1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
GaN based nanorods for solid state lighting
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/111/7/10.1063/1.3694674
1.
1. See, for example, http://www1.eere.energy.gov/buildings/ssl/ for a description of development of solid state lighting (SSL) technology and general description of SSL.
2.
2. A. Krost and A. Dadgar, Phys. Status Solidi A 194, 361 (2002).
http://dx.doi.org/10.1002/1521-396X(200212)194:2<361::AID-PSSA361>3.0.CO;2-R
3.
3. Adam R. Boyd, Stefan Degroote, Maarten Leys, Frank Schulte, Olaf Rockenfeller, Markus Luenenbuerger, Marianne Germain, Johannes Kaeppeler, and Michael Heuken, Phys. Status Solidi C 6, S1045 (2009).
http://dx.doi.org/10.1002/pssc.200880925
4.
4. Kwang-Choong Kim, Mathew C. Schmidt, Hitoshi Sato, Feng Wu, Natalie Fellows, Makoto Saito, Kenji Fujito, James S. Speck, Shuji Nakamura, and Steven P. DenBaars, Phys. Status Solidi (RRL) 1, 125 (2007).
http://dx.doi.org/10.1002/pssr.200701061
5.
5. D. Zubia and S. D. Hersee, J. Appl. Phys. 85, 6492 (1999).
http://dx.doi.org/10.1063/1.370153
6.
6. Hiroto Sekiguchi, Katsumi Kishino, and Akihiko Kikuchi, Appl. Phys. Lett. 96, 231104 (2010).
http://dx.doi.org/10.1063/1.3443734
7.
7. Andreas Waag, Xue Wang, Sönke Fündling, Johannes Ledig, Milena Erenburg, Richard Neumann, Mohamed Al Suleiman, S. Merzsch, Jiandong Wei, Shunfeng Li, Hergo H. Wehmann, Werner Bergbauer, Martin Straßburg, Achim Trampert, Uwe Jahn, and Henning Riechert, Phys. Status Solidi C 8, 2296 (2011).
http://dx.doi.org/10.1002/pssc.201000989
8.
8. T. Onuma, H. Amaike, M. Kubota, K. Okamoto, H. Ohta, J. Ichihara, H. Takasu, and S. F. Chichibu, Appl. Phys. Lett. 91, 181903 (2007).
http://dx.doi.org/10.1063/1.2802042
9.
9. M. A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Munoz, and R. Beresford, J. Cryst. Growth 183, 23 (1998).
http://dx.doi.org/10.1016/S0022-0248(97)00386-2
10.
10. M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, Jpn. J. Appl. Phys. 36, L459 (1997).
http://dx.doi.org/10.1143/JJAP.36.L459
11.
11. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
http://dx.doi.org/10.1063/1.1753975
12.
12. Yong-Bing Tang, Xiang-Hui Bo, Chun-Sing Lee, Hong-Tao Cong, Hui-Ming Cheng, Zhen-Hua Chen, Wen-Jun Zhang, Igor Bello, and Shuit-Tong Lee, Adv. Funct. Mater. 18, 3515 (2008).
http://dx.doi.org/10.1002/adfm.200800320
13.
13. Baodan Liu, Yoshio Bando, Chengchun Tang, Fangfang Xu, and Dmitri Golberg, Appl. Phys. Lett. 87, 073106 (2005).
http://dx.doi.org/10.1063/1.2011794
14.
14. Qiming Li and George T. Wang, Appl. Phys. Lett. 93, 043119 (2008).
http://dx.doi.org/10.1063/1.2965798
15.
15. Xiaojun Weng, Robert A Burke, and Joan M. Redwing, Nanotechnology 20, 085610 (2009).
http://dx.doi.org/10.1088/0957-4484/20/8/085610
16.
16. G. Seryogin, I. Shalish, W. Moberlychan, and V. Narayanamurti, Nanotechnology 16, 2342 (2005).
http://dx.doi.org/10.1088/0957-4484/16/10/058
17.
17. Feng Shi, Hong Li, and Chengshan Xue, J Mater Sci. Mater Electron. 21, 1249 (2010).
http://dx.doi.org/10.1007/s10854-010-0057-3
18.
18. H. J. Fan, P. Werner, and M. Zacharias, Small 2, 700 (2006).
http://dx.doi.org/10.1002/smll.200500495
19.
19. J. Y. Li, C. G. Lu, B. Maynor, S. M. Huang, and J. Liu, Chem. Mater. 16, 1633 (2004);
http://dx.doi.org/10.1021/cm0344764
19. C. Y. Nam, J. Y. Kim, and J. E. Fischer, Appl. Phys. Lett. 86, 193112 (2005).
20.
20. Fang Qian, Yat Li, Silvija Gradečak, Deli Wang, Carl J. Barrelet, and Charles M. Lieber, Nano Lett. 4, 1975 (2004).
http://dx.doi.org/10.1021/nl0487774
21.
21. C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, Nano Res. 3, 528 (2010).
http://dx.doi.org/10.1007/s12274-010-0013-9
22.
22. F. Glas, J. C. Harmand, and G. Patriarche, Phys. Rev. Lett. 99, 146101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.146101
23.
23. R. Liu, A. Bell, F. A. Ponce, C. Q. Chen, J. W. Yang, and M. A. Kahn, Appl. Phys. Lett. 86, 021908 (2005).
http://dx.doi.org/10.1063/1.1852085
24.
24. P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, and D. Hommel, J. Appl. Phys. 98, 093519 (2005).
http://dx.doi.org/10.1063/1.2128496
25.
25. J. Yoo, Y. J. Hong, S. J. An, G. C. Yi, B. Chon, T. Joo, J. W. Kim, and J. S. Lee, Appl. Phys. Lett. 89, 043124 (2006).
http://dx.doi.org/10.1063/1.2243710
26.
26. C. Chèze, L. Geelhaar, B. Jenichen, and H. Riechert, Appl. Phys. Lett. 97, 153105 (2010).
http://dx.doi.org/10.1063/1.3488010
27.
27. J. Ristíc, E. Calleja, S. Fernández-Garrido, L. Cerutti, A. Trampert, U. Jahn, and K. H. Ploog, J. Cryst. Growth 310, 4035 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.05.057
28.
28. M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, J. Cryst. Growth 189–190, 138 (1998).
http://dx.doi.org/10.1016/S0022-0248(98)00188-2
29.
29. K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, J. Cryst. Growth 310, 3154 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.03.033
30.
30. Raffaella Calarco, Ralph J. Meijers, Ratan K. Debnath, Toma Stoica, Eli Sutter, and Hans Luth, Nano Lett. 7, 2248 (2007).
http://dx.doi.org/10.1021/nl0707398
31.
31. K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, J. Cryst. Growth 287, 522 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.11.079
32.
32. K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, J. Cryst. Growth 300, 94 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.10.209
33.
33. O. Landré, C. Bougerol, H. Renevier, and B. Daudin, Nanotechnology 20, 415602 (2009).
http://dx.doi.org/10.1088/0957-4484/20/41/415602
34.
34. R. Songmuang, O. Landré, and B. Daudin, Appl. Phys. Lett. 91, 251902 (2007).
http://dx.doi.org/10.1063/1.2817941
35.
35. Hiroto Sekiguchi, Takuya Nakazato, Akihiko Kikuchi, and Katsumi Kishino, J. Cryst. Growth 300, 259 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.11.036
36.
36. O. Landré, V. Fellmann, P. Jaffrennou, C. Bougerol, H. Renevier, and B. Daudin, Phys. Status Solidi C 7, 2246 (2010).
http://dx.doi.org/10.1002/pssc.200983613
37.
37. V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, and H. Riechert, Phys. Rev. B 81, 085310 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.085310
38.
38. R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Lüth, Appl. Phys. Lett. 90, 123117 (2007).
http://dx.doi.org/10.1063/1.2715119
39.
39. C. T. Foxon, S. V. Noviko, J. L. Hall, R. P. Campion, D. Cherns, I. Griffiths, and S. Khongphetsak, J. Cryst. Growth 311, 3423 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2009.04.021
40.
40. E. Galopin, L. Largeau, G. Patriarche, L. Travers, F. Glas, and J. C. Harmand, Nanotechnology 22, 245606 (2011).
http://dx.doi.org/10.1088/0957-4484/22/24/245606
41.
41. W. Bergbauer, M. Strassburg, Ch. Kölper, N. Linder, C. Roder, J. Lähnemann, A. Trampert, S. Fündling, S. F. Li, H.-H. Wehmann, and A. Waag, Nanotechnology 21, 305201 (2010).
http://dx.doi.org/10.1088/0957-4484/21/30/305201
42.
42. S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, Cryst. Growth Des. 11, 1573 (2011).
http://dx.doi.org/10.1021/cg101537m
43.
43. M. D. Brubaker, I. Levin, A. V. Davydov, D. M. Rourke, N. A. Sanford, V. M. Bright, and K. A. Bertness, J. Appl. Phys. 110, 053506 (2011).
http://dx.doi.org/10.1063/1.3633522
44.
44. B. Alloing, S. Vézian, O. Tottereau, P. Vennéguès, E. Beraudo, and J. Zuniga-Pérez, Appl. Phys. Lett. 98, 011914 (2011).
http://dx.doi.org/10.1063/1.3525170
45.
45. K. Hestroffer, C. Bougerol, C. Leclere, H. Renevier, J. L. Rouvière, and B. Daudin, 16th European Molecular Beam Epitaxy Workshop, France, March, 2011.
46.
46. F. A. Poncea, D. P. Bour, W. T. Young, M. Saunders, and J. W. Steeds, Appl. Phys. Lett. 69, 337 (1996).
http://dx.doi.org/10.1063/1.118052
47.
47. B. Daudin, J. L. Rouvière, and M. Arlery. Appl. Phys. Lett. 69, 2480 (1996).
http://dx.doi.org/10.1063/1.117504
48.
48. X. Kong, J. Ristić, M. A. Sanchez-Garcia, E. Calleja, and A. Trampert, Nanotechnology 22, 415701 (2011).
http://dx.doi.org/10.1088/0957-4484/22/41/415701
49.
49. J.-L. Rouviere, C. Bougerol, B. Amstatt, E. Bellet-Almaric, and B. Daudin, Appl. Phys. Lett. 92, 201904 (2008).
http://dx.doi.org/10.1063/1.2917449
50.
50. J. D. Wei, S. F. Li, A. Atamuratov, H. -H.-H. Wehmann, and A. Waag, Appl. Phys. Lett. 97, 17 2111, (2010).
http://dx.doi.org/10.1063/1.3511541
51.
51. B. J. Rodriguez, A. Gruverman, A. I. Kingon, and R. J. Nemanich, J. Cryst. Growth 246, 252 (2002).
http://dx.doi.org/10.1016/S0022-0248(02)01749-9
52.
52. M. Sumiya, M. Tanaka, K. Ohtsuka, S. Fuke, T. Ohnishi, I. Ohkubo, M. Yoshimoto, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 674 (1999).
http://dx.doi.org/10.1063/1.124478
53.
53. Q. Zhang, X. Q. Wang, X. W. He, C. M. Yin, F. J. Xu, B. Shen, Y. H. Chen, Z. G. Wang, Y. Ishitani, and A. Yoshikawa, Appl. Phys. Lett. 95, 031902 (2009).
http://dx.doi.org/10.1063/1.3186042
54.
54. For example, H. M. Ng, N. G. Weimann, and A. Chowdhury, J. Appl. Phys. 94, 650 (2003);
54. H. M. Ng, N. G. Weimann, and A. Chowdhury, III-Nitride Semiconductor Materials, edited by Z. C. Feng (Imperial College Press, London, 2006), p. 377.
55.
55. N. A. Fichtenbaum, T. E. Mates, S. Keller, S. P. DenBaars, and U. K. Mishra, J. Cryst. Growth 310, 1124 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2007.12.051
56.
56. L. Macht, J. L. Weyher, P. R. Hageman, M. Zielinski, and P. K. Larsen, J. Phys.: Condens. Matter 14, 13345 (2002).
http://dx.doi.org/10.1088/0953-8984/14/48/387
57.
57. H. M. Ng and A. Y. Cho, J. Vac. Sci. Technol. B 20, 1217 (2002).
http://dx.doi.org/10.1116/1.1463723
58.
58. L. K. Li, M. J. Jurkovic, W. I. Wang, J. M. Van Hove, and P. P. Chow, Appl. Phys. Lett. 76, 1740 (2000).
http://dx.doi.org/10.1063/1.126152
59.
59. M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Namkoong, W. A. Doolittle, and A. S. Brown, J. Appl. Phys. 95, 8408 (2004).
http://dx.doi.org/10.1063/1.1745124
60.
60. J. D. Wei, X. Wang, R. Neumann, S. F. Li, S. Fündling, S. Merzsch, M. -A. M.M. Suleiman, Ü. Sökmen, H.-H. Wehmann, and A. Waag, Phys. Status Solidi C 8, 2157 (2011).
http://dx.doi.org/10.1002/pssc.201000982
61.
61. D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. R. S. Farley, R. P. Campion, and C. T. Foxon, Appl. Phys. Lett. 92, 121902 (2008).
http://dx.doi.org/10.1063/1.2899944
62.
62. L. Lymperakis and J. Neugebauer, Phys. Rev. B 79, 241308(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.241308
63.
63. Eric A. Stach, Peter J. Pauzauskie, Tevye Kuykendall, Joshua Goldberger, Rongrui He, and Peidong Yang, Nano Lett. 3, 867 (2003).
http://dx.doi.org/10.1021/nl034222h
64.
64. H. W. Kim, H. S. Kim, H. G. Na, J. C. Yang, S. S. Kim, and C. M. Lee, Chem. Eng. J. 165, 720 (2010).
http://dx.doi.org/10.1016/j.cej.2010.09.035
65.
65. T. Stoica, R. J. Meijers, T. Richter, K. Jeganathan, R. K. Debnath, M. Marso, H. Lüth, and R. Calarco. presented at the Workshop on GaN Nanowires at the Paul-Drude-Insitute, Berlin, 2009.
66.
66. T. Richter, H. Lüth, R. Meijers, R. Calarco, and M. Marso, Nano Lett. 8, 3056 (2008).
http://dx.doi.org/10.1021/nl8014395
67.
67. F. Furtmayr, M. Vielemeyer, M. Stutzmann, J. Arbiol, S. Estradé, F. Peirò, J. R. Morante, and M. Eickhoff, J. Appl. Phys. 104, 034309 (2008).
http://dx.doi.org/10.1063/1.2953087
68.
68. R. Koester, J. S. Hwang, C. Durand, Le Si Dang, and J. Eymery, Nanotechnology 21, 015602 (2010).
http://dx.doi.org/10.1088/0957-4484/21/1/015602
69.
69. S. Haffouz, B. Beaumont, and P. Gibart, MRS Internet J. Nitride Semicond. Res. 3, 8 (1998).
70.
70. J. Arbiol, S. Estradé, J. D. Prades, A. Cirera, F. Furtmayr, C. Stark, A. Laufer, M. Stutzmann, M. Eickhoff, M. H. Gass, A. L. Bleloch, F. Peiróm, and Joan R. Morante, Nanotechnology 20, 145704 (2009).
http://dx.doi.org/10.1088/0957-4484/20/14/145704
71.
71. S. D. Hersee, X. Y. Sun, and X. Wang, Nano Lett. 6, 1808 (2006).
http://dx.doi.org/10.1021/nl060553t
72.
72. K. Kishino, S. Sekiguchi, and A. Kikuchi, J. Cryst. Growth 311, 2063 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.11.056
73.
73. A. Bengoechea-Encabo, F. Barbagini, S. Fernandez-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, J. Cryst. Growth 325, 89 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.04.035
74.
74. S. F. Li, S. Fündling, X. Wang, J. D. Wei, S. Merzsch, M. M. -AM.-A Suleiman, Ü. Sökmen, E. Peiner, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, Phys. Status Solidi C 8, 2318 (2011).
http://dx.doi.org/10.1002/pssc.201001003
75.
75. T. Eriksson, S. Yamada, P. V. Krishnan, S. Ramasamy, and B. Heidari, Microelectron. Eng. 88 293 (2011).
http://dx.doi.org/10.1016/j.mee.2010.11.024
76.
76. H. Sekiguchi, K. Kishino, and A. Kikuchi, Appl. Phys. Express 1, 124002 (2008).
http://dx.doi.org/10.1143/APEX.1.124002
77.
77. K. A. Bertness, A. W. Sanders, D. M. Rourke, T. E. Harvey, A. Roshko, J. B. Schlager, and N. A. Sanford, Adv. Funct. Mater. 20, 2911 (2010).
http://dx.doi.org/10.1002/adfm.201000381
78.
78. E. Calleja, J. Ristíc, S. Fernández-Garrido, L. Cerutti, M. A. Sánchez-García, J. Grandal, A. Trampert, U. Jahn, G. Sánchez, A. Griol, and B. Sánchez, Phys. Status Solidi B 244, 2816 (2007).
http://dx.doi.org/10.1002/pssb.200675628
79.
79. T. Schumann, T. Gotschke, F. Limbach, T. Stoica, and R. Calarco, Nanotechnology 22, 095603 (2011).
http://dx.doi.org/10.1088/0957-4484/22/9/095603
80.
80. T. Gotschke, T. Schumann, F. Limbach, T. Stoica, and R. Calarco, Appl. Phys. Lett. 98, 103102 (2011).
http://dx.doi.org/10.1063/1.3559618
81.
81. Shunfeng Li, Sönke Fündling, Ünsal Sökmen, Richard Neumann, Stephan Merzsch, Peter Hinze, Thomas Weimann, Uwe Jahn, Achim Trampert, Henning Riechert, Erwin Peiner, Hergo-Heinrich Wehmann, and Andreas Waag, Phys. Status Solidi C 7, 2224 (2010).
http://dx.doi.org/10.1002/pssc.200983457
82.
82. Tsung-Yi Tang, Wen-Yu Shiao, Cheng-Hung Lin, Kun-Ching Shen, Jeng-Jie Huang, Shao-Ying Ting, Tzu-Chi Liu, C. C. Yang, Chiu-Lin Yao, Jui-Hung Yeh, Ta-Cheng Hsu, Wei-Chao Chen, Hsu-Cheng Hsu, and Li-Chyong Chen, J. Appl. Phys. 105, 023501 (2009).
http://dx.doi.org/10.1063/1.3065527
83.
83. W. Bergbauer, M. Strassburg, Ch. Kölper, N. Linder, C. Roder, J. Lähnemann, A. Trampert, S. Fündling, S. F. Li, H.-H. Wehmann, and A. Waag, J. Cryst. Growth 315, 164 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2010.07.067
84.
84. X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, Appl. Phys. Lett. 97, 151909 (2010).
http://dx.doi.org/10.1063/1.3497078
85.
85. X. J. Chen, J. S. Hwang, G. Perillat-Merceroz, S. Landis, B. Martin, D. Le Si Dang, J. Eymery, and C. Durand, J. Cryst. Growth 322, 15 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.03.007
86.
86. S. Fündling, Ü. Sökmen, E. Peiner, T. Weimann, P. Hinze, U. Jahn, A. Trampert, H. Riechert, A. Bakin, H.-H. Wehmann, and A. Waag, Nanotechnology 19, 405301 (2008).
http://dx.doi.org/10.1088/0957-4484/19/40/405301
87.
87. K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, Phys. Status Solidi B 176, 535 (1999).
http://dx.doi.org/10.1002/(SICI)1521-396X(199911)176:1<535::AID-PSSA535>3.0.CO;2-I
88.
88. B. L. VanMil, H. C. Guo, L. J. Holbert, K.-N. Lee, T. H. Myers, T. Liu, and D. Korakakis, J. Vac. Sci. Technol. B 22, 2149 (2004).
http://dx.doi.org/10.1116/1.1768531
89.
89. J. E. Northrup and J. Neugebauer, Appl. Phys. Lett. 85, 3429 (2004).
http://dx.doi.org/10.1063/1.1808227
90.
90. R. M. Feenstra, Y. Dong, C. D. Lee, and J. E. Northrup, J. Vac. Sci. Technol. B 23, 1174 (2005).
http://dx.doi.org/10.1116/1.1881612
91.
91. A. Kelly, G. W. Groves, and P. Kidd, in Crystallography and Crystal Defects (Wiley & Sons Ltd., West Sussex, England, 2000), p. 391.
92.
92. E. V. Yakovlev, R. A. Talalaev, A. S. Segal, A. V. Lobanova, W. V. Lundin, E. E. Zavarin, M. A. Sinitsyn, A. F. Tsatsulnikov, and A. E. Nikolaev, J. Cryst. Growth 310, 4862 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.07.099
93.
93. A. Koukitu, M. Mayumi, and Y. Kumagai, J. Cryst. Growth 246, 230 (2002).
http://dx.doi.org/10.1016/S0022-0248(02)01746-3
94.
94. B. M. Imer, F. Wu, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 88, 061908 (2006).
http://dx.doi.org/10.1063/1.2172159
95.
95. M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J -C. Harmand, Le Si Dang, J. Renard, B. Gayral, L. Nevou, and F. Julien, Nanotechnology 18, 385306 (2007).
http://dx.doi.org/10.1088/0957-4484/18/38/385306
96.
96. L. Cerutti, J. Ristić, S. Fernández-Garrido, E. Calleja, A. Trampert, K. H. Ploog, S. Lazic, and J. M. Calleja, Appl. Phys. Lett. 88, 213114 (2006).
http://dx.doi.org/10.1063/1.2204836
97.
97. Shou-Yi Kuo, C. C. Kei, C. N. Hsiao, and C. K. Chao, J. Vac. Sci. Technol. B 24, 695 (2006).
http://dx.doi.org/10.1116/1.2172252
98.
98. Lawrence H. Robins, K. A. Bertness, J. M. Barker, N. A. Sanford, and J. B. Schlager, J. Appl. Phys. 101, 113505 (2007).
http://dx.doi.org/10.1063/1.2736264
99.
99. V. Consonni, M. Knelangen, U. Jahn, A. Trampert, L. Geelhaar, and H. Riechert, Appl. Phys. Lett. 95, 241910 (2009).
http://dx.doi.org/10.1063/1.3275793
100.
100. A. Armstrong, Q. Li, Y. Lin, A. A. Talin, and G. T. Wang, Appl. Phys. Lett. 96, 163106 (2010).
http://dx.doi.org/10.1063/1.3404182
101.
101. Q. Li and G. T. Wang, Nano Lett. 10, 1554 (2010).
http://dx.doi.org/10.1021/nl903517t
102.
102. P. Lefebvre, S. Fernández-Garrido, J. Grandal, J. Ristić, M.-A. Sánchez-García, and E. Calleja, Appl. Phys. Lett. 98, 083104 (2011).
http://dx.doi.org/10.1063/1.3556643
103.
103. J. Yoon, A. M. Girgis, I. Shalish, L. R. Ram-Mohan, and V. Narayanamurti, Appl. Phys. Lett. 94, 142102 (2009).
http://dx.doi.org/10.1063/1.3115769
104.
104. A. A. Talin, G. T. Wang, E. Lai, and R. J. Anderson, Appl. Phys. Lett. 92, 093105 (2008).
http://dx.doi.org/10.1063/1.2889941
105.
105. J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, J. Appl. Phys. 103, 124309 (2008).
http://dx.doi.org/10.1063/1.2940732
106.
106. K. A. Bertness, N. A. Sanford, and A. V. Davydov, IEEE J. Sel. Top. Quantum Electron. 17, 847 (2011).
http://dx.doi.org/10.1109/JSTQE.2010.2082504
107.
107. L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, IEEE J. Sel. Top. Quantum Electron. 17, 878 (2011).
http://dx.doi.org/10.1109/JSTQE.2010.2098396
108.
108. O. Brandt, C. Pfüller, C. Chèze, L. Geelhaar, and H. Riechert, Phys. Rev. B 81, 045302 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.045302
109.
109. E. Schlenker, A. Bakin, T. Weimann, P. Hinze, D. H. Weber, A. Gölzhäuser, H. H. Wehmann, and A. Waag, Nanotechnology 19, 365707 (2008).
http://dx.doi.org/10.1088/0957-4484/19/36/365707
110.
110. R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. Hart, T. Stoica, and H. Luth, Nano Lett. 5, 981 (2005).
http://dx.doi.org/10.1021/nl0500306
111.
111. A. Alec Talin, Francois Léonard, B. S. Swartzentruber, Xin Wang, and Stephen D. Hersee Phys. Rev. Lett. 101, 076802 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.076802
112.
112. Y. Gu and L. J. Lauhon, Appl. Phys. Lett. 89, 143102 (2006).
http://dx.doi.org/10.1063/1.2358316
113.
113. H. Kim, Y. Cho, H. Lee, S. Kim, S. Ryu, D. Kim, T. Kang, and K. Chung, Nano Lett. 4, 1059 (2004).
http://dx.doi.org/10.1021/nl049615a
114.
114. A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, Jpn. J. Appl. Phys. 43, L1524 (2004).
http://dx.doi.org/10.1143/JJAP.43.L1524
115.
115. C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, Nanotechnology 18, 445201 (2007).
http://dx.doi.org/10.1088/0957-4484/18/44/445201
116.
116. H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, J. Vac. Sci. Technol. B 24, 1909 (2006).
http://dx.doi.org/10.1116/1.2221317
117.
117. Cheng-Yin Wang, Liang-Yi Chen, Cheng-Pin Chen, Yun-Wei Cheng, Min-Yung Ke, Min-Yann Hsieh, Han-Ming Wu, Lung-Han Peng, and JianJang Huang, Opt. Express 16, 10549 (2008).
http://dx.doi.org/10.1364/OE.16.010549
118.
118. Min-Yann Hsieh, Cheng-Yin Wang, Liang-Yi Chen, Tzu-Pu Lin, Min-Yung Ke, Yun-Wei Cheng, Yi-Cheng Yu, Cheng-Pin Chen, Dong-Ming Yeh, Chih-Feng Lu, Chi-Feng Huang, C. C. Yang, and Jian-Jang Huang, IEEE Electron Device Lett. 29, 658 (2008).
http://dx.doi.org/10.1109/LED.2008.2000918
119.
119. V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, and Y. Kawakami, J. Appl. Phys. 107, 114303 (2010).
http://dx.doi.org/10.1063/1.3369434
120.
120. Q. Wang, J. Bai, Y. P. Gong, and T. Wang, J. Phys. D: Appl. Phys. 44, 395102 (2011).
http://dx.doi.org/10.1088/0022-3727/44/39/395102
121.
121. R. Neumann, et al, unpublished work from institute of semiconductor technology, Braunschweig university of technology.
122.
122. A.-L. Bavencove, G. Tourbot, E. Pougeoise, J. Garcia, P. Gilet, F. Levy, B. Andre, G. Feuillet, B. Gayral, B. Daudin, and Le Si Dang, Phys. Status Solidi A 207, 1425 (2010).
http://dx.doi.org/10.1002/pssa.200983603
123.
123. S. D. Hersee, M. Fairchild, A. K. Rishinaramangalam, M. S. Ferdous, L. Zhang, P. M. Varangis, B. S. Swartzentruber, and A. A. Talin, Electron. Lett. 45, 75 (2009).
http://dx.doi.org/10.1049/el:20092391
124.
124. R. Neumann, M. Al-Suleiman, M. Erenburg, J. Ledig, H.-H. Wehmann, and A. Waag, Microelectron. Eng. 88, 3224 (2011).
http://dx.doi.org/10.1016/j.mee.2011.09.002
125.
125. N. Heuck, G. Palm, T. Sauerberg, A. Stranz, A. Waag, and A. Bakin, Mater. Sci. Forum 645–648, 741 (2010).
http://dx.doi.org/10.4028/www.scientific.net/MSF.645-648.741
126.
126. H. Schwarzbauer and R. Kuhnert, IEEE Trans. Ind. Appl. 27, 93 (1991).
http://dx.doi.org/10.1109/28.67536
127.
127. F. Qian, D. Gradecak, Y. Li, C.-Y. Wen, and C. M. Lieber, Nano Lett. 5, 2287 (2005).
http://dx.doi.org/10.1021/nl051689e
128.
128. Tevye Kuykendall, Shaul Aloni, Ilan Jen-La Plante, and Taleb Mokari, Int. J. Photoenergy, vol: 2009, 767951 (2009) doi:10.1155/2009/767951.
http://dx.doi.org/10.1155/2009/767951
129.
129. A.-L. Bavencove, D. Salomon, M. Lafossas, B. Martin, A. Dussaigne, F. Levy, B. Andre, P. Ferret, C. Durand, J. Eymery, Lesi Dand, P. Gilet, Electron. Lett. 47, 765 (2011).
http://dx.doi.org/10.1049/el.2011.1242
130.
130. R. Koester, J.-S. Hwang, D. Salomon, X. J. Chen, C. Bougerol, J.-P. Barnes, D. L. S. Dang, L. Rigutti, A. d. L. Bugallo, G. Jacopin, M Tchernycheva, C. Durand, and J. Eymery, Nano Lett. 11, 4839 (2011).
http://dx.doi.org/10.1021/nl202686n
131.
131. Q. M. Li and G. T. Wang, Appl. Phys. Lett. 97, 181107 (2010).
http://dx.doi.org/10.1063/1.3513345
132.
132. N. A. Fichtenbaum, C. J. Neufeld, C. Schaake, Y. Wu, M. H. Wong, M. Grundmann, S. Keller, S. P. Denbaars, J. S. Speck, and U. K. Mishra, Jpn. J. Appl. Phys. 46, L230 (2007).
http://dx.doi.org/10.1143/JJAP.46.L230
133.
133. F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. J. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, Nature Mater. 7, 701 (2008).
http://dx.doi.org/10.1038/nmat2253
134.
134. Y. J. Hong, C -H. Lee, A. Yoon, M. Y. Kim, H.-K. Seong, H. J. Chung, Ch. Sone, Y. J. Park, and G.-C. Yi, Adv. Mater. 23, 3284 (2011).
http://dx.doi.org/10.1002/adma.201100806
135.
135. Hon-Way Lin, Yu-Jung Lu, Hung-Ying Chen, Hong-Mao Lee, and Shangjr Gwo, Appl. Phys. Lett. 97, 073101 (2010).
http://dx.doi.org/10.1063/1.3478515
136.
136. H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, Nano Lett. 11, 1919 (2011).
http://dx.doi.org/10.1021/nl104536x
137.
137. K. Kishino, A. Kikuchi, S. Sekiguchi, and S. Ishizawa, Proc. SPIE 6473, 64730T (2007).
http://dx.doi.org/10.1117/12.695168
138.
138. T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, Opt. Express 17, 20440 (2009).
http://dx.doi.org/10.1364/OE.17.020440
139.
139. C. Kölper, W. Bergbauer, P. Drechsel, M. Sabathil, M. Straßburg, H.-J. Lugauer, B. Witzigmann, S. Fündling, S. Li, H. -H Wehmann, and A. Waag, Phys. Status Solidi C 8, 2305 (2011).
http://dx.doi.org/10.1002/pssc.201000922
140.
140. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, Appl. Phys. Lett. 84, 3885 (2004).
http://dx.doi.org/10.1063/1.1738934
141.
141. E. Calleja, J. Ristíc, S. Fernández-Garrido, L. Cerutti, M. A. Sánchez-García, J. Grandal, A. Trampert, U. Jahn, G. Sánchez, A. Griol, and B. Sánchez, Phys. Status Solidi B 244, 2816 (2007).
http://dx.doi.org/10.1002/pssb.200675628
142.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/111/7/10.1063/1.3694674
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Core-shell strategy for the fabrication of GaN based nanoLEDs. Sketches of (a) core-shell nanoLED ensemble. (b) Cross-sectional view of a core-shell nanoLED. The active LED area can be increased approximately by a factor of 4 times the aspect ratio in comparison to a planar LED.

Image of FIG. 2.

Click to view

FIG. 2.

(a) and (c) SEM image of the GaN nanorods grown from Au nanoparticles with diameters of (153 ± 35) and (236 ± 78) nm, respectively. (b) and (d) Size distributions of the nanorods with average diameters of ca. 92 and ca. 187 nm, respectively. Reprinted with permission from Y.-B Tang, Xi.-H Bo, C.-S Lee, H. T. Cong, H. M. Cheng, Z.-H. Chen, W.-J. Zhang, I. Bello and S.-T. Lee, Adv. Funct. Mater. 18, 3515 (2008). Copyright © 2008, WILEY-VCH Verlag.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Cross-sectional TEM image along the ⟨1120⟩ zone axis of the catalyst-induced nanorod showing basal SFs within the nanorods. The inset depicts a high-resolution TEM image of the tip of a nanorod revealing the crystalline seed particle of the catalyst. Detail of the near band edge of low temperature (10 K) PL spectra of GaN nanorods grown on a sapphire substrate with Ni seeds, on Si (111), and on Si(001). By courtesy of Dr. L. Geelhaar from C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, Nano Res 3, 528 (2010). Springer, open access.

Image of FIG. 4.

Click to view

FIG. 4.

Cross-sectional SEM images of (a) Ni-induced nanorods on the C-plane sapphire, and catalyst-free-grown nanorods (b) on Si (111) and (c) on Si (001). Reprinted with permission from C. Chèze, L. Geelhaar, B. Jenichen, and H. Riechert, Appl. Phys. Lett. 97, 153105 (2010). Copyright © 2010 American Institute of Physics.

Image of FIG. 5.

Click to view

FIG. 5.

SEM micrographs of two GaN layers grown directly on Si (111) substrates under different flux conditions: (a) N-rich and (b) Ga-rich. Reprinted with permission from M.A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Munozand R. Beresford, J. Cryst. Growth 183, 23 (1998). Copyright © 1998, Elsevier.

Image of FIG. 6.

Click to view

FIG. 6.

FESEM images showing that nanowire density increased when the AlN layer thickness was increased. (a) AlN buffer 60 nm, wire density 5 wires/μm2 and (b) AlN buffer 80–100 nm, 160 wires/μm2. Marker bars indicate 200 nm. Reprinted with permission from K.A. Bertness, A. Roshko, L.M. Mansfield, T.E. Harvey, and N.A. Sanford, J. Cryst. Growth 300, 94 (2007). Copyright © 2007, Elsevier.

Image of FIG. 7.

Click to view

FIG. 7.

HRTEM images collected on dedicated samples grown during 4.5, 6, 9, 10, and 15 min, revealing the following respective GaN island shapes at the onset of the nucleation process: (a) spherical-cap-shaped island with an inset representing a high magnification of the first AlN monolayers at the interface, (b) truncated-pyramid-shaped island, (c) full-pyramid-shaped island, and (d) NW. Reprinted with permission from V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, and H. Riechert, Phys. Rev. B 81, 085310 (2010). Copyright © 2010, American Physical Society.

Image of FIG. 8.

Click to view

FIG. 8.

HRTEM image of a dislocated full-pyramid-shaped island collected on a sample grown with different time (a) 12 min. The misfit dislocation is located within the white circle, which is close to the island edges. The misfit dislocation is located within the white circle, which is close to the island edges. The inset reveals a Fourier-filtered enhancement showing only the (1–100) lattice planes (b) 15 min. The misfit dislocation within the white circle is close to the center of the NW. A SAED pattern of the dislocated NW also reveals that the NW is completely relaxed. The insets in both images reveal a Fourier-filtered enhancement showing only the (1–100) lattice planes. Reproduced with permission from V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, and H. Riechert, Phys. Rev. B 81, 085310 (2010). Copyright © 2010, American Physical Society.

Image of FIG. 9.

Click to view

FIG. 9.

(Color online) Schematic of the physical mechanisms at work during the final shape transition from full pyramids toward the very first NWs. The cross icon represents the misfit dislocation, which moves from the edges toward the center of full pyramids in order to ensure a complete relaxation of the lattice-mismatch-induced strain. Reprinted with permission from V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, and H. Riechert, Phys. Rev. B 81, 085310 (2010). Copyright © 2010, American Physical Society.

Image of FIG. 10.

Click to view

FIG. 10.

(Color online) Diagram showing how nucleation proceeds by VB growth mode. Islands of sizes smaller than the critical one may vanish due to Ga diffusion to other stable nuclei. (b) Diagram showing how nanocolumns grow from stable nuclei. Two contributions are depicted, a direct incorporation from the impinging Ga flux (j(L)), and by Ga diffusion on the substrate (j(D)) to the nanocolumn base and up to its apex. The mean distance between nanocolumns is given by twice the average diffusion length of Ga adatoms. The distance dCR represents the average (critical) distance from where Ga adatoms can reach the nanocolumn base that depends strongly on the growth temperature. Reproduced with permission from J. Ristíc, E. Calleja, S. F-Garrido, L. Cerutti, A. Trampert, U. Jahn, and K. H. Ploog, J. Cryst. Growth 310, 4035 (2008). Copyright © 2008, Elsevier.

Image of FIG. 11.

Click to view

FIG. 11.

(Color online) Schematic of the MBE growth process of nanorods in which the relevant processes, such as adsorption, desorption, diffusion, and nucleation are included. Reprinted with permission from R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Lüth, Appl. Phys. Lett. 90, 123117 (2007). Copyright © 2007, American Institute of Physics.

Image of FIG. 12.

Click to view

FIG. 12.

(a) Shows a typical example of GaN nanorods grown by PA-MBE with rotation at 20 rpm on sapphire substrates using an AlN buffer layer and (b) shows an example of GaN grown under conditions similar to those used in (a), but without rotation. Reprinted with permission from C. T. Foxon, S. V. Noviko, J. L. Hall, R. P. Campion, D. Cherns, I. Griffiths, and S. Khongphetsak, J. Cryst. Growth 311, 3423 (2009). Copyright © 2009, Elsevier.

Image of FIG. 13.

Click to view

FIG. 13.

Influence of the silane flow, GaN deposition (a) without and (b) with silane. Reprinted with permission from R. Koester, J. S. Hwang, C. Durand, Le Si Dang, and J. Eymery, Nanotechnology 21, 015602 (2010). Copyright © 2010, Institute of Physics.

Image of FIG. 14.

Click to view

FIG. 14.

Dependence of the nanorod diameter (left axis) and length (right axis) on the BEPMg. The increasing nanorod diameter is due to an increase of the lateral growth rate. Solid and dashed lines are guides to the eye only. Reprinted with permission from F. Furtmayr, M. Vielemeyer, M. Stutzmann, J. Arbiol, S. Estradé, F. Peirò, J. R. Morante, and M. Eickhoff, J. Appl. Phys. 104, 034309 (2008). Copyright © 2010, American Physical Society.

Image of FIG. 15.

Click to view

FIG. 15.

Growth temperature dependence of the selective area growth of nanocolumns (a) 880, (b) 900, (c) 915, and (d) 925 °C. Reprinted with permission from H. Sekiguchi, K. Kishino, and A. Kikuchi, Appl. Phys. Express 1, 124002 (2008). Copyright © 2008, Japanese Society of Applied Physics.

Image of FIG. 16.

Click to view

FIG. 16.

Vertical (left) and lateral (right) growth rate of GaN nanorods as a function of QN2. Reproduced with permission from K. Kishino, S. Sekiguchi, and A. Kikuchi, J. Cryst. Growth 311, 2063 (2009). Copyright © 2009, Elsevier.

Image of FIG. 17.

Click to view

FIG. 17.

Arrays of selectively nucleated GaN nanorods with a FESEM view angle of 80° from the sample normal; (a) array with openings from 500 to 1000 nm; (b) close-up of nanorods growing in an opening of 500 nm; (c) close-up of GaN in an opening with 1000 nm diameter from a different region on the same wafer. Reprinted with permission from K. A. Bertness, A. W. Sanders, D. M. Rourke, T. E. Harvey, A. Roshko, J. B. Schlager, and N. A. Sanford, Adv. Funct. Mater. 20, 2911 (2010). Copyright © 2010 Wiley-VCH Verlag.

Image of FIG. 18.

Click to view

FIG. 18.

(a) Scanning electron micrograph of a GaN nanorod array consisting of 1 μm GaN nanorods (inset shows plan view and reveals the hexagonal symmetry of the nanorods). (b) A lower magnification SEM image reveals the long-range order of the GaN nanorod arrays. Reprinted with permission from S. D. Hersee, X. Y. Sun, and X. Wang, Nano Lett. 6, 1808 (2006). Copyright © 2006 American Chemical Society.

Image of FIG. 19.

Click to view

FIG. 19.

(a) Growth with pure nitrogen as carrier gas leads to pyramidal-shaped GaN growth, (b) whereas nanorod growth occurs with H2/N2 carrier gas mixture of 1/2, and (c) still improves for H2/N2 carrier gas mixture of 2/1. Reprinted with permission from W. Bergbauer, M. Strassburg, Ch. Kölper, N. Linder, C. Roder, J. Lähnemann, A. Trampert, S. Fündling, S. F. Li, H.-H. Wehmann, and A. Waag, Nanotechnology 21, 305201 (2010). Copyright © 2010, Institute of Physics.

Image of FIG. 20.

Click to view

FIG. 20.

Comparison of GaN sub-μm rods grown on different templates with the same growth parameters. The images were obtained by tilting the samples 30° with respect to the sample normal. (a) Patterned SiO2 covered N-polar bulk GaN template; (b) patterned SiO2/Ga-polar GaN/sapphire template, GaN nanostructures typically show a pyramidal shape. Inset: detailed side view of one structure; (c) patterned SiO2/sapphire templates; (d) patterned SiO2/sapphire templates with smaller opening size of 400 nm, the measured rod shows a diameter of about 460 nm and a height of about 5.6 μm, yielding in aspect ratios up to 12. Reprinted with permission from S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al- Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, Crystal Growth & Design, 11, 1573 (2011). Copyright © 2011, American Chemical Society.

Image of FIG. 21.

Click to view

FIG. 21.

(Color online) Schematic drawings of GaN atomic structure. (a) GaN pyramidal structure with Ga-polar top surface. (b) GaN pyramidal structure with N-polar top surface. (c) N-polar GaN pyramidal structure etched by hydrogen. Dashed lines indicate the more stable (1–100) M-plane. The detailed surface reconstructions are not included in this schematic drawing. Reprinted with permission from S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al- Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, Crystal Growth & Design, 11, 1573 (2011). Copyright © 2011, American Chemical Society.

Image of FIG. 22.

Click to view

FIG. 22.

Dependence of depletion region (shaded), shape of conduction (EC), and valence band edges (EV), and recombination barrier Φ on the nanowire diameter d. The relative energetic locations of EC, EV, and EF are not on scale. The detail on the right shows the surface recombination mechanism of the photoexcited carrier. Reprinted with permission from R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. Hart, T. Stoica, and H. Luth, Nano Lett. 5, 981 (2005). Copyright © 2005, American Chemical Society.

Image of FIG. 23.

Click to view

FIG. 23.

(Color online) Left: Comparison of PL spectra of as-grown planar sample and InGaN/GaN MQW nanopillar with 200, 160, 130, 80, and 50 nm measured at RT. Right: Arrhenius plots of the PL integrated intensities of as-grown MQW film and nanopillar sample (period = 400 nm, and diameter = 250 nm). Reprinted with permission from V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, and Y. Kawakami, J. Appl. Phys. 107, 114303 (2010). Copyright © 2010, American Institute of Physics.

Image of FIG. 24.

Click to view

FIG. 24.

(Color online) Schematic diagram and SEM image of cross-sectional MQW NRA LED structures and electroluminescence (EL) characteristics of InGaN/GaN MQW NRAs LEDs. (A) Schematic diagram (left) and SEM image (right) of cross-sectional InGaN/GaN MQW NRA LEDs. As shown in the right image, a cross section of this sample was coated by platinum metal for SEM measurement. Scale bar is 1 μm. (B, C, D) Room temperature EL characteristics of InGaN/GaN MQW NRA LEDs at various applied dc currents. DC current was applied using a Keithley 228 A voltage/current source. EL peak position at 20 mA was 466 nm (B). A significant blue-shift is observed with increasing current (C). Also, EL peak intensity increased directly with injection current (D). Reprinted with permission from H. Kim, Y. Cho, H. Lee, S. Kim, S. Ryu, D. Kim, T. Kang, and K. Chung, Nano Lett. 4, 1059 (2004). Copyright © 2004, American Chemical Society.

Image of FIG. 25.

Click to view

FIG. 25.

(a) Cross-sectional SEM image of InGaN/GaN MQD nanorod LEDs grown on (111) Si substrate and schematic diagram of a single nanoLED; (b) cross-sectional diagram of InGaN/GaN MQW nanorod LED with semitransparent p-electrodes. Reproduced with permission from A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, Jpn. J. Appl. Phys. 43, L1524 (2004). Copyright © 2004, Japanese Society of Applied Physics.

Image of FIG. 26.

Click to view

FIG. 26.

EL spectrum of 300-nanowire array LED at 30, 40, 50 mA. Peak wavelength red-shifts with increasing current owing to heating. Inset: PL spectrum of single nanowire, pn-diode. Reprinted with permission from S. D. Hersee, M. Fairchild, A. K. Rishinaramangalam, M. S. Ferdous, L. Zhang, P. M. Varangis, B. S. Swartzentruber, and A. A. Talin, Electron. Lett. 45, 75 (2009). Copyright © 2009, IEEE.

Image of FIG. 27.

Click to view

FIG. 27.

(Color online) (a) Schematics of the joining process using silver nano-powder. (b) Nanorods with removed substrate (for details see text). The bottom part of the nanorod is now accessible for analysis or further processing. Reprinted with permission from A. Waag, X. Wang, S. Fündling, J. Ledig, M. Erenburg, R. Neumann, M. Al-Suleiman, S. Merzsch, J. D. Wei, S. F. Li, H. -H. Wehmann, W. Bergbauer, M. Straßburg, A. Trampert, U. Jahn, and H. Riechert, Phys. Status Solidi C 8, 2296 (2011). Copyright © 2011, John Wiley and Sons.

Image of FIG. 28.

Click to view

FIG. 28.

STEM of a core shell nanoLED structure grown by MOCVD, including a triple InGaN-GaN quantum wells. Core: n-type, Shell: p-type. Growth direction: downward. Reprinted with permission from A. Waag, X. Wang, S. Fündling, J. Ledig, M. Erenburg, R. Neumann, M. Al-Suleiman, S. Merzsch, J. D. Wei, S. F. Li, H. -H. Wehmann, W. Bergbauer, M. Straßburg, A. Trampert, U. Jahn, and H. Riechert, Phys. Status Solidi C 8, 2296 (2011). Copyright © 2011, John Wiley and Sons.

Image of FIG. 29.

Click to view

FIG. 29.

(Color online) Cathodoluminescence from isolated nanoLEDs, indicating a core-shell geometry. The nanorods have N-face orientation. The peak wavelength of the quantum well emission is 400 nm. Reprinted with permission from A. Waag, X. Wang, S. Fündling, J. Ledig, M. Erenburg, R. Neumann, M. Al-Suleiman, S. Merzsch, J. D. Wei, S. F. Li, H. -H. Wehmann, W. Bergbauer, M. Straßburg, A. Trampert, U. Jahn, and H. Riechert, Phys. Status Solidi C 8, 2296 (2011). Copyright © 2011, John Wiley and Sons.

Image of FIG. 30.

Click to view

FIG. 30.

(a) TEM image of a N-polar NP sample with three periods of InGaN/GaN MQW layers. (b) Schematic of the regrowth on the N-polar NP, illustrating the regrowth occurring on the sidewalls of the NP, (c) TEM of a Ga-polar NP, co-loaded with the N-polar sample, and (d) schematic of the regrowth on the Ga-polar NP, illustrating the regrowth occurring on the sidewalls, in between, and on top of the NPs. Reproduced with permission from N. A. Fichtenbaum, C. J. Neufeld, C. Schaake, Y. Wu, M. H. Wong, M. Grundmann, S. Keller, S. P. Denbaars, J. S. Speck, and U. K. Mishra, Jpn. J. Appl. Phys. 46, L230 (2007). Copyright © 2007, Japanese Society of Applied Physics.

Image of FIG. 31.

Click to view

FIG. 31.

(Color online) EL emission spectra of the single deep etched nanoLEDs as a function of drive current. Reprinted with permission from A. Waag, X. Wang, S. Fündling, J. Ledig, M. Erenburg, R. Neumann, M. Al-Suleiman, S. Merzsch, J. D. Wei, S. F. Li, H.-H. Wehmann, W. Bergbauer, M. Straßburg, A. Trampert, U. Jahn, and H. Riechert, Phys. Status Solidi C 8, 2296 (2011). Copyright © 2011, John Wiley and Sons.

Image of FIG. 32.

Click to view

FIG. 32.

(Color online) (a) Schematic of nanorod-array LED structure for generation of white light. The active regions contain multiple InGaN nanodisks. (b) Photograph of nanorod array LED emitting white light at 20 mA injection current. Micro-EL images shown below are acquired under a 10 × objective lens at various injection currents. (c) Micro-EL image (20 mA) under a 100 × objective lens revealing full visible-spectrum emissions from the white LED. Scale bar: 10 μm. Reprinted with permission from H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo, Appl. Phys. Lett. 97, 073 101 (2010). Copyright © 2010, American Institute of Physics.

Image of FIG. 33.

Click to view

FIG. 33.

(Color online) (a) Ensemble EL spectra of InGaN/GaN nanorod array white LED at injection currents from 1 to 25 mA. Two major peaks can be clearly identified at 448 nm (blue-band) and 569 nm (yellow-band) at 20 mA. The spectral blueshift with increasing current is negligibly small from 5 to 25 mA. (b) Plot of integrated intensity and two major peak intensities as functions of injection current. Both the blue- and yellow-band intensities increase monotonically with increasing injection current at a constant slope, resulting in drive-current-insensitive white light emission. Reprinted with permission from H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo, Appl. Phys. Lett. 97, 073 101 (2010). Copyright © 2010, American Institute of Physics.

Image of FIG. 34.

Click to view

FIG. 34.

(Color online) Bird’s-eye-view SEM and emission images excited by He–Cd laser from InGaN/GaN nanocolumns. [(a) 143 nm, (b) 159 nm, (c)175 nm, (d) 196 nm, (e) 237 nm, and (f) 270 nm]. Reprinted with permission from H. Sekiguchi, K. Kishino, and A. Kikuchi, Appl. Phys. Lett. 96, 231104 (2010). Copyright © 2010, American Institute of Physics.

Image of FIG. 35.

Click to view

FIG. 35.

(Color online) (a) Specific wavelength (λs) of GaN square-lattice nanorod arrays as a function of array period (L) calculated for the TE mode by the 2D-FDTD method. The parameter is the hexagonal side length of a nanorod (S). (b) High-excitation RT-PL spectra, and (c) dependence of RT-PL emission peak intensity of an InGaN-based nanorod array. The emission light was polarized in the TE mode. Reproduced with permission from T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, Opt. Express 17, 20 440 (2009). Copyright © 2009, Optical Society of America.

Image of FIG. 36.

Click to view

FIG. 36.

(Color online) Left: Nanocavity diagram. Right: TEM and HRTEM images of the nanocavity and the active region, respectively. Reprinted with permission from E. Calleja, J. Ristíc, S. Fernández-Garrido, L. Cerutti, M. A. Sánchez-García, J. Grandal, A. Trampert, U. Jahn, G. Sánchez, A. Griol, and B. Sánchez, Phys. Status Solidi B 244, 2816 (2007). Copyright © 2007, Wiley-VCH Verlag.

Tables

Generic image for table

Click to view

Table I.

Ga adatom diffusion barriers Ediff on the a- and m-plane Ga-N dimer surfaces for migration paths parallel and normal to the c axis and the corresponding axial over lateral diffusion length ratios for 1000, 1150, and 1400 K, characteristic of MBE growth of GaN, of nanorods, and HVPE growth of GaN films, respectively. Reprinted with permission from L. Lymperakis and J. Neugebauer, Phys. Rev. B 79, 241308 (R) (2009). Copyright2010, American Physical Society.

Loading

Article metrics loading...

/content/aip/journal/jap/111/7/10.1063/1.3694674
2012-04-02
2014-04-21

Abstract

In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/111/7/1.3694674.html;jsessionid=5ed4ndlsdifo.x-aip-live-02?itemId=/content/aip/journal/jap/111/7/10.1063/1.3694674&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: GaN based nanorods for solid state lighting
http://aip.metastore.ingenta.com/content/aip/journal/jap/111/7/10.1063/1.3694674
10.1063/1.3694674
SEARCH_EXPAND_ITEM