Important Notice Regarding Scitation Services

Scitation will be upgrading its access control system between July 4 and July 10, 2014. During this process, existing subscriptions and purchased content will remain available and unaffected, but some site and personal account functionality will be disabled.

Services will be fully restored on July 10, 2014. Thank you for your patience!

Click here for complete details.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
GaN based nanorods for solid state lighting
Rent this article for
Access full text Article
1. See, for example, for a description of development of solid state lighting (SSL) technology and general description of SSL.
2. A. Krost and A. Dadgar, Phys. Status Solidi A 194, 361 (2002).<361::AID-PSSA361>3.0.CO;2-R
3. Adam R. Boyd, Stefan Degroote, Maarten Leys, Frank Schulte, Olaf Rockenfeller, Markus Luenenbuerger, Marianne Germain, Johannes Kaeppeler, and Michael Heuken, Phys. Status Solidi C 6, S1045 (2009).
4. Kwang-Choong Kim, Mathew C. Schmidt, Hitoshi Sato, Feng Wu, Natalie Fellows, Makoto Saito, Kenji Fujito, James S. Speck, Shuji Nakamura, and Steven P. DenBaars, Phys. Status Solidi (RRL) 1, 125 (2007).
5. D. Zubia and S. D. Hersee, J. Appl. Phys. 85, 6492 (1999).
6. Hiroto Sekiguchi, Katsumi Kishino, and Akihiko Kikuchi, Appl. Phys. Lett. 96, 231104 (2010).
7. Andreas Waag, Xue Wang, Sönke Fündling, Johannes Ledig, Milena Erenburg, Richard Neumann, Mohamed Al Suleiman, S. Merzsch, Jiandong Wei, Shunfeng Li, Hergo H. Wehmann, Werner Bergbauer, Martin Straßburg, Achim Trampert, Uwe Jahn, and Henning Riechert, Phys. Status Solidi C 8, 2296 (2011).
8. T. Onuma, H. Amaike, M. Kubota, K. Okamoto, H. Ohta, J. Ichihara, H. Takasu, and S. F. Chichibu, Appl. Phys. Lett. 91, 181903 (2007).
9. M. A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Munoz, and R. Beresford, J. Cryst. Growth 183, 23 (1998).
10. M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, Jpn. J. Appl. Phys. 36, L459 (1997).
11. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
12. Yong-Bing Tang, Xiang-Hui Bo, Chun-Sing Lee, Hong-Tao Cong, Hui-Ming Cheng, Zhen-Hua Chen, Wen-Jun Zhang, Igor Bello, and Shuit-Tong Lee, Adv. Funct. Mater. 18, 3515 (2008).
13. Baodan Liu, Yoshio Bando, Chengchun Tang, Fangfang Xu, and Dmitri Golberg, Appl. Phys. Lett. 87, 073106 (2005).
14. Qiming Li and George T. Wang, Appl. Phys. Lett. 93, 043119 (2008).
15. Xiaojun Weng, Robert A Burke, and Joan M. Redwing, Nanotechnology 20, 085610 (2009).
16. G. Seryogin, I. Shalish, W. Moberlychan, and V. Narayanamurti, Nanotechnology 16, 2342 (2005).
17. Feng Shi, Hong Li, and Chengshan Xue, J Mater Sci. Mater Electron. 21, 1249 (2010).
18. H. J. Fan, P. Werner, and M. Zacharias, Small 2, 700 (2006).
19. J. Y. Li, C. G. Lu, B. Maynor, S. M. Huang, and J. Liu, Chem. Mater. 16, 1633 (2004);
19. C. Y. Nam, J. Y. Kim, and J. E. Fischer, Appl. Phys. Lett. 86, 193112 (2005).
20. Fang Qian, Yat Li, Silvija Gradečak, Deli Wang, Carl J. Barrelet, and Charles M. Lieber, Nano Lett. 4, 1975 (2004).
21. C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, Nano Res. 3, 528 (2010).
22. F. Glas, J. C. Harmand, and G. Patriarche, Phys. Rev. Lett. 99, 146101 (2007).
23. R. Liu, A. Bell, F. A. Ponce, C. Q. Chen, J. W. Yang, and M. A. Kahn, Appl. Phys. Lett. 86, 021908 (2005).
24. P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, and D. Hommel, J. Appl. Phys. 98, 093519 (2005).
25. J. Yoo, Y. J. Hong, S. J. An, G. C. Yi, B. Chon, T. Joo, J. W. Kim, and J. S. Lee, Appl. Phys. Lett. 89, 043124 (2006).
26. C. Chèze, L. Geelhaar, B. Jenichen, and H. Riechert, Appl. Phys. Lett. 97, 153105 (2010).
27. J. Ristíc, E. Calleja, S. Fernández-Garrido, L. Cerutti, A. Trampert, U. Jahn, and K. H. Ploog, J. Cryst. Growth 310, 4035 (2008).
28. M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, J. Cryst. Growth 189–190, 138 (1998).
29. K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, J. Cryst. Growth 310, 3154 (2008).
30. Raffaella Calarco, Ralph J. Meijers, Ratan K. Debnath, Toma Stoica, Eli Sutter, and Hans Luth, Nano Lett. 7, 2248 (2007).
31. K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, J. Cryst. Growth 287, 522 (2006).
32. K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, J. Cryst. Growth 300, 94 (2007).
33. O. Landré, C. Bougerol, H. Renevier, and B. Daudin, Nanotechnology 20, 415602 (2009).
34. R. Songmuang, O. Landré, and B. Daudin, Appl. Phys. Lett. 91, 251902 (2007).
35. Hiroto Sekiguchi, Takuya Nakazato, Akihiko Kikuchi, and Katsumi Kishino, J. Cryst. Growth 300, 259 (2007).
36. O. Landré, V. Fellmann, P. Jaffrennou, C. Bougerol, H. Renevier, and B. Daudin, Phys. Status Solidi C 7, 2246 (2010).
37. V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, and H. Riechert, Phys. Rev. B 81, 085310 (2010).
38. R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Lüth, Appl. Phys. Lett. 90, 123117 (2007).
39. C. T. Foxon, S. V. Noviko, J. L. Hall, R. P. Campion, D. Cherns, I. Griffiths, and S. Khongphetsak, J. Cryst. Growth 311, 3423 (2009).
40. E. Galopin, L. Largeau, G. Patriarche, L. Travers, F. Glas, and J. C. Harmand, Nanotechnology 22, 245606 (2011).
41. W. Bergbauer, M. Strassburg, Ch. Kölper, N. Linder, C. Roder, J. Lähnemann, A. Trampert, S. Fündling, S. F. Li, H.-H. Wehmann, and A. Waag, Nanotechnology 21, 305201 (2010).
42. S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, Cryst. Growth Des. 11, 1573 (2011).
43. M. D. Brubaker, I. Levin, A. V. Davydov, D. M. Rourke, N. A. Sanford, V. M. Bright, and K. A. Bertness, J. Appl. Phys. 110, 053506 (2011).
44. B. Alloing, S. Vézian, O. Tottereau, P. Vennéguès, E. Beraudo, and J. Zuniga-Pérez, Appl. Phys. Lett. 98, 011914 (2011).
45. K. Hestroffer, C. Bougerol, C. Leclere, H. Renevier, J. L. Rouvière, and B. Daudin, 16th European Molecular Beam Epitaxy Workshop, France, March, 2011.
46. F. A. Poncea, D. P. Bour, W. T. Young, M. Saunders, and J. W. Steeds, Appl. Phys. Lett. 69, 337 (1996).
47. B. Daudin, J. L. Rouvière, and M. Arlery. Appl. Phys. Lett. 69, 2480 (1996).
48. X. Kong, J. Ristić, M. A. Sanchez-Garcia, E. Calleja, and A. Trampert, Nanotechnology 22, 415701 (2011).
49. J.-L. Rouviere, C. Bougerol, B. Amstatt, E. Bellet-Almaric, and B. Daudin, Appl. Phys. Lett. 92, 201904 (2008).
50. J. D. Wei, S. F. Li, A. Atamuratov, H. -H.-H. Wehmann, and A. Waag, Appl. Phys. Lett. 97, 17 2111, (2010).
51. B. J. Rodriguez, A. Gruverman, A. I. Kingon, and R. J. Nemanich, J. Cryst. Growth 246, 252 (2002).
52. M. Sumiya, M. Tanaka, K. Ohtsuka, S. Fuke, T. Ohnishi, I. Ohkubo, M. Yoshimoto, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 674 (1999).
53. Q. Zhang, X. Q. Wang, X. W. He, C. M. Yin, F. J. Xu, B. Shen, Y. H. Chen, Z. G. Wang, Y. Ishitani, and A. Yoshikawa, Appl. Phys. Lett. 95, 031902 (2009).
54. For example, H. M. Ng, N. G. Weimann, and A. Chowdhury, J. Appl. Phys. 94, 650 (2003);
54. H. M. Ng, N. G. Weimann, and A. Chowdhury, III-Nitride Semiconductor Materials, edited by Z. C. Feng (Imperial College Press, London, 2006), p. 377.
55. N. A. Fichtenbaum, T. E. Mates, S. Keller, S. P. DenBaars, and U. K. Mishra, J. Cryst. Growth 310, 1124 (2008).
56. L. Macht, J. L. Weyher, P. R. Hageman, M. Zielinski, and P. K. Larsen, J. Phys.: Condens. Matter 14, 13345 (2002).
57. H. M. Ng and A. Y. Cho, J. Vac. Sci. Technol. B 20, 1217 (2002).
58. L. K. Li, M. J. Jurkovic, W. I. Wang, J. M. Van Hove, and P. P. Chow, Appl. Phys. Lett. 76, 1740 (2000).
59. M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Namkoong, W. A. Doolittle, and A. S. Brown, J. Appl. Phys. 95, 8408 (2004).
60. J. D. Wei, X. Wang, R. Neumann, S. F. Li, S. Fündling, S. Merzsch, M. -A. M.M. Suleiman, Ü. Sökmen, H.-H. Wehmann, and A. Waag, Phys. Status Solidi C 8, 2157 (2011).
61. D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. R. S. Farley, R. P. Campion, and C. T. Foxon, Appl. Phys. Lett. 92, 121902 (2008).
62. L. Lymperakis and J. Neugebauer, Phys. Rev. B 79, 241308(R) (2009).
63. Eric A. Stach, Peter J. Pauzauskie, Tevye Kuykendall, Joshua Goldberger, Rongrui He, and Peidong Yang, Nano Lett. 3, 867 (2003).
64. H. W. Kim, H. S. Kim, H. G. Na, J. C. Yang, S. S. Kim, and C. M. Lee, Chem. Eng. J. 165, 720 (2010).
65. T. Stoica, R. J. Meijers, T. Richter, K. Jeganathan, R. K. Debnath, M. Marso, H. Lüth, and R. Calarco. presented at the Workshop on GaN Nanowires at the Paul-Drude-Insitute, Berlin, 2009.
66. T. Richter, H. Lüth, R. Meijers, R. Calarco, and M. Marso, Nano Lett. 8, 3056 (2008).
67. F. Furtmayr, M. Vielemeyer, M. Stutzmann, J. Arbiol, S. Estradé, F. Peirò, J. R. Morante, and M. Eickhoff, J. Appl. Phys. 104, 034309 (2008).
68. R. Koester, J. S. Hwang, C. Durand, Le Si Dang, and J. Eymery, Nanotechnology 21, 015602 (2010).
69. S. Haffouz, B. Beaumont, and P. Gibart, MRS Internet J. Nitride Semicond. Res. 3, 8 (1998).
70. J. Arbiol, S. Estradé, J. D. Prades, A. Cirera, F. Furtmayr, C. Stark, A. Laufer, M. Stutzmann, M. Eickhoff, M. H. Gass, A. L. Bleloch, F. Peiróm, and Joan R. Morante, Nanotechnology 20, 145704 (2009).
71. S. D. Hersee, X. Y. Sun, and X. Wang, Nano Lett. 6, 1808 (2006).
72. K. Kishino, S. Sekiguchi, and A. Kikuchi, J. Cryst. Growth 311, 2063 (2009).
73. A. Bengoechea-Encabo, F. Barbagini, S. Fernandez-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, J. Cryst. Growth 325, 89 (2011).
74. S. F. Li, S. Fündling, X. Wang, J. D. Wei, S. Merzsch, M. M. -AM.-A Suleiman, Ü. Sökmen, E. Peiner, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, Phys. Status Solidi C 8, 2318 (2011).
75. T. Eriksson, S. Yamada, P. V. Krishnan, S. Ramasamy, and B. Heidari, Microelectron. Eng. 88 293 (2011).
76. H. Sekiguchi, K. Kishino, and A. Kikuchi, Appl. Phys. Express 1, 124002 (2008).
77. K. A. Bertness, A. W. Sanders, D. M. Rourke, T. E. Harvey, A. Roshko, J. B. Schlager, and N. A. Sanford, Adv. Funct. Mater. 20, 2911 (2010).
78. E. Calleja, J. Ristíc, S. Fernández-Garrido, L. Cerutti, M. A. Sánchez-García, J. Grandal, A. Trampert, U. Jahn, G. Sánchez, A. Griol, and B. Sánchez, Phys. Status Solidi B 244, 2816 (2007).
79. T. Schumann, T. Gotschke, F. Limbach, T. Stoica, and R. Calarco, Nanotechnology 22, 095603 (2011).
80. T. Gotschke, T. Schumann, F. Limbach, T. Stoica, and R. Calarco, Appl. Phys. Lett. 98, 103102 (2011).
81. Shunfeng Li, Sönke Fündling, Ünsal Sökmen, Richard Neumann, Stephan Merzsch, Peter Hinze, Thomas Weimann, Uwe Jahn, Achim Trampert, Henning Riechert, Erwin Peiner, Hergo-Heinrich Wehmann, and Andreas Waag, Phys. Status Solidi C 7, 2224 (2010).
82. Tsung-Yi Tang, Wen-Yu Shiao, Cheng-Hung Lin, Kun-Ching Shen, Jeng-Jie Huang, Shao-Ying Ting, Tzu-Chi Liu, C. C. Yang, Chiu-Lin Yao, Jui-Hung Yeh, Ta-Cheng Hsu, Wei-Chao Chen, Hsu-Cheng Hsu, and Li-Chyong Chen, J. Appl. Phys. 105, 023501 (2009).
83. W. Bergbauer, M. Strassburg, Ch. Kölper, N. Linder, C. Roder, J. Lähnemann, A. Trampert, S. Fündling, S. F. Li, H.-H. Wehmann, and A. Waag, J. Cryst. Growth 315, 164 (2011).
84. X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, Appl. Phys. Lett. 97, 151909 (2010).
85. X. J. Chen, J. S. Hwang, G. Perillat-Merceroz, S. Landis, B. Martin, D. Le Si Dang, J. Eymery, and C. Durand, J. Cryst. Growth 322, 15 (2011).
86. S. Fündling, Ü. Sökmen, E. Peiner, T. Weimann, P. Hinze, U. Jahn, A. Trampert, H. Riechert, A. Bakin, H.-H. Wehmann, and A. Waag, Nanotechnology 19, 405301 (2008).
87. K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, Phys. Status Solidi B 176, 535 (1999).<535::AID-PSSA535>3.0.CO;2-I
88. B. L. VanMil, H. C. Guo, L. J. Holbert, K.-N. Lee, T. H. Myers, T. Liu, and D. Korakakis, J. Vac. Sci. Technol. B 22, 2149 (2004).
89. J. E. Northrup and J. Neugebauer, Appl. Phys. Lett. 85, 3429 (2004).
90. R. M. Feenstra, Y. Dong, C. D. Lee, and J. E. Northrup, J. Vac. Sci. Technol. B 23, 1174 (2005).
91. A. Kelly, G. W. Groves, and P. Kidd, in Crystallography and Crystal Defects (Wiley & Sons Ltd., West Sussex, England, 2000), p. 391.
92. E. V. Yakovlev, R. A. Talalaev, A. S. Segal, A. V. Lobanova, W. V. Lundin, E. E. Zavarin, M. A. Sinitsyn, A. F. Tsatsulnikov, and A. E. Nikolaev, J. Cryst. Growth 310, 4862 (2008).
93. A. Koukitu, M. Mayumi, and Y. Kumagai, J. Cryst. Growth 246, 230 (2002).
94. B. M. Imer, F. Wu, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 88, 061908 (2006).
95. M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J -C. Harmand, Le Si Dang, J. Renard, B. Gayral, L. Nevou, and F. Julien, Nanotechnology 18, 385306 (2007).
96. L. Cerutti, J. Ristić, S. Fernández-Garrido, E. Calleja, A. Trampert, K. H. Ploog, S. Lazic, and J. M. Calleja, Appl. Phys. Lett. 88, 213114 (2006).
97. Shou-Yi Kuo, C. C. Kei, C. N. Hsiao, and C. K. Chao, J. Vac. Sci. Technol. B 24, 695 (2006).
98. Lawrence H. Robins, K. A. Bertness, J. M. Barker, N. A. Sanford, and J. B. Schlager, J. Appl. Phys. 101, 113505 (2007).
99. V. Consonni, M. Knelangen, U. Jahn, A. Trampert, L. Geelhaar, and H. Riechert, Appl. Phys. Lett. 95, 241910 (2009).
100. A. Armstrong, Q. Li, Y. Lin, A. A. Talin, and G. T. Wang, Appl. Phys. Lett. 96, 163106 (2010).
101. Q. Li and G. T. Wang, Nano Lett. 10, 1554 (2010).
102. P. Lefebvre, S. Fernández-Garrido, J. Grandal, J. Ristić, M.-A. Sánchez-García, and E. Calleja, Appl. Phys. Lett. 98, 083104 (2011).
103. J. Yoon, A. M. Girgis, I. Shalish, L. R. Ram-Mohan, and V. Narayanamurti, Appl. Phys. Lett. 94, 142102 (2009).
104. A. A. Talin, G. T. Wang, E. Lai, and R. J. Anderson, Appl. Phys. Lett. 92, 093105 (2008).
105. J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, J. Appl. Phys. 103, 124309 (2008).
106. K. A. Bertness, N. A. Sanford, and A. V. Davydov, IEEE J. Sel. Top. Quantum Electron. 17, 847 (2011).
107. L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, IEEE J. Sel. Top. Quantum Electron. 17, 878 (2011).
108. O. Brandt, C. Pfüller, C. Chèze, L. Geelhaar, and H. Riechert, Phys. Rev. B 81, 045302 (2010).
109. E. Schlenker, A. Bakin, T. Weimann, P. Hinze, D. H. Weber, A. Gölzhäuser, H. H. Wehmann, and A. Waag, Nanotechnology 19, 365707 (2008).
110. R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. Hart, T. Stoica, and H. Luth, Nano Lett. 5, 981 (2005).
111. A. Alec Talin, Francois Léonard, B. S. Swartzentruber, Xin Wang, and Stephen D. Hersee Phys. Rev. Lett. 101, 076802 (2008).
112. Y. Gu and L. J. Lauhon, Appl. Phys. Lett. 89, 143102 (2006).
113. H. Kim, Y. Cho, H. Lee, S. Kim, S. Ryu, D. Kim, T. Kang, and K. Chung, Nano Lett. 4, 1059 (2004).
114. A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, Jpn. J. Appl. Phys. 43, L1524 (2004).
115. C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, Nanotechnology 18, 445201 (2007).
116. H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, J. Vac. Sci. Technol. B 24, 1909 (2006).
117. Cheng-Yin Wang, Liang-Yi Chen, Cheng-Pin Chen, Yun-Wei Cheng, Min-Yung Ke, Min-Yann Hsieh, Han-Ming Wu, Lung-Han Peng, and JianJang Huang, Opt. Express 16, 10549 (2008).
118. Min-Yann Hsieh, Cheng-Yin Wang, Liang-Yi Chen, Tzu-Pu Lin, Min-Yung Ke, Yun-Wei Cheng, Yi-Cheng Yu, Cheng-Pin Chen, Dong-Ming Yeh, Chih-Feng Lu, Chi-Feng Huang, C. C. Yang, and Jian-Jang Huang, IEEE Electron Device Lett. 29, 658 (2008).
119. V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, and Y. Kawakami, J. Appl. Phys. 107, 114303 (2010).
120. Q. Wang, J. Bai, Y. P. Gong, and T. Wang, J. Phys. D: Appl. Phys. 44, 395102 (2011).
121. R. Neumann, et al, unpublished work from institute of semiconductor technology, Braunschweig university of technology.
122. A.-L. Bavencove, G. Tourbot, E. Pougeoise, J. Garcia, P. Gilet, F. Levy, B. Andre, G. Feuillet, B. Gayral, B. Daudin, and Le Si Dang, Phys. Status Solidi A 207, 1425 (2010).
123. S. D. Hersee, M. Fairchild, A. K. Rishinaramangalam, M. S. Ferdous, L. Zhang, P. M. Varangis, B. S. Swartzentruber, and A. A. Talin, Electron. Lett. 45, 75 (2009).
124. R. Neumann, M. Al-Suleiman, M. Erenburg, J. Ledig, H.-H. Wehmann, and A. Waag, Microelectron. Eng. 88, 3224 (2011).
125. N. Heuck, G. Palm, T. Sauerberg, A. Stranz, A. Waag, and A. Bakin, Mater. Sci. Forum 645–648, 741 (2010).
126. H. Schwarzbauer and R. Kuhnert, IEEE Trans. Ind. Appl. 27, 93 (1991).
127. F. Qian, D. Gradecak, Y. Li, C.-Y. Wen, and C. M. Lieber, Nano Lett. 5, 2287 (2005).
128. Tevye Kuykendall, Shaul Aloni, Ilan Jen-La Plante, and Taleb Mokari, Int. J. Photoenergy, vol: 2009, 767951 (2009) doi:10.1155/2009/767951.
129. A.-L. Bavencove, D. Salomon, M. Lafossas, B. Martin, A. Dussaigne, F. Levy, B. Andre, P. Ferret, C. Durand, J. Eymery, Lesi Dand, P. Gilet, Electron. Lett. 47, 765 (2011).
130. R. Koester, J.-S. Hwang, D. Salomon, X. J. Chen, C. Bougerol, J.-P. Barnes, D. L. S. Dang, L. Rigutti, A. d. L. Bugallo, G. Jacopin, M Tchernycheva, C. Durand, and J. Eymery, Nano Lett. 11, 4839 (2011).
131. Q. M. Li and G. T. Wang, Appl. Phys. Lett. 97, 181107 (2010).
132. N. A. Fichtenbaum, C. J. Neufeld, C. Schaake, Y. Wu, M. H. Wong, M. Grundmann, S. Keller, S. P. Denbaars, J. S. Speck, and U. K. Mishra, Jpn. J. Appl. Phys. 46, L230 (2007).
133. F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. J. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, Nature Mater. 7, 701 (2008).
134. Y. J. Hong, C -H. Lee, A. Yoon, M. Y. Kim, H.-K. Seong, H. J. Chung, Ch. Sone, Y. J. Park, and G.-C. Yi, Adv. Mater. 23, 3284 (2011).
135. Hon-Way Lin, Yu-Jung Lu, Hung-Ying Chen, Hong-Mao Lee, and Shangjr Gwo, Appl. Phys. Lett. 97, 073101 (2010).
136. H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, Nano Lett. 11, 1919 (2011).
137. K. Kishino, A. Kikuchi, S. Sekiguchi, and S. Ishizawa, Proc. SPIE 6473, 64730T (2007).
138. T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, Opt. Express 17, 20440 (2009).
139. C. Kölper, W. Bergbauer, P. Drechsel, M. Sabathil, M. Straßburg, H.-J. Lugauer, B. Witzigmann, S. Fündling, S. Li, H. -H Wehmann, and A. Waag, Phys. Status Solidi C 8, 2305 (2011).
140. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, Appl. Phys. Lett. 84, 3885 (2004).
141. E. Calleja, J. Ristíc, S. Fernández-Garrido, L. Cerutti, M. A. Sánchez-García, J. Grandal, A. Trampert, U. Jahn, G. Sánchez, A. Griol, and B. Sánchez, Phys. Status Solidi B 244, 2816 (2007).

Data & Media loading...


Article metrics loading...



In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.


Full text loading...

This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Scitation|GaN based nanorods for solid state lighting