1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/111/6/10.1063/1.3688435
1.
1. A. K. Geim, Science 324, 1530 (2009).
http://dx.doi.org/10.1126/science.1158877
2.
2. F. Diederich and M. Kivala, Adv. Mater. 22, 803 (2010).
http://dx.doi.org/10.1002/adma.v22:7
3.
3. A. Hirsch, Nature Mater. 9, 868 (2010).
http://dx.doi.org/10.1038/nmat2885
4.
4. W. L. Mao, H.-k. Mao, P. J. Eng, T. P. Trainor, M. Newville, C.-C. Kao, D. L. Heinz, J. Shu, Y. Meng, and R. J. Hemley, Science 302, 425 (2003).
http://dx.doi.org/10.1126/science.1089713
5.
5. A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
6.
6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
7.
7. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
8.
8. S. Iijima, Nature 354, 56 (1991).
http://dx.doi.org/10.1038/354056a0
9.
9. S. Iijima, P. M. Ajayan, and T. Ichihashi, Phys. Rev. Lett. 69, 3100 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.3100
10.
10. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
11.
11. C. Brosseau, in Prospects in Filled Polymers Engineering: Mesostructure, Elasticity Network, and Macroscopic Properties, edited by C. Brosseau (Research Signpost, Trivandrum, India, 2008), pp. 177227.
12.
12. E. Sichel, J. Gittleman, and P. Sheng, J. Electron. Mater. 11, 699 (1982).
http://dx.doi.org/10.1007/BF02672392
13.
13. J. B. Donnet, Compos. Sci. Technol. 63, 1085 (2003).
http://dx.doi.org/10.1016/S0266-3538(03)00028-9
14.
14. E. K. Sichel, J. I. Gittleman, and P. Sheng, Phys. Rev. B 18, 5712 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.5712
15.
15. E. K. Sichel, Carbon Black Polymer Composites (Marcel Dekker, New York, 1982).
16.
16. R. H. Norman, Conductive Rubber and Plastics (Elsevier, New York, 1970).
17.
17. C. Brosseau, F. Boulic, P. Queffelec, C. Bourbigot, Y. Le Mest, J. Loaec, and A. Beroual, J. Appl. Phys. 81, 882 (1997).
http://dx.doi.org/10.1063/1.364173
18.
18. C. Brosseau, P. Molinie, F. Boulic, and F. Carmona, J. Appl. Phys. 89, 8297 (2001).
http://dx.doi.org/10.1063/1.1371938
19.
19. F. Boulic, C. Brosseau, Y. L. Mest, J. Loaec, and F. Carmona, J. Phys. D: Appl. Phys. 31, 1904 (1998).
http://dx.doi.org/10.1088/0022-3727/31/15/020
20.
20. K. Guido, Prog. Polym. Sci. 28, 83 (2003).
http://dx.doi.org/10.1016/S0079-6700(02)00019-9
21.
21. J. Obrzut, J. F. Douglas, S. B. Kharchenko, and K. B. Migler, Phys. Rev. B 76, 195420 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.195420
22.
22. D. Jeulin and L. Savary, J. Phys. I France 7, 1123 (1997).
http://dx.doi.org/10.1051/jp1:1997103
23.
23. F. Houze, R. Meyer, O. Schneegans, and L. Boyer, Appl. Phys. Lett. 69, 1975 (1996).
http://dx.doi.org/10.1063/1.117179
24.
24. R. Viswanathan and M. B. Heaney, Phys. Rev. Lett. 75, 4433 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.4433
25.
25. I. Balberg and J. Blanc, Phys. Rev. B 31, 8295 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.8295
26.
26. F. Carmona and J. Ravier, Carbon 40, 151 (2002).
http://dx.doi.org/10.1016/S0008-6223(01)00166-X
27.
27. J. Ravier, F. Houz, F. Carmona, O. Schneegans, and H. Saadaoui, Carbon 39, 314 (2001).
http://dx.doi.org/10.1016/S0008-6223(00)00242-6
28.
28. J. Smit and H. P. J. Wijn, Ferrites: Physical Properties of Ferromagnetic Oxides in Relation to their Technical Applications (Philips Technical Library, Eindhoven, The Netherlands, 1959).
29.
29. B. Lax and K. J. Button, Microwave ferrites and ferrimagnetics (McGraw-Hill, New York, 1962).
30.
30. M. R. Meshram, N. K. Agrawal, B. Sinha, and P. S. Misra, J. Magn. Magn. Mater. 271, 207 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.09.045
31.
31. T. Kagotani, D. Fujiwara, S. Sugimoto, K. Inomata, and M. Homma, J. Magn. Magn. Mater. 272–276, E1813 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.12.878
32.
32. Z. Haijun, L. Zhichao, M. Chengliang, Y. Xi, Z. Liangying, and W. Mingzhong, Mater. Sci. Eng., B 96, 289 (2002).
http://dx.doi.org/10.1016/S0921-5107(02)00381-1
33.
33. S. P. Ruan, B. K. Xu, H. Suo, F. Q. Wu, S. Q. Xiang, and M. Y. Zhao, J. Magn. Magn. Mater. 212, 175 (2000).
http://dx.doi.org/10.1016/S0304-8853(99)00755-6
34.
34. P. Singh, V. K. Babbar, A. Razdan, S. L. Srivastava, and T. C. Goel, Mater. Sci. Eng., B 78, 70 (2000).
http://dx.doi.org/10.1016/S0921-5107(00)00511-0
35.
35. P. Singh, V. K. Babbar, A. Razdan, R. K. Puri, and T. C. Goel, J. Appl. Phys. 87, 4362 (2000).
http://dx.doi.org/10.1063/1.373079
36.
36. S. M. Abbas, R. Chatterjee, A. K. Dixit, A. V. R. Kumar, and T. C. Goel, J. Appl. Phys. 101, 074105 (2007).
http://dx.doi.org/10.1063/1.2716379
37.
37. J. Y. Shin and J. H. Oh, IEEE Trans. Magn. 29, 3437 (1993).
http://dx.doi.org/10.1109/20.281188
38.
38. M. B. Amin and J. R. James, Radio Electron. Eng. 51, 209 (1981).
http://dx.doi.org/10.1049/ree.1981.0032
39.
39. S. S. Kim, S. B. Jo, K. I. Gueon, K. K. Choi, J. M. Kim, and K. S. Churn, IEEE Trans. Magn. 27, 5462 (1991).
http://dx.doi.org/10.1109/20.278872
40.
40. H. S. Cho and S. S. Kim, IEEE Trans. Magn. 35, 3151 (1999).
http://dx.doi.org/10.1109/20.801111
41.
41. C. P. Neo and V. K. Varadan, IEEE Trans. Electromagn. Compat. 46, 102 (2004).
http://dx.doi.org/10.1109/TEMC.2004.823618
42.
42. V. B. Bregar, IEEE Trans. Magn. 40, 1679 (2004).
http://dx.doi.org/10.1109/TMAG.2004.826622
43.
43. S. Wolff and M. J. Wang, Carbon Black, Science and Technology, 2nd ed. (Dekker, New York, 1993).
44.
44. F. J. Guild, in Polymer Blends, edited by D. R. Paul and C. B. Bucknall (Wiley, New York, 2000), Vol. 2, Chap. 19, p. 116.
45.
45. G. Wypych, Handbook of Fillers (ChemTec, Toronto, 1999).
46.
46. M. J. Wang, Rubber Chem. Technol. 71, 520 (1998).
http://dx.doi.org/10.5254/1.3538492
47.
47. S. Redner, Physics of Finely Divided Matter (Springer-Verlag, Berlin, 1985).
48.
48. T. S. Chow, Mesoscopic Physics of Complex Materials (Springer, New York, 2000).
49.
49. L. Karásek and M. Sumita, J. Mater. Sci. 31, 281 (1996).
http://dx.doi.org/10.1007/BF01139141
50.
50. K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita, and K. Ishikawa, J. Mater. Sci. 17, 1610 (1982).
http://dx.doi.org/10.1007/BF00540785
51.
51. M. Sumita, H. Abe, H. Kayaki, and K. Miyasaka, J. Macromol. Sci., Phys. B 25, 171 (1986).
http://dx.doi.org/10.1080/00222348608248036
52.
52. A. Kumar, Electron. Lett. 23, 184 (1987).
http://dx.doi.org/10.1049/el:19870130
53.
53. C. Brosseau, Prospects in Filled Polymers Engineering: Mesostructure, Elasticity Network, and Macroscopic Properties (Research Signpost, Trivandrum, India, 2008).
54.
54. I. J. Youngs and S. Bleay, Mater. World 10, 12 (2002).
55.
55. P. G. Lederer, An Introduction to Radar Absorbent Materials (RAM) (Royal Signals and Radar Establishment, Malvern, England, 1986).
56.
56. K. Gaylor, Radar Absorbing Materials—Mechanisms and Materials (DSTO Materials Research Laboratory, Victoria, Australia, 1989).
57.
57. E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd rev. ed. (Artech House, Norwood, England, 1993).
58.
58. K. J. Vinoy and R. M. Jha, Radar Absorbing Materials—From Theory to Design and Characterization (Kluwer Academic Publishers, Boston, MA, 1996).
59.
59. W. Emerson, IEEE Trans. Antennas Propag., 21, 484490 (1973).
http://dx.doi.org/10.1109/TAP.1973.1140517
60.
60. N. V. Machinerieen, FR Pat. No. 802728 (1936).
61.
61. R. Stonier, SAMPE J. 27, 9 (1991).
62.
62. O. Halpern, U.S. Pat. No. 2,923,934 entitled “Method and Means For Minimizing Reflection of High Frequency Radio Waves” (1960).
63.
63. H. V. G. Stubbs, B. V. A. Wickenden, W. G. Howell, and E. D. Perry, UK Patent No. 2058469A (1981).
64.
64. J. N. Dahiya, R. Athinarayanan, J. A. Roberts, J. N. Tour, and D. W. Price, in Microwave and Optical Technology 2003, Vol. 5445, edited by J. Pistora, K. Postava, M. Hrabovsky, and B. S. Rawat (SPIE–International Society of Optical Engineering, Bellingham, WA, 2003), pp. 3237.
65.
65. A. Wadhawan, D. Garrett, and J. M. Perez, Appl. Phys. Lett. 83, 2683 (2003).
http://dx.doi.org/10.1063/1.1615679
66.
66. R. C. Che, L. M. Peng, X. F. Duan, Q. Chen, and X. L. Liang, Adv. Mater. 16, 401 (2004).
http://dx.doi.org/10.1002/(ISSN)1521-4095
67.
67. A. Anand, J. A. Roberts, F. Naab, J. N. Dahiya, O. W. Holland, and F. D. McDaniel, Nucl. Instrum. Methods Phys. Res. B 241, 511 (2005).
http://dx.doi.org/10.1016/j.nimb.2005.07.062
68.
68. R. C. Che, C. Y. Zhi, C. Y. Liang, and X. G. Zhou, Appl. Phys. Lett. 88, 033105 (2006).
http://dx.doi.org/10.1063/1.2165276
69.
69. I. V. Korotash, M. M. Nyshchenko, E. M. Rudenko, O. I. Rzheshevska, G. P. Prykhodko, and N. A. Gavrylyuk, Metallofiz. Noveishie Tekhnol. 28, 545 (2006).
70.
70. D. A. Makeiff and T. Huber, Synth. Met. 156, 497 (2006).
http://dx.doi.org/10.1016/j.synthmet.2005.05.019
71.
71. Z. Ye, W. D. Deering, A. Krokhin, and J. A. Roberts, Phys. Rev. B 74, 075425 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.075425
72.
72. R. C. Che, C. Y. Liang, H. L. Shi, X. G. Zhou, and X. N. Yang, Nanotechnology 18, 355705 (2007).
http://dx.doi.org/10.1088/0957-4484/18/35/355705
73.
73. B. Corzilius, S. Agarwal, K. P. Dinse, and K. Hata, Phys. Status Solidi B 244, 3890 (2007).
http://dx.doi.org/10.1002/(ISSN)1521-3951
74.
74. B. Corzilius, K. P. Dinse, J. van Slageren, and K. Hata, Phys. Rev. B 75, 7 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235416
75.
75. S. Gupta, N. Al Moayed, U. Khan, M. Obol, M. Asfar, and IEEE, Complex Permittivity and Permeability of Single- and Multi-Walled Carbon Nanotubes at High Microwave Frequencies and Quantifying Microwave Absorption (IEEE, New York, 2007).
76.
76. Z. F. Liu, G. Bai, Y. Huang, F. F. Li, Y. F. Ma, T. Y. Guo, X. B. He, X. Lin, H. J. Gao, and Y. S. Chen, J. Phys. Chem. C 111, 13696 (2007).
http://dx.doi.org/10.1021/jp0731396
77.
77. B. Corzilius, K. P. Dinse, and K. Hata, Physica E 40, 2327 (2008).
http://dx.doi.org/10.1016/j.physe.2007.09.017
78.
78. A. L. Higginbotham, P. G. Moloney, M. C. Waid, J. G. Duque, C. Kittrell, H. K. Schmidt, J. J. Stephenson, S. Arepalli, L. L. Yowell, and J. M. Tour, Compos. Sci. Technol. 68, 3087 (2008).
http://dx.doi.org/10.1016/j.compscitech.2008.07.004
79.
79. Y. J. Li, C. Z. Zhu, and C. M. Wang, J. Phys. D: Appl. Phys. 41, 125303 (2008).
http://dx.doi.org/10.1088/0022-3727/41/12/125303
80.
80. K. R. Paton and A. H. Windle, Carbon 46, 1935 (2008).
http://dx.doi.org/10.1016/j.carbon.2008.08.001
81.
81. Z. H. Peng, J. C. Peng, Y. F. Peng, Y. Y. Ou, and Y. T. Ning, Phys. Lett. A 372, 3714 (2008).
http://dx.doi.org/10.1016/j.physleta.2008.02.015
82.
82. S. W. Phang, M. Tadokoro, J. Watanabe, and N. Kuramoto, Synth. Met. 158, 251 (2008).
http://dx.doi.org/10.1016/j.synthmet.2008.01.012
83.
83. Z. Zheng, B. Xu, L. Huang, L. He, and X. M. Ni, Solid State Sci. 10, 316 (2008).
http://dx.doi.org/10.1016/j.solidstatesciences.2007.09.016
84.
84. X. C. Gui, W. Ye, J. Q. Wei, K. L. Wang, R. T. Lv, H. W. Zhu, F. Y. Kang, J. L. Gu, and D. H. Wu, J. Phys. D: Appl. Phys. 42, 5 (2009).
http://dx.doi.org/10.1088/0022-3727/42/7/075002
85.
85. Y. Li, C. X. Chen, X. Y. Pan, Y. W. Ni, S. Zhang, J. Huang, D. Chen, and Y. F. Zhang, Physica B 404, 1343 (2009).
http://dx.doi.org/10.1016/j.physb.2008.12.015
86.
86. A. Moradi, Phys. Plasmas 16, 054705 (2009).
http://dx.doi.org/10.1063/1.3130220
87.
87. T. N. Narayanan, V. Sunny, M. M. Shaijumon, P. M. Ajayan, and M. R. Anantharaman, Electrochem. Solid State Lett. 12, K21 (2009).
http://dx.doi.org/10.1149/1.3065992
88.
88. B. R. Priya and H. J. Byrne, J. Phys. Chem. C 113, 7134 (2009).
http://dx.doi.org/10.1021/jp808913x
89.
89. X. S. Qi, Y. Deng, W. Zhong, Y. Yang, C. A. Qin, C. Au, and Y. W. Du, J. Phys. Chem. C 114, 808 (2009).
http://dx.doi.org/10.1021/jp9090393
90.
90. X. S. Qi, Y. Yang, W. Zhong, Y. Deng, C. T. Au, and Y. W. Do, J. Solid State Chem. 182, 2691 (2009).
http://dx.doi.org/10.1016/j.jssc.2009.07.036
91.
91. M. V. Shuba, S. A. Maksimenko, and G. Y. Slepyan, J. Comput. Theor. Nanosci. 6, 2016 (2009).
http://dx.doi.org/10.1166/jctn.2009.1258
92.
92. W. L. Song, M. S. Cao, Z. L. Hou, J. Yuan, and X. Y. Fang, Scr. Mater. 61, 201 (2009).
http://dx.doi.org/10.1016/j.scriptamat.2009.03.048
93.
93. H. Y. Zhang, G. X. Zeng, Y. Ge, T. L. Chen, and L. C. Hu, J. Appl. Phys. 105, 054313 (2009).
http://dx.doi.org/10.1063/1.3086630
94.
94. H. Zhu, L. Zhang, L. Z. Zhang, Y. Song, Y. Huang, and Y. M. Zhang, Mater. Lett. 64, 227 (2009).
http://dx.doi.org/10.1016/j.matlet.2009.07.023
95.
95. X. C. Gui, K. L. Wang, A. Y. Cao, J. Q. Wei, R. T. Lv, F. Y. Kang, Q. K. Shu, Y. Jia, and D. H. Wu, J. Nanosci. Nanotechnol. 10, 1808 (2010).
http://dx.doi.org/10.1166/jnn.2010.2137
96.
96. H. F. Li, J. A. Wang, Y. H. Huang, X. Q. Yan, J. J. Qi, J. Liu, and Y. Zhang, Mater. Sci. Eng. B 175, 81 (2010).
http://dx.doi.org/10.1016/j.mseb.2010.07.007
97.
97. R. T. Lv, F. Y. Kang, J. L. Gu, K. L. Wang, and D. H. Wu, Sci. China-Technol. Sci. 53, 1453 (2010).
http://dx.doi.org/10.1007/s11431-010-3145-y
98.
98. Z. Ye, Z. Li, J. A. Roberts, P. Zhang, J. T. Wang, and G. L. Zhao, J. Appl. Phys. 108, 7 (2010).
http://dx.doi.org/10.1152/japplphysiol.00330.2009
99.
99. C. L. Zhu, M. L. Zhang, Y. J. Qiao, G. Xiao, F. Zhang, and Y. J. Chen, J. Phys. Chem. C 114, 16229 (2010).
http://dx.doi.org/10.1021/jp104445m
100.
100. C. Bi, M. F. Zhu, Q. H. Zhang, Y. G. Li, and H. Z. Wang, Mater. Chem. Phys. 126, 596 (2011).
http://dx.doi.org/10.1016/j.matchemphys.2011.01.015
101.
101. C. Bi, M. F. Zhu, Q. H. Zhang, Y. G. Li, and H. Z. Wang, J. Nanosci. Nanotechnol. 11, 1030 (2011).
http://dx.doi.org/10.1166/jnn.2011.3046
102.
102. K. Q. He, L. M. Yu, L. M. Sheng, K. An, Y. Ando, and X. L. Zhao, Jpn. J. Appl. Phys. 49, 125101 (2011).
http://dx.doi.org/10.1143/JJAP.49.125101
103.
103. A. Y. Ge, B. S. Xu, X. M. Wang, T. B. Li, P. D. Han, and X. G. Liu, Acta Phys. Chim. Sin. 22, 203 (2006).
http://dx.doi.org/10.1016/S1872-1508(06)60056-9
104.
104. D. S. Bychanok, S. I. Moseenkov, V. L. Kuznetsov, P. P. Kuzhir, S. A. Maksimenko, K. G. Batrakov, O. V. Ruhavets, A. V. Gusinski, O. Shenderova, and P. Lambin, J. Nanoelectron. Optoelectron. 4, 257 (2009).
http://dx.doi.org/10.1166/jno.2009.1031
105.
105. Q. W. Chen, Y. Chen, and F. Y. Cao, Alignment of Fe3O4-Carbon Coaxial Nanofibres in a Polymer for Improving Microwave Absorption (IEEE, New York, 2007).
106.
106. Y. Biryulin, D. Kurdybaylo, T. Volkova, L. Sharonova, V. Shamanin, E. Terukov, G. Aleksjuk, A. Prikhodko, V. Negrov, and A. Tkatchyov, Fuller. Nanotub. Carbon Nanostruct. 16, 634 (2008).
http://dx.doi.org/10.1080/15363830802313774
107.
107. F. Nanni, P. Travaglia, and M. Valentini, Compos. Sci. Technol. 69, 485 (2009).
http://dx.doi.org/10.1016/j.compscitech.2008.11.026
108.
108. Z. M. Shen, M. Ge, and D. L. Zhao, New Carbon Mater. 20, 289 (2005).
109.
109. N. J. Tang, Y. Yang, K. J. Lin, W. Zhong, C. T. Au, and Y. W. Du, J. Phys. Chem. C 112, 10061 (2008).
http://dx.doi.org/10.1021/jp8017293
110.
110. N. J. Tang, W. Zhong, C. T. Au, Y. Yang, M. G. Han, K. J. Lin, and Y. W. Du, J. Phys. Chem. C 112, 19316 (2008).
http://dx.doi.org/10.1021/jp808087n
111.
111. D. L. Zhao and Z. M. Shen, Mater. Lett. 62, 3704 (2008).
http://dx.doi.org/10.1016/j.matlet.2008.04.032
112.
112. H. Bi, K. C. Kou, K. Ostrikov, L. K. Yan, and Z. C. Wang, J. Alloy. Compd. 478, 796 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.12.053
113.
113. X. Bai, Y. H. Zhai, and Y. Zhang, J. Phys. Chem. C 115, 11673 (2011).
http://dx.doi.org/10.1021/jp1120299
114.
114. J. J. Fang, S. F. Li, W. K. Zha, H. Y. Cong, J. F. Chen, and Z. Z. Chen, J. Inorg. Mater. 26, 467 (2011).
http://dx.doi.org/10.3724/SP.J.1077.2011.00467
115.
115. H. B. Zhang, Q. Yan, W. G. Zheng, Z. X. He, and Z. Z. Yu, ACS Appl. Mater. Interfaces 3, 918 (2011).
http://dx.doi.org/10.1021/am200021v
116.
116. K. C. Pitman, M. W. Lindley, D. Simkin, and J. F. Cooper, IEE Proc. F, Radar Signal Process. 138, 223 (1991).
http://dx.doi.org/10.1049/ip-f-2.1991.0029
117.
117. X. F. Zhang, X. L. Dong, H. Huang, B. Lv, J. P. Lei, and C. J. Choi, J. Phys. D: Appl. Phys. 40, 5383 (2007).
http://dx.doi.org/10.1088/0022-3727/40/17/056
118.
118. X. Yuan, H. Wang, B. Zha, G. Hou, and P. Hou, Surf. Coat. Technol. 201, 7130 (2007).
http://dx.doi.org/10.1016/j.surfcoat.2007.01.026
119.
119. Y. Xiaojing, W. Hangong, H. Genliang, J. Li, and Y. Chunjiang, IEEE Trans. Magn. 42, 2115 (2006).
http://dx.doi.org/10.1109/TMAG.2006.880686
120.
120. K. Sung-Soo, H. Dae-Hee, and C. Sung-Baeg, IEEE Trans. Magn. 30, 4554 (1994).
http://dx.doi.org/10.1109/20.334146
121.
121. S. Kolev, A. Yanev, and I. Nedkov, Physica Status Solidi (C), Applied Research 3(5), 1308 (2006).
http://dx.doi.org/10.1002/pssc.200563116
122.
122. X.-G. Chen, Y. Ye, and J.-P. Cheng, J. Inorg. Mater. 26, 449 (2011).
http://dx.doi.org/10.3724/SP.J.1077.2011.00449
123.
123. C. Brosseau, Surf. Coating Tech. 206, 753 (2011).
124.
124. W. Stewart, L. Callis, L. Barclay, M.-N. Barton, C. Blakemore, D. Coggon, D. Cox, J. Fellows, M. Repacholi, M. Rugg, A. Swerdlow, and T. R. K. V. Available, “Mobile Phones and Health,” Independent Expert Group on Mobile Phones, National Radiological Protection Board, Oxon, U.K., 2000).
125.
125. T. W. Dawson, K. Caputa, M. A. Stuchly, R. B. Shepard, R. Kavet, and A. Sastre, IEEE Trans. Biomed. Eng. 49, 254 (2002).
http://dx.doi.org/10.1109/10.983460
126.
126. T. W. Dawson, M. A. Stuchly, K. Caputa, A. Sastre, R. B. Shepard, and R. Kavet, IEEE Trans. Biomed. Eng. 47, 1211 (2000).
http://dx.doi.org/10.1109/10.867951
127.
127. R. E. Colin, Foundations of Microwave Engineering (McGraw Hill, New York, 1966).
128.
128. J.-H. Oh, K.-S. Oh, C.-G. Kim, and C.-S. Hong, Composites, Part B 35, 49 (2004).
http://dx.doi.org/10.1016/j.compositesb.2003.08.011
129.
129. G. Z. Shen, Z. Xu, and Y. Li, J. Magn. Magn. Mater. 301, 325 (2006).
http://dx.doi.org/10.1016/j.jmmm.2005.07.007
130.
130. S. J. Yan, L. Zhen, C. Y. Xu, J. T. Jiang, and W. Z. Shao, J. Phys. D: Appl. Phys. 43, 245003 (2010).
http://dx.doi.org/10.1088/0022-3727/43/24/245003
131.
131. R. Gerber, C. D. Wright, and G. A. (Eds.), Applied Magnetism (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992).
132.
132. C. Kittel, Phys. Rev. 73, 155 (1948).
http://dx.doi.org/10.1103/PhysRev.73.155
133.
133. T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, and K. Inomata, J. Magn. Magn. Mater. 281, 195 (2004).
http://dx.doi.org/10.1016/j.jmmm.2004.04.105
134.
134. B. D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, Reading, MA, 1972).
135.
135. O. Acher and S. Dubourg, Phys. Rev. B 77, 104440 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.104440
136.
136. C. Brosseau, J. Phys. D: Appl. Phys. 39, 1277 (2006).
http://dx.doi.org/10.1088/0022-3727/39/7/S02
137.
137. M. Sahimi, Heterogeneous Materials I: Linear Transport and Optical Properties (Springer, New York, 2003).
138.
138. G. W. Milton, The Theory of Composites (Cambridge University Press, Cambridge, England, 2002).
139.
139. A. H. Sihvola, Electromagnetic Mixing Formulas and Applications (IEE Publishing, London, 1999).
140.
140. C. Brosseau and A. Beroual, Prog. Mater Sci. 48, 373 (2003).
http://dx.doi.org/10.1016/S0079-6425(02)00013-0
141.
141. S. Torquato, Random Heterogeneous Materials (Springer, New York, 2001).
142.
142. M. Sahimi, Applications of Percolation Theory (Taylor and Francis, Bristol, PA, 1994).
143.
143. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, Bristol, PA, 1994).
144.
144. A. Mejdoubi and C. Brosseau, Phys. Rev. E 73, 031405 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.031405
145.
145. B. Sareni, L. Krahenbuhl, A. Beroual, and C. Brosseau, J. Appl. Phys. 80, 1688 (1996).
http://dx.doi.org/10.1063/1.362969
146.
146. B. Sareni, L. Kranhenbuhl, A. Beroual, and C. Brosseau, J. Appl. Phys. 80, 4560 (1996).
http://dx.doi.org/10.1063/1.363438
147.
147. B. Sareni, L. Krahenbuhl, A. Beroual, and C. Brosseau, J. Appl. Phys. 81, 2375 (1997).
http://dx.doi.org/10.1063/1.364276
148.
148. A. Mejdoubi and C. Brosseau, J. Appl. Phys. 105, 024110 (2009).
http://dx.doi.org/10.1063/1.3072692
149.
149. V. Myroshnychenko and C. Brosseau, Phys Rev E 71, 016701 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.016701
150.
150. V. Myroshnychenko and C. Brosseau, J. Appl. Phys. 97, 044101 (2005).
http://dx.doi.org/10.1063/1.1835544
151.
151. V. Myroshnychenko and C. Brosseau, J. Phys. D: Appl. Phys. 41, 095401 (2008).
http://dx.doi.org/10.1088/0022-3727/41/9/095401
152.
152. S. E. Bouazzaoui, A. Droussi, M. E. Achour, and C. Brosseau, J. Appl. Phys. 106, 104107 (2009).
http://dx.doi.org/10.1063/1.3253744
153.
153. D. Achlioptas, R. M. D’Souza, and J. Spencer, Science 323, 1453 (2009).
http://dx.doi.org/10.1126/science.1167782
154.
154. A. L. Efros and B. I. Shklovskii, Phys Status Solidi B 76, 475 (1976).
http://dx.doi.org/10.1002/(ISSN)1521-3951
155.
155. J. P. Clerc, J. M. Laugier, G. Giraud, and J. M. Luck, Adv. Phys 39, 191 (1990).
http://dx.doi.org/10.1080/00018739000101501
156.
156. H. Scher and R. Zallen, J. Chem. Phys. 53, 3759 (1970).
http://dx.doi.org/10.1063/1.1674565
157.
157. M. B. Heaney, Phys. Rev. B 52, 12477 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.12477
158.
158. D. H. McQueen, K.-M. Jäger, and M. Pelíšková, J. Phys. D: Appl. Phys. 37, 2160 (2004).
http://dx.doi.org/10.1088/0022-3727/37/15/018
159.
159. D. S. McLachlan, M. Blaszkiewicz, and R. E. Newnham, J. Am. Ceram. Soc. 73, 2187 (1990).
http://dx.doi.org/10.1111/jace.1990.73.issue-8
160.
160. J. Wu and D. S. McLachlan, Phys. Rev. B 58, 14880 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.14880
161.
161. J. Wu and D. S. McLachlan, Phys. Rev. B 56, 1236 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.1236
162.
162. D. S. McLachlan, W. D. Heiss, C. Chiteme, and J. Wu, Phys. Rev. B 58, 13558 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.13558
163.
163. C. Chiteme and D. S. McLachlan, Phys. Rev. B 67, 024206 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.024206
164.
164. P. Sheng, E. K. Sichel, and J. I. Gittleman, Phys. Rev. Lett. 40, 1197 (1978).
http://dx.doi.org/10.1103/PhysRevLett.40.1197
165.
165. T. A. Ezquerra, M. Mohammadi, F. Kremer, T. Vilgis, and G. Wegner, J. Phys. C: Solid State Phys. 21, 927 (1988).
http://dx.doi.org/10.1088/0022-3719/21/5/011
166.
166. F. Kremer, T. A. Ezquerra, M. Mohammadi, W. Bauhofer, T. A. Vilgis, and G. Wegner, Solid State Commun. 66, 153 (1988).
http://dx.doi.org/10.1016/0038-1098(88)90801-0
167.
167. K. L. Ngai and R. W. Rendell, Phys. Rev. B 61, 9393 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.9393
168.
168. P. Sheng, in Macroscopic Properties of Disordered Media, Vol. 154 (Springer-Verlag, Heidelberg, Germany, 1982).
169.
169. T. A. Ezquerra, F. Kremer, and G. Wegner, in Dielectric Properties of Heterogeneous Materials, edited by A. Priou, Progress in Electromagnetics Research (Elsevier, New York, 1992), Vol. 6.
170.
170. A. Mejdoubi and C. Brosseau, J. Appl. Phys. 99, 063502 (2006).
http://dx.doi.org/10.1063/1.2171771
171.
171. J. P. Calame, A. Birman, Y. Carmel, D. Gershon, B. Levush, A. A. Sorokin, V. E. Semenov, D. Dadon, L. P. Martin, and M. Rosen, J. Appl. Phys. 80, 3992 (1996).
http://dx.doi.org/10.1063/1.363357
172.
172. J. P. Calame, J. Appl. Phys. 99, 084101 (2006).
http://dx.doi.org/10.1063/1.2188032
173.
173. J. P. Calame, J. Appl. Phys. 94, 5945 (2003).
http://dx.doi.org/10.1063/1.1615302
174.
174. L. P. Horwitz and H. Neumann, Phys. Rev. Lett. 19, 765 (1967).
http://dx.doi.org/10.1103/PhysRevLett.19.765
175.
175. J. W. Evans, Rev. Mod. Phys. 65, 1281 (1993).
http://dx.doi.org/10.1103/RevModPhys.65.1281
176.
176. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press and Clarendon Press, New York and Oxford, 1989).
177.
177. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method (Mc Graw-Hill, New York, 1994).
178.
178. J. Mackerle, Modell. Simul. Mater. Sci. Eng. 7, 107 (1999).
http://dx.doi.org/10.1088/0965-0393/7/1/008
179.
179. G. Strang and G. J. Fix, An Analysis of The Finite Element Method (Prentice Hall, Englewood Cliffs, NJ, 1973).
180.
180. K. J. Bathe and E. L. Wilson, Numerical Methods in Finite Element Analysis (Prentice Hall, Englewood Cliffs, NJ, 1976).
181.
181. J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 1993).
182.
182. P. P. Sylvester and R. L. Ferrari, Finite Elements for Electrical Engineers, 2nd ed. (Cambridge University Press, New York, 1991).
183.
183. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method (Cambridge University Press, Cambridge, England, 1987).
184.
184. V. Rokhlin, J. Comput. Phys. 60, 187 (1985).
http://dx.doi.org/10.1016/0021-9991(85)90002-6
185.
185. J. M. Haile, C. Massobrio, and S. Torquato, J. Chem. Phys 83, 4075 (1985).
http://dx.doi.org/10.1063/1.449072
186.
186. J. M. Haile, Molecular Dynamics Simulation: Elementary Methods (Wiley, New York, 1992).
187.
187. S. Stolzle, A. Enders, and G. Nimtz, J. Phys. (France) 2, 401 (1992).
http://dx.doi.org/10.1051/jp1:1992153
188.
188. T. Weiland, Part. Accel. 17, 227 (1985).
189.
189. T. Weiland, Part Accel. 15, 245 (1984).
190.
190. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer-Verlag, Berlin, 1988).
191.
191. A. W. Appel, SIAM J. Sci. Stat. Comput. 6, 85 (1985).
http://dx.doi.org/10.1137/0906008
192.
192. L. Greengard and V. Rokhlin, The Rapid Evaluation of Potential Fields in Three Dimensions (MIT Press, Cambridge, MA, 1988).
193.
193. N. I. Dib, M. Asi, and A. Sabbah, Prog. Electromagn. Res. C 13, 171 (2010).
http://dx.doi.org/10.2528/PIERC10041310
194.
194. I. A. Youngs, J. Phys. D: Appl. Phys 35, 3127 (2002).
http://dx.doi.org/10.1088/0022-3727/35/23/314
195.
195. K. K. Kärkkäinen, A. H. Sihvola, and K. I. Nikoskinen, IEEE Trans. Geosci. Remote Sens. 38, 1303 (2000).
http://dx.doi.org/10.1109/36.843023
196.
196. K. L. Shlager and J. B. Schneider, IEEE Antennas Propag. Mag. 37, 39 (1995).
http://dx.doi.org/10.1109/74.414731
197.
197. K. S. Kunz and R. J. Luebbers, The FDTD Method for Electromagnetics (CRC, Boca Raton, FL, 1993).
198.
198. H. Ma, B. Zhang, W. Y. Tam, and P. Sheng, Phys. Rev. B 61, 962 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.962
199.
199. J. C. Michel, H. Moulinec, and P. Suquet, Comput. Mod. Eng. Sci. 1, 79 (2000).
200.
200. S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev. Lett 84, 2064 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2064
201.
201. J. V. Milewski, “Packing concepts in the use of filler and reinforcement combinations,” in Handbook of Fillers and Reinforcements for Plastics, 2nd ed., edited by H. S. Kata and J. V. Milewski (Van Nostrand Reinhold, New York, 1987).
202.
202. R. M. German, Particle Packing Characteristics (Metal Powder Industries Federation, Princeton, NJ, 1989).
203.
203. A. Serkov and M. Radishevskii, Fibre Chem. 40, 24 (2008).
http://dx.doi.org/10.1007/s10692-008-9012-y
204.
204. A. Jacob, Reinf. Plast. 51, 38 (2007).
http://dx.doi.org/10.1016/S0034-3617(07)70387-9
205.
205. D. D. L. Chung, Carbon 39, 279 (2001).
http://dx.doi.org/10.1016/S0008-6223(00)00184-6
206.
206. H. Zhu, P. Chen, R. Wu, and H. Zhang, Indian J. Fibre Text. Res. 32, 391 (2007).
207.
207. C. M. A. Lopes, G. G. Peixoto, and M. C. Rezende, Microwave Absorption Effectiveness of Nonwoven Support Impregnated with Carbon Black (IEEE, New York, 2003).
208.
208. J. Wu and D. D. L. Chung, Carbon 40, 445 (2002).
http://dx.doi.org/10.1016/S0008-6223(01)00133-6
209.
209. T. Zou, N. Zhao, C. Shi, and J. Li, Bull. Mater. Sci., 1 (2011).
210.
210. M. A. Nahil and P. T. Williams, J. Anal. Appl. Pyrolysis 91, 67.
http://dx.doi.org/10.1016/j.jaap.2011.01.005
211.
211. J. Zeng and J. Xu, J. Alloys Compd. 493, L39 (2010).
http://dx.doi.org/10.1016/j.jallcom.2009.12.192
212.
212. N. Zhao, T. Zou, C. Shi, J. Li, and W. Guo, Mater. Sci. Eng., B 127, 207 (2006).
http://dx.doi.org/10.1016/j.mseb.2005.10.026
213.
213. H. L. Fan, W. Yang, and Z. M. Chao, Compos. Sci. Technol. 67, 3472 (2007).
http://dx.doi.org/10.1016/j.compscitech.2007.03.002
214.
214. S.-H. Kim, Y.-G. Park, and S.-S. Kim, Phys. Status Solidi C 4, 4602 (2007).
http://dx.doi.org/10.1002/(ISSN)1610-1642
215.
215. J. Klett, R. Hardy, E. Romine, C. Walls, and T. Burchell, Carbon 38, 953 (2000).
http://dx.doi.org/10.1016/S0008-6223(99)00190-6
216.
216. G. Min, S. Zengmin, C. Weidong, and L. Hui, Carbon 45, 141 (2007).
http://dx.doi.org/10.1016/j.carbon.2006.07.024
217.
217. Q. C. Ling, J. Z. Sun, Q. Zhao, and Q. Y. Zhou, Mater. Sci. Eng., B 162, 162 (2009).
http://dx.doi.org/10.1016/j.mseb.2009.03.023
218.
218. G. Z. Shen, M. Xu, and Z. Xu, Mater. Chem. Phys. 105, 268 (2007).
http://dx.doi.org/10.1016/j.matchemphys.2007.04.056
219.
219. C. P. Neo and V. K. Varadan, Smart Mater. Struct. 10, 1107 (2001).
http://dx.doi.org/10.1088/0964-1726/10/5/403
220.
220. X. Z. Shen, S. M. Xie, J. Guo, and Z. C. Liu, J. Appl. Polym. Sci. 114, 3434 (2009).
http://dx.doi.org/10.1002/app.v114:6
221.
221. G. Z. Shen, C. Yu, and L. J. Wu, Microwave Absorption Properties of Cement Composites Containing Carbon Fibers and Ferrites (World Academic Union-World Academic, Liverpool, England 2010).
222.
222. C. Mitrano, A. Balzano, M. Bertacca, M. Flaccavento, R. Mancinelli, and IEEE, in 2008 IEEE Radar Conference, Vol. 1–4 (IEEE, New York, 2008), pp. 701706.
223.
223. X. Xu, A. Qing, Y. B. Gan, and Y. P. Feng, Microwave Opt. Technol. Lett. 49, 185 (2007).
http://dx.doi.org/10.1002/(ISSN)1098-2760
224.
224. X. Zhang and W. Sun, in Multi-Functional Materials and Structures II, Pts 1 and 2; Vol. 79–82, edited by Y. S. Yin and X. Wang (Trans Tech Publications, Stafa-Zurich, Switzerland, 2009), pp. 18431846.
225.
225. M. Y. Koledintseva, G. Antonini, J. Zhang, A. Orlandi, K. N. Rozanov, and J. L. Drewniak, in Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Boston, MA, Aug. 18–22, 2003 (IEEE, New York, 2003), Vol. 2, pp. 898903.
226.
226. M. Y. Koledintseva, J. L. Drewniak, R. E. DuBroff, K. N. Rozanov, and B. Archambeault, Prog. Electromagn. Res. B 15, 197 (2009).
http://dx.doi.org/10.2528/PIERB09050410
227.
227. P. M. Ajayan and T. W. Ebbesen, Rep. Prog. Phys. 60, 1025 (1997).
http://dx.doi.org/10.1088/0034-4885/60/10/001
228.
228. Y. Zhou, A. Gaur, S.-H. Hur, C. Kocabas, M. A. Meitl, M. Shim, and J. A. Rogers, Nano Lett. 4, 2031 (2004).
http://dx.doi.org/10.1021/nl048905o
229.
229. T. Takenobu, T. Takano, M. Shiraishi, Y. Murakami, M. Ata, H. Kataura, Y. Achiba, and Y. Iwasa, Nature Mater. 2, 683 (2003).
http://dx.doi.org/10.1038/nmat976
230.
230. X. C. Gui, K. L. Wang, J. Q. Wei, R. T. Lu, Q. K. Shu, Y. Jia, C. Wang, H. W. Zhu, and D. H. Wu, Sci. China Ser. E: Technol. Sci. 52, 227 (2009).
http://dx.doi.org/10.1007/s11431-009-0020-9
231.
231. E. Vazquez and M. Prato, ACS Nano 3, 3819 (2009).
http://dx.doi.org/10.1021/nn901604j
232.
232. M. Reghu, C. O. Yoon, C. Y. Yang, D. Moses, P. Smith, A. J. Heeger, and Y. Cao, Phys. Rev. B 50, 13931 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.13931
233.
233. Z. J. Fan, G. H. Luo, Z. F. Zhang, L. Zhou, and F. Wei, Mater. Sci. Eng. B 132, 85 (2006).
http://dx.doi.org/10.1016/j.mseb.2006.02.045
234.
234. J. Z. Kovacs, B. S. Velagala, K. Schulte, and W. Bauhofer, Compos. Sci. Technol. 67, 922 (2007).
http://dx.doi.org/10.1016/j.compscitech.2006.02.037
235.
235. R. H. Schmidt, I. A. Kinloch, A. N. Burgess, and A. H. Windle, Langmuir 23, 5707 (2007).
http://dx.doi.org/10.1021/la062794m
236.
236. A. Saib, L. Bednarz, R. Daussin, C. Bailly, L. Xudong, J. M. Thomassin, C. Pagnoulle, C. Detrembleur, R. Jerome, and I. Huynen, IEEE Trans. Microwave Theory Tech. 54, 2745 (2006).
http://dx.doi.org/10.1109/TMTT.2006.874889
237.
237. F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, Compos. Sci. Technol. 65, 2300 (2005).
http://dx.doi.org/10.1016/j.compscitech.2005.04.021
238.
238. F. H. Gojny, M. H. G. Wichmann, U. Kopke, B. Fiedler, and K. Schulte, Compos. Sci. Technol. 64, 2363 (2004).
http://dx.doi.org/10.1016/j.compscitech.2004.04.002
239.
239. Y. Zhou, F. Pervin, L. Lewis, and S. Jeelani, Mater. Sci. Eng.: A 452–453, 657 (2007).
http://dx.doi.org/10.1016/j.msea.2006.11.066
240.
240. B. Kim, J. Lee, and I. Yu, J. Appl. Phys. 94, 6724 (2003).
http://dx.doi.org/10.1063/1.1622772
241.
241. P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, Mater. Chem. Phys. 113, 919 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2008.08.065
242.
242. J. Wu and L. Kong, Appl. Phys. Lett. 84, 4956 (2004).
http://dx.doi.org/10.1063/1.1762693
243.
243. L. Liu, S. Matitsine, Y. B. Gan, L. F. Chen, L. B. Kong, and K. N. Rozanov, J. Appl. Phys. 101, 094106 (2007).
http://dx.doi.org/10.1063/1.2728765
244.
244. I. Balberg, N. Binenbaum, and N. Wagner, Phys. Rev. Lett. 52, 1465 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.1465
245.
245. I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, Phys. Rev. B 30, 3933 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.3933
246.
246. I. Balberg, N. Binenbaum, and C. H. Anderson, Phys. Rev. Lett. 51, 1605 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.1605
247.
247. A. N. Lagarkov and A. K. Sarychev, Phys. Rev. B 53, 6318 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.6318
248.
248. A. N. Lagarkov, S. M. Matytsin, K. N. Rozanov, and A. K. Sarychev, J. Appl. Phys. 84, 3806 (1998).
http://dx.doi.org/10.1063/1.368559
249.
249. A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin, Mar, ecirc, ch, eacute, and, J. F. Phys. Rev. B 53, 6209 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.6209
250.
250. C. A. Martin, J. K. W. Sandler, M. S. P. Shaffer, M.-K. Schwarz, W. Bauhofer, K. Schulte, and A. H. Windle, Compos. Sci. Technol. 64, 2309 (2004).
http://dx.doi.org/10.1016/j.compscitech.2004.01.025
251.
251. J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, Polymer 44, 5893 (2003).
http://dx.doi.org/10.1016/S0032-3861(03)00539-1
252.
252. M. B. Bryning, M. F. Islam, J. M. Kikkawa, and A. G. Yodh, Adv. Mater. 17, 1186 (2005).
http://dx.doi.org/10.1002/(ISSN)1521-4095
253.
253. L. Flandin, J. Y. Cavaillé, G. Bidan, and Y. Brechet, Polym. Compos. 21, 165 (2000).
http://dx.doi.org/10.1002/(ISSN)1548-0569
254.
254. B. J. P. Adohi, A. Mdarhri, C. Prunier, B. Haidar, and C. Brosseau, J. Appl. Phys. 108, 074108.
http://dx.doi.org/10.1063/1.3486491
255.
255. W. Bauhofer and J. Z. Kovacs, Compos. Sci. Technol. 69, 1486 (2009).
http://dx.doi.org/10.1016/j.compscitech.2008.06.018
256.
256. S. Z. Shen, S. Bateman, C. Huynh, M. Dell’Olio, S. Hawkins, W. Yang, Q. Y. Yang, and K. F. Cai, Advanced Materials Research 66, 198 (2009).
http://dx.doi.org/10.4028/www.scientific.net/AMR.66
257.
257. Z. F. Zhang, G. H. Luo, Z. J. Fan, R. Xiang, L. Zhou, and F. Wei, Acta Phys. Chim. Sin. 22, 296 (2006).
258.
258. S. Bose, R. A. Khare, and P. Moldenaers, Polymer 51, 975.
http://dx.doi.org/10.1016/j.polymer.2010.01.044
259.
259. D. L. Zhao, J. M. Zhang, X. Li, and Z. M. Shen, J. Alloys Compd. 505, 712 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.06.122
260.
260. H. Y. Lin, H. Zhu, H. F. Guo, and L. F. Yu, Mater. Res. Bull. 43, 2697 (2008).
http://dx.doi.org/10.1016/j.materresbull.2007.10.016
261.
261. D. L. Zhao, X. Li, and Z. M. Shen, J. Alloys Compd. 471, 457 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.03.127
262.
262. R. T. Lv, F. Y. Kang, J. L. Gu, X. C. Gui, J. Q. Wei, K. L. Wang, and D. H. Wu, Appl. Phys. Lett. 93, 3 (2008).
http://dx.doi.org/10.1063/1.3042099
263.
263. L. Zhang and H. Zhu, Mater. Lett. 63, 272 (2009).
http://dx.doi.org/10.1016/j.matlet.2008.10.015
264.
264. L. Zhang, H. Zhu, Y. Song, Y. M. Zhang, and Y. Huang, Mater. Sci. Eng. B 153, 78 (2008).
http://dx.doi.org/10.1016/j.mseb.2008.10.029
265.
265. D. L. Zhao, X. Li, and Z. M. Shen, Mater. Sci. Eng. B 150, 105 (2008).
http://dx.doi.org/10.1016/j.mseb.2008.04.004
266.
266. T. C. Zou, H. P. Li, N. G. Zhao, and C. S. Shi, J. Alloy. Compd. 496, L22 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.02.103
267.
267. H. B. Yi, F. S. Wen, L. Qiao, and F. S. Li, J. Appl. Phys. 106, 4 (2009).
268.
268. P. Xu, X. J. Han, X. R. Liu, B. Zhang, C. Wang, and X. H. Wang, Mater. Chem. Phys. 114, 556 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2008.10.010
269.
269. X. Feng, G. Liao, J. Du, L. Dong, K. Jin, and X. Jian, Polym. Eng. Sci. 48, 1007 (2008).
http://dx.doi.org/10.1002/(ISSN)1548-2634
270.
270. D. L. Zhao, X. Li, and Z. M. Shen, Compos. Sci. Technol. 68, 2902 (2008).
http://dx.doi.org/10.1016/j.compscitech.2007.10.006
271.
271. X. Shen, R. Z. Gong, Y. Nie, and J. H. Nie, J. Magn. Magn. Mater. 288, 397 (2005).
http://dx.doi.org/10.1016/j.jmmm.2004.08.035
272.
272. C. Bi, M. F. Zhu, Q. H. Zhang, Y. G. Li, and H. Z. Wang, J. Inorg. Mater. 25, 829 (2010).
http://dx.doi.org/10.3724/SP.J.1077.2010.00829
273.
273. H. M. Kim, K. Kim, C. Y. Lee, J. Joo, S. J. CHo, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, Appl. Phys. Lett. 84, 589 (2004).
http://dx.doi.org/10.1063/1.1641167
274.
274. H. Lin, H. Zhu, H. Guo, and L. Yu, Mater. Lett. 61, 3547 (2007).
http://dx.doi.org/10.1016/j.matlet.2007.01.077
275.
275. S. Liu, J. Zhu, Y. Mastai, I. Felner, and A. Gedanken, Chem. Mater. 12, 2205 (2000).
http://dx.doi.org/10.1021/cm000062o
276.
276. M. Han, W. Zhang, C. Gao, Y. Liang, Z. Xu, J. Zhu, and J. He, Carbon 44, 211 (2006).
http://dx.doi.org/10.1016/j.carbon.2005.07.039
277.
277. K. Lafdi, A. Chin, N. Ali, and J. F. Despres, J. Appl. Phys. 79, 6007 (1996).
http://dx.doi.org/10.1063/1.362135
278.
278. F. Naab, M. Dhoubhadel, O. W. Holland, J. L. Duggan, J. Roberts, and F. D. McDaniel, in Proceedings of the 10th International Conference on Particle Induced X-ray Emission and Its Analytical Applications (Portorož, Slovenia, 2004), p. 6011.
279.
279. S. Pal, S. Chandra, M.-H. Phan, P. Mukherjee, and H. Srikanth, Nanotechnology 20, 485604 (2009).
http://dx.doi.org/10.1088/0957-4484/20/48/485604
280.
280. S. Moseenkov, V. Kuznetsov, A. Usoltseva, I. Mazov, A. Ischenko, T. Buryakov, O. Anikeeva, A. Romanenko, P. Kuzhir, D. Bychenok, K. Batrakov, and S. Maksimenko, in Proceedings of the 1st Wseas International Conference on Recent Advances in Nanotechnology, edited by L. Trilling, D. Perkins, D. Dionysios, L. Perlovsky, K. Davey, D. Landgrebe, M. A. Marino, S. H. Collicott, M. Ceccarelli, and J. W. Lund (World Scientific and Engineering Academy and Society, Athens, 2009), pp. 9295.
281.
281. Y. Zhan, R. Zhao, Y. Lei, F. Meng, J. Zhong, and X. Liu, J. Magn. Magn. Mater. 323, 1006 (2011).
http://dx.doi.org/10.1016/j.jmmm.2010.12.005
282.
282. A. Moradi, Appl. Optics 49, 1728 (2010).
http://dx.doi.org/10.1364/AO.49.001728
283.
283. A. Kawabata and R. Kubo, J. Phys. Soc. Jpn. 21, 1765 (1966).
http://dx.doi.org/10.1143/JPSJ.21.1765
284.
284. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Course of Theoretical Physics—Pergamon International Library of Science, Technology, Engineering and Social Studies (Pergamon, Oxford, England, 1975), 4th rev. English ed.
285.
285. W. Chen, M. Han, and L. Deng, Physica B 405, 1484 (2010).
http://dx.doi.org/10.1016/j.physb.2009.12.026
286.
286. W. Chen, M. Han, and L.-J. Deng, PIERS Online 6, 1 (2010).
http://dx.doi.org/10.2529/PIERS090803073024
287.
287. X. Chi, H. Yi, W. Zuo, L. Qiao, T. Wang, and F. Li, J. Phys. D: Appl. Phys. 44, 295001 (2011).
http://dx.doi.org/10.1088/0022-3727/44/29/295001
288.
288. K. N. Rozanov, Z. W. Li, L. F. Chen, and M. Y. Koledintseva, J. Appl. Phys. 97, 013905 (2005).
http://dx.doi.org/10.1063/1.1827911
289.
289. H. Shahid, I. J. Youngs, and I. J. Ford, J. Phys. D-Appl. Phys. 40, 5331 (2007).
http://dx.doi.org/10.1088/0022-3727/40/17/048
290.
290. H. Li, J. Wang, Y. Huang, X. Yan, J. Qi, J. Liu, and Y. Zhang, Materials Science and Engineering: B 175, 8185.
http://dx.doi.org/10.1016/j.mseb.2010.07.007
291.
291. C. Ingrosso, A.-M. Panniello, R. Comparelli, and M. L. Striccoli, Mater. Des. 3, 1316 (2010).
http://dx.doi.org/10.3390/ma3021316
292.
292. M. X. Chen, Y. Zhu, Y. B. Pan, H. M. Kou, H. Xu, and J. K. Guo, Mater. Des. 32, 3013.
http://dx.doi.org/10.1016/j.matdes.2010.12.043
293.
293. J. B. Donnet and A. Voet, Carbon Black Physics, Chemistry and Elastomer Reinforcement (Marcel Dekker, New York, 1976).
294.
294. K. H. Wu, T. H. Ting, G. P. Wang, W. D. Ho, and C. C. Shih, Polym. Degrad. Stab. 93, 483 (2008).
http://dx.doi.org/10.1016/j.polymdegradstab.2007.11.009
295.
295. S. K. Kwon, J. M. Ahn, G. H. Kim, C. H. Chun, J. S. Hwang, and J. H. Lee, Polym. Eng. Sci. 42, 2165 (2002).
http://dx.doi.org/10.1002/(ISSN)1548-2634
296.
296. R. G. Geyer, J. B. Jarvis, M. D. Janezic, and R. Kaiser, Natl. Inst. Stand. Tech. Note 1529 (2003).
297.
297. N. Ce-Wen, Prog. Mater. Sci. 37, 1 (1993).
http://dx.doi.org/10.1016/0079-6425(93)90004-5
298.
298. Q. Ling, J. Sun, Q. Zhao, and Q. Zhou, Polym.-Plast. Technol. Eng. 50, 89 (2011).
http://dx.doi.org/10.1080/03602559.2010.531416
299.
299. X. X. Liu, Z. Y. Zhang, and Y. P. Wu, ComposItes, Part B 42, 326 (2011).
http://dx.doi.org/10.1016/j.compositesb.2010.11.009
300.
300. G. Q. Wang, X. D. Chen, Y. P. Duan, and S. H. Liu, J. Alloys Compd. 454, 340 (2008).
http://dx.doi.org/10.1016/j.jallcom.2006.12.077
301.
301. L. D. Liu, Y. P. Duan, L. Y. Chen, and S. H. Liu, Study on the Microwave Absorption Properties of Carbonyl-Iron Powder/Carbon Black Composite Coating (Sci. Res. Publ. Inc. USA, Paseo Segovia, Irvin, CA, 2010).
302.
302. L. D. Liu, Y. P. Duan, L. X. Ma, S. H. Liu, and Z. Yu, Appl. Surf. Sci. 257, 842 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.07.078
303.
303. M. S. Pinho, R. D. Lima, M. R. da Silva, and R. C. R. Nunes, Mater. Technol. 21, 27 (2006).
304.
304. M. A. Soloman, P. Kurian, M. R. Anantharaman, and P. A. Joy, J. Appl. Polym. Sci. 89, 769 (2003).
http://dx.doi.org/10.1002/(ISSN)1097-4628
305.
305. B. Wen, J. J. Zhao, Y. P. Duan, X. G. Zhang, Y. B. Zhao, C. Dong, S. H. Liu, and T. J. Li, J. Phys. D: Appl. Phys. 39, 1960 (2006).
http://dx.doi.org/10.1088/0022-3727/39/9/036
306.
306. K. Ishizaki and K. Nagata, ISIJ Int. 47, 811 (2007).
http://dx.doi.org/10.2355/isijinternational.47.811
307.
307. C. Brosseau, W. Ndong, and A. Mdarhri, J. Appl. Phys. 104, 7 (2008).
308.
308. K.-Y. Park, S.-E. Lee, C.-G. Kim, and J.-H. Han, Compos. Sci. Technol. 66, 576 (2006).
http://dx.doi.org/10.1016/j.compscitech.2005.05.034
309.
309. Y. P. Duan, Y. Yang, M. He, S. H. Liu, X. D. Cui, and H. F. Chen, J. Phys. D: Appl. Phys. 41, 6 (2008).
http://dx.doi.org/10.1088/0022-3727/41/12/125403
310.
310. M. Wang, Y. P. Duan, S. H. Liu, X. G. Li, and Z. J. Ji, J. Magn. Magn. Mater. 321, 3442 (2009).
http://dx.doi.org/10.1016/j.jmmm.2009.06.040
311.
311. L. Y. Chen, Y. P. Duan, L. D. Liu, J. B. Guo, and S. H. Liu, Mater. Des. 32, 570 (2010).
http://dx.doi.org/10.1016/j.matdes.2010.08.021
312.
312. D. D. L. Chung, Nanostructured Carbon for Advanced Applications, Vol. 24 (Kluwer Academic, London, 2001).
313.
313. M. V. Shuba, G. Y. Slepyan, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, Phys. Rev. B 79, 155403 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.155403
314.
314. S. Maksimenko, P. Kuzhir, G. Slepyan, V. Kuznetsov, O. Shenderova, A. Okotrub, L. G. Bulusheva, J. Macutkevic, and P. Lambin, in Carbon Onions for Electromagnetic Applications, in Proceedings of the Electromagnetic Theory (EMTS), edited by Gerhard Kristensson (URSI International Symposium, Berlin, 2010), pp. 756759.
315.
315. S. Motojima, Y. Itoh, S. Asakura, and H. Iwanaga, J. Mater. Sci. 30, 5049 (1995).
http://dx.doi.org/10.1007/BF00356048
316.
316. J.-H. Du, C. Sun, S. Bai, G. Su, Z. Ying, and H.-M. Cheng, J. Mater. Res., 1232 (2002).
http://dx.doi.org/10.1557/JMR.2002.0182
317.
317. V. L. Kuznetsov, A. L. Chuvilin, Y. V. Butenko, I. Y. Mal’kov, and V. M. Titov, Chem. Phys. Lett. 222, 343 (1994).
http://dx.doi.org/10.1016/0009-2614(94)87072-1
318.
318. P. Kuzhir, S. Maksimenko, D. Bychanok, V. Kuznetsov, S. Moseenkov, I. Mazov, O. Shenderova, and P. Lambin, Metamaterials 3, 148 (2009).
http://dx.doi.org/10.1016/j.metmat.2009.07.002
319.
319. S. A. Maksimenko, V. N. Rodionova, G. Y. Slepyan, V. A. Karpovich, O. Shenderova, J. Walsh, V. L. Kuznetsov, I. N. Mazov, S. I. Moseenkov, A. V. Okotrub, and P. Lambin, Diamond Relat. Mater. 16, 1231 (2007).
http://dx.doi.org/10.1016/j.diamond.2006.11.025
320.
320. R. Langlet, P. Lambin, A. Mayer, P. Kuzhir, and S. Maksimenko, Nanotechnology 19, 115706 (2008).
http://dx.doi.org/10.1088/0957-4484/19/11/115706
321.
321. X. Lv, S. Yang, J. Jin, L. Zhang, G. Li, and J. Jiang, J. Macromol. Sci. Part B Phys. 49, 355 (2011).
http://dx.doi.org/10.1080/00222340903355750
322.
322. J.-B. Kim, S.-K. Lee, and C.-G. Kim, Compos. Sci. Technol. 68, 2909 (2008).
http://dx.doi.org/10.1016/j.compscitech.2007.10.035
323.
323. K.-Y. Park, J.-H. Han, S.-B. Lee, J.-B. Kim, J.-W. Yi, and S.-K. Lee, Compos. Sci. Technol. 69, 1271 (2009).
http://dx.doi.org/10.1016/j.compscitech.2009.02.033
324.
324. Y. Fan, H. Yang, M. Li, and G. Zou, Mater. Chem. Phys. 115, 696 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2009.02.010
325.
325. J. P. Gogoi, N. S. Bhattacharyya, and K. C. James Raju, Composites, Part B 42, 1291.
326.
326. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Polymer 52, 5.
http://dx.doi.org/10.1016/j.polymer.2010.11.042
327.
327. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006).
http://dx.doi.org/10.1038/nature04969
328.
328. D. Li and R. B. Kaner, Science 320, 1170 (2008).
http://dx.doi.org/10.1126/science.1158180
329.
329. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, Small 7, 1876 (2011).
http://dx.doi.org/10.1002/smll.201002009
330.
330. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Prog. Mater. Sci. 56, 1178 (2011).
http://dx.doi.org/10.1016/j.pmatsci.2011.03.003
331.
331. K. MacKenzie, O. Dunens, and A. T. Harris, Sep. Purif. Technol. 66, 209 (2009).
http://dx.doi.org/10.1016/j.seppur.2009.01.017
332.
332. H. Mi, X. Zhang, S. An, X. Ye, and S. Yang, Electrochem. Commun. 9, 2859 (2007).
http://dx.doi.org/10.1016/j.elecom.2007.10.013
333.
333. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
http://dx.doi.org/10.1126/science.1133628
334.
334. C. Brosseau, Computational Electromagnetics: From the Design of Heterostructures to the Modeling of Biostructures, in press.
335.
335. M. Burghard, H. Klauk, and K. Kern, Adv. Mater. 21, 2586 (2009).
http://dx.doi.org/10.1002/adma.v21:25/26
336.
336.The isolated C atom has a 1s22s22p2 configuration with filled 1s and 2s states and two electrons in the 2p state. Nanotubes, fullerenes, and graphene are forms of sp2 C. Through sp2 hybridization of the atomic orbitals, two neighboring atoms can bond strongly via both s- and p-states. As a result of the high p-bonding energy, graphite is energetically slightly more stable than sp3-bonded diamond-like structures under ambient temperature and pressure. The ability of C to form a wide variety of anisotropic and stable 2D structures is in contrast to clusters of nearly all other elements, which are essentially always 3D. Graphene, consisting of single layers of sp2 C, is presently the most exciting form of C, ever since it was made by the mechanical exfoliation of graphite. Its unique band structure of mass-less fermions due to the Dirac cone structure, and the possibility of huge carrier mobilities with inhibited carrier scattering, has led to intense fundamental research activity with the hope that practical applications in fields ranging from electronics to energy science will emerge (Ref. 1). The gap-less band structure requires the two C atoms in the planar unit cell to be symmetry equivalent, unlike in the Bernal graphite structure. With advances in synthetic tools, a variety of elusive C allotropes such as 1D sp-carbyne, 2D sp-sp2-graphyne, and 3D sp-sp3-yne diamond, were also obtained or predicted (for review see, e.g., Refs. 2 and 3). It should also be noted that recently, an allotrope of C has been obtained by compressing graphite with pressure over 17 GPa, whose hardness is even higher than diamond, while its structure is unknown so far (Ref. 4).
337.
337.There are three main approaches for introducing particle fillers into a polymer matrix. The first one is the mechanical mixing of the molten polymer phase with the particles. A second one is based on the in situ formation of the particles in the presence of the already formed polymer matrix. The third strategy consists in dispersing the particles in a monomer solution (precursor of the host matrix), which is then polymerized (Ref. 20). The effective utilization of particles in composite applications depends strongly on the ability to disperse the particles homogeneously throughout the matrix without destroying the integrity of the particles. Rational design of any device requires a fundamental understanding of the physical properties of these materials, and how they depend on the way in which filler particles and polymer chains are connected, filler-filler interactions, and the state of dispersion of filler particles. Modern technologies aim to tailor such properties for specific applications in the aforementioned industries enabling composites to be cost-effectively manufactured by injection molding or extrusion techniques. On the other hand, these materials have also proved to be model systems to examine the underlying molecular level underpinnings of the mesostructure and macroscopic properties of confined polymer systems. Essential to understanding these issues is a clear delineation of the intrinsic vs extrinsic properties of the filler particles. However, studies of interactions between polymer chains and filler particles are influenced by complex factors including particle size, surface area, aggregate structure and surface activity that have precluded the development of a first-principles understanding of particle-filled composite materials. For example, Obrzut and co-workers (Ref. 21) have shown that the blending of CNTs into polymer matrices leads to composite materials whose properties can depend strongly on the flow history to which the materials have been subjected.
http://aip.metastore.ingenta.com/content/aip/journal/jap/111/6/10.1063/1.3688435
Loading
/content/aip/journal/jap/111/6/10.1063/1.3688435
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/111/6/10.1063/1.3688435
2012-03-16
2014-11-26

Abstract

Carbon (C) is a crucial material for many branches of modern technology. A growing number of demanding applications in electronics and telecommunications rely on the unique properties of C allotropes. The need for microwave absorbers and radar-absorbing materials is ever growing in military applications (reduction of radar signature of aircraft, ships, tanks, and targets) as well as in civilian applications (reduction of electromagnetic interference among components and circuits, reduction of the back-radiation of microstrip radiators). Whatever the application for which the absorber is intended, weight reduction and optimization of the operating bandwidth are two important issues. A composite absorber that uses carbonaceous particles in combination with a polymer matrix offers a large flexibility for design and properties control, as the composite can be tuned and optimized via changes in both the carbonaceous inclusions (C black, C nanotube, C fiber, graphene) and the embedding matrix (rubber, thermoplastic). This paper offers a perspective on the experimental efforts toward the development of microwave absorbers composed of carbonaceous inclusions in a polymer matrix. The absorption properties of such composites can be tailored through changes in geometry, composition, morphology, and volume fraction of the filler particles. Polymercomposites filled with carbonaceous particles provide a versatile system to probe physical properties at the nanoscale of fundamental interest and of relevance to a wide range of potential applications that span radar absorption, electromagnetic protection from natural phenomena (lightning), shielding for particle accelerators in nuclear physics, nuclear electromagnetic pulse protection, electromagnetic compatibility for electronic devices, high-intensity radiated field protection, anechoic chambers, and human exposure mitigation. Carbonaceous particles are also relevant to future applications that require environmentally benign and mechanically flexible materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/111/6/1.3688435.html;jsessionid=2g5ygjnx584gg.x-aip-live-02?itemId=/content/aip/journal/jap/111/6/10.1063/1.3688435&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles
http://aip.metastore.ingenta.com/content/aip/journal/jap/111/6/10.1063/1.3688435
10.1063/1.3688435
SEARCH_EXPAND_ITEM