1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/111/4/10.1063/1.3682464
1.
1. Y. Filatov, A. Budyka, and V. Kirichenko, Electrospinning of Micro- and Nanofibers: Fundamentals and Applications in Separation and Filtration Processes (Begell House, Redding, CT, 2007).
2.
2. S. Y. Chew, Y. Wen, Y. Dzenis, and K. W. Leong, Curr. Pharm. Des. 12(36), 4751 (2006).
http://dx.doi.org/10.2174/138161206779026326
3.
3. M. Li, M. J. Mondrinos, M. R. Gandhi, F. K. Ko, A. S. Weiss, and P. I. Lelkes, Biomaterials 26(30), 5999 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2005.03.030
4.
4. P. Brun, F. Ghezzo, M. Roso, R. Danesin, G. Palù, A. Bagno, M. Modesti, I. Castagliuolo, and M. Dettin, Acta Biomater. 7(6), 2526 (2011).
http://dx.doi.org/10.1016/j.actbio.2011.02.025
5.
5. J. Zeleny, Phys. Rev. 10(1), 1 (1917).
http://dx.doi.org/10.1103/PhysRev.10.1
6.
6. A. Formhals, U.S. Patent No. 1,975,504.
7.
7. M. Cloupeau and B. Prunet-Foch, J. Aerosol Sci. 25(6), 1021 (1994).
http://dx.doi.org/10.1016/0021-8502(94)90199-6
8.
8. D. R. Salem, Structure Formation in Polymeric Fibers (Hanser Verlag, 2001).
9.
9. G. I. Taylor, Proc. R. Soc. London, Ser. A 280, 383 (1964).
http://dx.doi.org/10.1098/rspa.1964.0151
10.
10. G. I. Taylor, Proc. R. Soc. London, Ser. A 313, 453 (1969).
http://dx.doi.org/10.1098/rspa.1969.0205
11.
11. I. Marginean, L. Parvin, L. Heffernan, and A. Vertes, Anal. Chem. 76(14), 4202 (2004).
http://dx.doi.org/10.1021/ac049817r
12.
12. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Appl. Phys. Lett. 78(8), 1149 (2001).
http://dx.doi.org/10.1063/1.1345798
13.
13. D. H. Reneker and A. L. Yarin, Polymer 49(10), 2387 (2008).
http://dx.doi.org/10.1016/j.polymer.2008.02.002
14.
14. P. K. Baumgarten, J. Colloid Interface Sci. 36, 71 (1971).
http://dx.doi.org/10.1016/0021-9797(71)90241-4
15.
15. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys. 87(9 I), 4531 (2000).
http://dx.doi.org/10.1063/1.373532
16.
16. F. J. Higuera, Phys. Rev. E 68(12), 163041 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.016304
17.
17. D. A. Saville, Ann. Rev. Fluid Mech. 29, 27 (1997).
http://dx.doi.org/10.1146/annurev.fluid.29.1.27
18.
18. A. M. Gañán-Calvo, J. Dávila, and A. Barrero, J. Aerosol Sci. 28(2), 249 (1997).
http://dx.doi.org/10.1016/S0021-8502(96)00433-8
19.
19. F. J. Higuera, J. Fluid Mech. 648, 35 (2010).
http://dx.doi.org/10.1017/S0022112009993235
20.
20. G. Riboux, A. G. Marnín,, I. G. Loscertales, and A. Barrero, J. Fluid Mech. 671, 226 (2011).
http://dx.doi.org/10.1017/S0022112010005586
21.
21. G. Taylor, Proc. R. Soc. London, Ser. A 291(1425), 159 (1966).
http://dx.doi.org/10.1098/rspa.1966.0086
22.
22. J. Fernández de la Mora, Annual Review of Fluid Mechanics 39, 217 (2007).
http://dx.doi.org/10.1146/annurev.fluid.39.050905.110159
23.
23. J. R. Melcher and G. I. Taylor, Ann. Rev. Fluid Mech. 1, 111 (1969).
http://dx.doi.org/10.1146/annurev.fl.01.010169.000551
24.
24. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, Phys. Fluids 13(8), 2201 (2001).
http://dx.doi.org/10.1063/1.1383791
25.
25. W. B. Russel, Colloidal Dispersions (Cambridge University Press, New York, 1991).
26.
26. C.-W. Kim, D.-S. Kim, S.-Y. Kang, M. Marquez, and Y. L. Joo, Polymer 47(14), 5097 (2006).
http://dx.doi.org/10.1016/j.polymer.2006.05.033
27.
27. S. A. Theron, E. Zussman, and A. L. Yarin, Polymer 45, 2017 (2004).
http://dx.doi.org/10.1016/j.polymer.2004.01.024
28.
28. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, Polymer 42(1), 261 (2001).
http://dx.doi.org/10.1016/S0032-3861(00)00250-0
29.
29. T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, J. Appl. Polymer Sci. 96(2), 557 (2005).
http://dx.doi.org/10.1002/(ISSN)1097-4628
30.
30. A. L. Yarin and E. Zussman, Polymer 45, 2977 (2004).
http://dx.doi.org/10.1016/j.polymer.2004.02.066
31.
31. J. J. Feng, Phys. Fluids 14(11), 3912 (2002).
http://dx.doi.org/10.1063/1.1510664
32.
32. J. Shrimpton, Charge Injection Systems: Physical Principles, Experimental and Theoretical Work (Springer, Berlin, 2009).
33.
33. A. E. Castellanos, Electrohydrodynamics (Springer-Verlag, New York, 1998).
34.
34. E. E. Kunhardt, L. G. Christophorou, and L. H. Luessen, eds., The Liquid State and its Electrical Properties (Plenum, New York, 1987).
35.
35. W. F. Schmidt, Liquid State Electronics of Insulating Liquids (CRC Press, Boca Raton, FL, 1997).
36.
36. A. W. Bright and B. Makin, J. Mater. Sci. 2(2), 184 (1967).
http://dx.doi.org/10.1007/BF00549578
37.
37. V. Y. Ushakov, Impulse Breakdown of Liquids (Springer, New York, 2007).
38.
38. G. Coe, J. F. Hughes, and P. E. Secker, Br. J. Appl. Phys. 17, 885 (1966).
http://dx.doi.org/10.1088/0508-3443/17/7/307
39.
39. F. J. Higuera, Phys. Fluids 14, 423 (2002).
http://dx.doi.org/10.1063/1.1426104
40.
40. K. Sasaki, H. Mori, N. Tanaka, H. Murata, C. Morita, H. Shimoyama, and K. Kuroda, J. Electron Microsc. 59, S89 (2010).
http://dx.doi.org/10.1093/jmicro/dfq034
41.
41. J. C. Filippini and C. T. Meyer, IEEE Trans. Dielectr. Electr. Insul. 23(2), 275 (1988).
http://dx.doi.org/10.1109/14.2363
42.
42. P. Atten, B. Malraison, and M. Zahn, IEEE Trans. Dielectr. Electr. Insul. 4(6), 710 (1997).
http://dx.doi.org/10.1109/94.654685
43.
43. L. Onsager, J. Chem. Phys. 2, 599 (1934).
http://dx.doi.org/10.1063/1.1749541
44.
44. A. Alj, A. Denat, J. P. Gosse, B. Gosse, and I. Nakamura, IEEE Trans. Dielectr. Electr. Insul. EI-20(2), 221 (1985).
http://dx.doi.org/10.1109/TEI.1985.348824
45.
45. H. J. Plumley, Phys. Rev. 59(2), 200 (1941).
http://dx.doi.org/10.1103/PhysRev.59.200
46.
46. G. B. Brière, Br. J. Appl. Phys. 15(4), 413 (1964).
http://dx.doi.org/10.1088/0508-3443/15/4/310
47.
47. F. Pontiga and A. Castellanos, IEEE Trans. Dielectr. Electr. Insul. 3, 792 (1996).
http://dx.doi.org/10.1109/94.556561
48.
48. W. A. Sirignano and C. Mehring, Prog. Energy Combustion Sci. 26(4-6), 609 (2000).
http://dx.doi.org/10.1016/S0360-1285(00)00014-9
49.
49. R. H. Colby, L. J. Fetters, W. G. Funk, and W. W. Graessley, Macromolecules 24(13), 3873 (1991).
http://dx.doi.org/10.1021/ma00013a021
50.
50. J. H. Yu, S. V. Fridrikh, and G. C. Rutledge, Polymer 47(13), 4789 (2006).
http://dx.doi.org/10.1016/j.polymer.2006.04.050
51.
51. S. Arbab, P. Noorpanah, N. Mohammadi, and A. Zeinolebadi, J. Polym. Res. 18, 1343 (2011).
http://dx.doi.org/10.1007/s10965-010-9537-7
52.
52. M. G. McKee, C. L. Elkins, and T. E. Long, Polymer 45(26), 8705 (2004).
http://dx.doi.org/10.1016/j.polymer.2004.10.049
53.
53. C. J. Luo, M. Nangrejo, and M. Edirisinghe, Polymer 51(7), 1654 (2010).
http://dx.doi.org/10.1016/j.polymer.2010.01.031
54.
54. C. Subramanian, R. A. Weiss, and M. T. Shaw, Polymer 51(9), 1983 (2010).
http://dx.doi.org/10.1016/j.polymer.2010.02.052
55.
55. T. Han, A. L. Yarin, and D. H. Reneker, Polymer 49(6), 1651 (2008).
http://dx.doi.org/10.1016/j.polymer.2008.01.035
56.
56. R. Grewal, M.S. thesis, New Jersey Institute of Technology, 2010.
57.
57. V. E. Kalayci, P. K. Patra, Y. K. Kim, S. C. Ugbolue, and S. B. Warner, Polymer 46, 7191 (2005).
http://dx.doi.org/10.1016/j.polymer.2005.06.041
58.
58. S. Tripatanasuwan and D. H. Reneker, Polymer 50(8), 1835 (2009).
http://dx.doi.org/10.1016/j.polymer.2009.02.021
59.
59. P. K. Bhattacharjee, T. M. Schneider, M. P. Brenner, G. H. McKinley, and G. C. Rutledge, J. Appl. Phys. 107(4), 044306 (2010).
http://dx.doi.org/10.1063/1.3277018
60.
60. H. Niu, T. Lin, and X. Wang, J. Appl. Polym. Sci. 114(6), 3524 (2009).
http://dx.doi.org/10.1002/app.v114:6
61.
61. O. Jirsak, P. Sysel, F. Sanetrnik, J. Hruza, and J. Chaloupek, J. Nanomaterials 2010, 842831 (2010).
62.
62. T. Miloh, B. Spivak, and A. L. Yarin, J. Appl. Phys. 106, 114910114911 (2009).
http://dx.doi.org/10.1063/1.3264884
63.
63. S. L. Shenoy, W. D. Bates, H. L. Frisch, and G. E. Wnek, Polymer 46(10), 3372 (2005).
http://dx.doi.org/10.1016/j.polymer.2005.03.011
64.
64. B. A. Miller-Chou and J. L. Koenig, Prog. Polym. Sci. 28(8), 1223 (2003).
http://dx.doi.org/10.1016/S0079-6700(03)00045-5
65.
65. C. K. Chan, C. Whitehouse, P. Gao, and C. K. Chai, Polymer 42(18), 7847 (2001).
http://dx.doi.org/10.1016/S0032-3861(01)00265-8
66.
66. J. Stanger, N. Tucker, A. Wallace, N. Larsen, M. Staiger, and R. Reeves, J. Appl. Polym. Sci. 112, 1729 (2009).
http://dx.doi.org/10.1002/app.v112:3
67.
67. C. P. Carroll and Y. L. Joo, Phys. Fluids 21, 103101 (2009).
http://dx.doi.org/10.1063/1.3246024
68.
68. A. M. Ganan-Calvo, J. Aeorosol Sci. 30, 863 (1999).
http://dx.doi.org/10.1016/S0021-8502(98)00780-0
69.
69. J. L. Fernandez de la Mora, and I. G. Loscertales, Fluid Mech. 260, 155 (1994).
http://dx.doi.org/10.1017/S0022112094003472
70.
70. S. Hur and W. D. Kim, Key Eng. Mater. 326-328, 393 (2006).
http://dx.doi.org/10.4028/www.scientific.net/KEM.326-328
71.
71. G. M. Sessler, Electrets (Springer-Verlag, New York, 1987).
72.
72. Y. Arita, S. S. Shiratori, and K. Ikezaki, J. Electrostat. 57(3-4), 263 (2003).
http://dx.doi.org/10.1016/S0304-3886(02)00166-3
73.
73. N. Mohmeyer, N. Behrendt, X. Q. Zhang, P. Smith, V. Altstadt, G. M. Sessler, and H. W. Schmidt, Polymer 48(6), 1612 (2007).
http://dx.doi.org/10.1016/j.polymer.2006.08.001
74.
74. A. Mishra, J. Appl. Polym. Sci. 27(4), 1107 (1982).
http://dx.doi.org/10.1002/app.1982.070270401
75.
75. G. M. Sessler, in Electrical Properties of Polymers, edited by D. Seanor (Academic, 1982), pp. 241−284.
76.
76. K. Hayashi, K. Yoshino, and Y. Inuishi, Jpn. J. Appl Phys. 12(7), 1089 (1973).
http://dx.doi.org/10.1143/JJAP.12.1089
77.
77. J. Lowell, J. Phys. D: Appl. Phys. 23(2), 205 (1990).
http://dx.doi.org/10.1088/0022-3727/23/2/011
78.
78. D. K. Das-Gupta, IEEE Trans. Dielectr. Electr. Insul. 4, 140 (1997).
http://dx.doi.org/10.1109/94.595237
79.
79. Y. R. Yan and C. W. Zhang, Proceedings of the Fiber Society 2009 Spring Conference,Vols. I andIi, (The Fiber Society, Shanghai, China, 2009), pp. 825−828.
80.
80. M. Ignatova, T. Yovcheva, A. Viraneva, G. Mekishev, N. Manolova, and I. Rashkov, Eur. Polym. J. 44(7), 1962 (2008).
http://dx.doi.org/10.1016/j.eurpolymj.2008.04.027
81.
81. L. H. Catalani, G. Collins, and M. Jaffe, Macromolecules 40, 1693 (2007).
http://dx.doi.org/10.1021/ma061342d
82.
82. L. Liu and Y. A. Dzenis, Nanotechnology 19, 355307 (2008).
http://dx.doi.org/10.1088/0957-4484/19/35/355307
83.
83. E. Nemeth, V. Albrecht, G. Schubert, and F. Simon, J. Electrostat. 58(1-2), 3 (2003).
http://dx.doi.org/10.1016/S0304-3886(02)00137-7
84.
84. L. S. McCarty and G. M. Whitesides, Angew Chem., Int. Ed. 47(12), 2188 (2008).
http://dx.doi.org/10.1002/(ISSN)1521-3773
85.
85. L. C. Soares, S. Bertazzo, T. A. Burgo, V. Baldim, and F. Galembeck, J. Braz. Chem. Soc. 19, 277 (2008).
http://dx.doi.org/10.1590/S0103-50532008000200012
86.
86. D. P. Erhard, D. Lovera, R. Giesa, V. Altstädt, and H.-W. Schmidt, J. Polym. Sci. Part B: Polym. Phys. 48(9), 990 (2010).
http://dx.doi.org/10.1002/polb.v48:9
87.
87. A. E. Seaver, presented at the Proc. ESA Annual Meeting, 1999 (unpublished).
88.
88. D. Lovera, C. Bilbao, P. Schreier, L. Kador, H.-W. Schmidt, and V. Altstädt, Polym. Eng. Sci. 49, 2430 (2009).
http://dx.doi.org/10.1002/pen.v49:12
http://aip.metastore.ingenta.com/content/aip/journal/jap/111/4/10.1063/1.3682464
Loading
/content/aip/journal/jap/111/4/10.1063/1.3682464
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/111/4/10.1063/1.3682464
2012-02-24
2015-07-31

Abstract

Electrospinning has become a widely implemented technique for the generation of nonwoven mats that are useful in tissue engineering and filter applications. The overriding factor that has contributed to the popularity of this method is the ease with which fibers with submicron diameters can be produced. Fibers on that size scale are comparable to protein filaments that are observed in the extracellular matrix. The apparatus and procedures for conducting electrospinning experiments are ostensibly simple. While it is rarely reported in the literature on this topic, any experience with this method of fiber spinning reveals substantial ambiguities in how the process can be controlled to generate reproducible results. The simplicity of the procedure belies the complexity of the physical processes that determine the electrospinning process dynamics. In this article, three process domains and the physical domain of charge interaction are identified as important in electrospinning: (a) creation of charge carriers, (b) charge transport, (c) residual charge. The initial event that enables electrospinning is the generation of region of excess charge in the fluid that is to be electrospun. The electrostatic forces that develop on this region of charged fluid in the presence of a high potential result in the ejection of a fluid jet that solidifies into the resulting fiber. The transport of charge from the chargesolution to the grounded collection device produces some of the current which is observed. That transport can occur by the fluid jet and through the atmosphere surrounding the electrospinning apparatus. Charges that are created in the fluid that are not dissipated remain in the solidified fiber as residual charges. The physics of each of these domains in the electrospinning process is summarized in terms of the current understanding, and possible sources of ambiguity in the implementation of this technique are indicated. Directions for future research to further articulate the behavior of the electrospinning process are suggested.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/111/4/1.3682464.html;jsessionid=1b30fp2emx97a.x-aip-live-06?itemId=/content/aip/journal/jap/111/4/10.1063/1.3682464&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Charge generation, charge transport, and residual charge in the electrospinning of polymers: A review of issues and complications
http://aip.metastore.ingenta.com/content/aip/journal/jap/111/4/10.1063/1.3682464
10.1063/1.3682464
SEARCH_EXPAND_ITEM