrosymmetry, and domain size. Finally, relaxor-PT single crystals are reviewed with respect to specific applications and contrasted to conventional piezoelectricceramics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/111/3/1.3679521.html;jsessionid=jfjrtpvykqt2.x-aip-live-02?itemId=/content/aip/journal/jap/111/3/10.1063/1.3679521&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective
http://aip.metastore.ingenta.com/content/aip/journal/jap/111/3/10.1063/1.3679521
10.1063/1.3679521
SEARCH_EXPAND_ITEM