1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
GaN based nanorods for solid state lighting
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/111/7/10.1063/1.3694674
1.
1. See, for example, http://www1.eere.energy.gov/buildings/ssl/ for a description of development of solid state lighting (SSL) technology and general description of SSL.
2.
2. A. Krost and A. Dadgar, Phys. Status Solidi A 194, 361 (2002).
http://dx.doi.org/10.1002/1521-396X(200212)194:2<361::AID-PSSA361>3.0.CO;2-R
3.
3. Adam R. Boyd, Stefan Degroote, Maarten Leys, Frank Schulte, Olaf Rockenfeller, Markus Luenenbuerger, Marianne Germain, Johannes Kaeppeler, and Michael Heuken, Phys. Status Solidi C 6, S1045 (2009).
http://dx.doi.org/10.1002/pssc.200880925
4.
4. Kwang-Choong Kim, Mathew C. Schmidt, Hitoshi Sato, Feng Wu, Natalie Fellows, Makoto Saito, Kenji Fujito, James S. Speck, Shuji Nakamura, and Steven P. DenBaars, Phys. Status Solidi (RRL) 1, 125 (2007).
http://dx.doi.org/10.1002/pssr.200701061
5.
5. D. Zubia and S. D. Hersee, J. Appl. Phys. 85, 6492 (1999).
http://dx.doi.org/10.1063/1.370153
6.
6. Hiroto Sekiguchi, Katsumi Kishino, and Akihiko Kikuchi, Appl. Phys. Lett. 96, 231104 (2010).
http://dx.doi.org/10.1063/1.3443734
7.
7. Andreas Waag, Xue Wang, Sönke Fündling, Johannes Ledig, Milena Erenburg, Richard Neumann, Mohamed Al Suleiman, S. Merzsch, Jiandong Wei, Shunfeng Li, Hergo H. Wehmann, Werner Bergbauer, Martin Straßburg, Achim Trampert, Uwe Jahn, and Henning Riechert, Phys. Status Solidi C 8, 2296 (2011).
http://dx.doi.org/10.1002/pssc.201000989
8.
8. T. Onuma, H. Amaike, M. Kubota, K. Okamoto, H. Ohta, J. Ichihara, H. Takasu, and S. F. Chichibu, Appl. Phys. Lett. 91, 181903 (2007).
http://dx.doi.org/10.1063/1.2802042
9.
9. M. A. Sanchez-Garcia, E. Calleja, E. Monroy, F. J. Sanchez, F. Calle, E. Munoz, and R. Beresford, J. Cryst. Growth 183, 23 (1998).
http://dx.doi.org/10.1016/S0022-0248(97)00386-2
10.
10. M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, Jpn. J. Appl. Phys. 36, L459 (1997).
http://dx.doi.org/10.1143/JJAP.36.L459
11.
11. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
http://dx.doi.org/10.1063/1.1753975
12.
12. Yong-Bing Tang, Xiang-Hui Bo, Chun-Sing Lee, Hong-Tao Cong, Hui-Ming Cheng, Zhen-Hua Chen, Wen-Jun Zhang, Igor Bello, and Shuit-Tong Lee, Adv. Funct. Mater. 18, 3515 (2008).
http://dx.doi.org/10.1002/adfm.200800320
13.
13. Baodan Liu, Yoshio Bando, Chengchun Tang, Fangfang Xu, and Dmitri Golberg, Appl. Phys. Lett. 87, 073106 (2005).
http://dx.doi.org/10.1063/1.2011794
14.
14. Qiming Li and George T. Wang, Appl. Phys. Lett. 93, 043119 (2008).
http://dx.doi.org/10.1063/1.2965798
15.
15. Xiaojun Weng, Robert A Burke, and Joan M. Redwing, Nanotechnology 20, 085610 (2009).
http://dx.doi.org/10.1088/0957-4484/20/8/085610
16.
16. G. Seryogin, I. Shalish, W. Moberlychan, and V. Narayanamurti, Nanotechnology 16, 2342 (2005).
http://dx.doi.org/10.1088/0957-4484/16/10/058
17.
17. Feng Shi, Hong Li, and Chengshan Xue, J Mater Sci. Mater Electron. 21, 1249 (2010).
http://dx.doi.org/10.1007/s10854-010-0057-3
18.
18. H. J. Fan, P. Werner, and M. Zacharias, Small 2, 700 (2006).
http://dx.doi.org/10.1002/smll.200500495
19.
19. J. Y. Li, C. G. Lu, B. Maynor, S. M. Huang, and J. Liu, Chem. Mater. 16, 1633 (2004);
http://dx.doi.org/10.1021/cm0344764
19. C. Y. Nam, J. Y. Kim, and J. E. Fischer, Appl. Phys. Lett. 86, 193112 (2005).
20.
20. Fang Qian, Yat Li, Silvija Gradečak, Deli Wang, Carl J. Barrelet, and Charles M. Lieber, Nano Lett. 4, 1975 (2004).
http://dx.doi.org/10.1021/nl0487774
21.
21. C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, and T. Karakostas, Nano Res. 3, 528 (2010).
http://dx.doi.org/10.1007/s12274-010-0013-9
22.
22. F. Glas, J. C. Harmand, and G. Patriarche, Phys. Rev. Lett. 99, 146101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.146101
23.
23. R. Liu, A. Bell, F. A. Ponce, C. Q. Chen, J. W. Yang, and M. A. Kahn, Appl. Phys. Lett. 86, 021908 (2005).
http://dx.doi.org/10.1063/1.1852085
24.
24. P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, and D. Hommel, J. Appl. Phys. 98, 093519 (2005).
http://dx.doi.org/10.1063/1.2128496
25.
25. J. Yoo, Y. J. Hong, S. J. An, G. C. Yi, B. Chon, T. Joo, J. W. Kim, and J. S. Lee, Appl. Phys. Lett. 89, 043124 (2006).
http://dx.doi.org/10.1063/1.2243710
26.
26. C. Chèze, L. Geelhaar, B. Jenichen, and H. Riechert, Appl. Phys. Lett. 97, 153105 (2010).
http://dx.doi.org/10.1063/1.3488010
27.
27. J. Ristíc, E. Calleja, S. Fernández-Garrido, L. Cerutti, A. Trampert, U. Jahn, and K. H. Ploog, J. Cryst. Growth 310, 4035 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.05.057
28.
28. M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, J. Cryst. Growth 189–190, 138 (1998).
http://dx.doi.org/10.1016/S0022-0248(98)00188-2
29.
29. K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, J. Cryst. Growth 310, 3154 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.03.033
30.
30. Raffaella Calarco, Ralph J. Meijers, Ratan K. Debnath, Toma Stoica, Eli Sutter, and Hans Luth, Nano Lett. 7, 2248 (2007).
http://dx.doi.org/10.1021/nl0707398
31.
31. K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, J. Cryst. Growth 287, 522 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.11.079
32.
32. K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, J. Cryst. Growth 300, 94 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.10.209
33.
33. O. Landré, C. Bougerol, H. Renevier, and B. Daudin, Nanotechnology 20, 415602 (2009).
http://dx.doi.org/10.1088/0957-4484/20/41/415602
34.
34. R. Songmuang, O. Landré, and B. Daudin, Appl. Phys. Lett. 91, 251902 (2007).
http://dx.doi.org/10.1063/1.2817941
35.
35. Hiroto Sekiguchi, Takuya Nakazato, Akihiko Kikuchi, and Katsumi Kishino, J. Cryst. Growth 300, 259 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.11.036
36.
36. O. Landré, V. Fellmann, P. Jaffrennou, C. Bougerol, H. Renevier, and B. Daudin, Phys. Status Solidi C 7, 2246 (2010).
http://dx.doi.org/10.1002/pssc.200983613
37.
37. V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, and H. Riechert, Phys. Rev. B 81, 085310 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.085310
38.
38. R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, and H. Lüth, Appl. Phys. Lett. 90, 123117 (2007).
http://dx.doi.org/10.1063/1.2715119
39.
39. C. T. Foxon, S. V. Noviko, J. L. Hall, R. P. Campion, D. Cherns, I. Griffiths, and S. Khongphetsak, J. Cryst. Growth 311, 3423 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2009.04.021
40.
40. E. Galopin, L. Largeau, G. Patriarche, L. Travers, F. Glas, and J. C. Harmand, Nanotechnology 22, 245606 (2011).
http://dx.doi.org/10.1088/0957-4484/22/24/245606
41.
41. W. Bergbauer, M. Strassburg, Ch. Kölper, N. Linder, C. Roder, J. Lähnemann, A. Trampert, S. Fündling, S. F. Li, H.-H. Wehmann, and A. Waag, Nanotechnology 21, 305201 (2010).
http://dx.doi.org/10.1088/0957-4484/21/30/305201
42.
42. S. F. Li, S. Fuendling, X. Wang, S. Merzsch, M. A. M. Al-Suleiman, J. D. Wei, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, Cryst. Growth Des. 11, 1573 (2011).
http://dx.doi.org/10.1021/cg101537m
43.
43. M. D. Brubaker, I. Levin, A. V. Davydov, D. M. Rourke, N. A. Sanford, V. M. Bright, and K. A. Bertness, J. Appl. Phys. 110, 053506 (2011).
http://dx.doi.org/10.1063/1.3633522
44.
44. B. Alloing, S. Vézian, O. Tottereau, P. Vennéguès, E. Beraudo, and J. Zuniga-Pérez, Appl. Phys. Lett. 98, 011914 (2011).
http://dx.doi.org/10.1063/1.3525170
45.
45. K. Hestroffer, C. Bougerol, C. Leclere, H. Renevier, J. L. Rouvière, and B. Daudin, 16th European Molecular Beam Epitaxy Workshop, France, March, 2011.
46.
46. F. A. Poncea, D. P. Bour, W. T. Young, M. Saunders, and J. W. Steeds, Appl. Phys. Lett. 69, 337 (1996).
http://dx.doi.org/10.1063/1.118052
47.
47. B. Daudin, J. L. Rouvière, and M. Arlery. Appl. Phys. Lett. 69, 2480 (1996).
http://dx.doi.org/10.1063/1.117504
48.
48. X. Kong, J. Ristić, M. A. Sanchez-Garcia, E. Calleja, and A. Trampert, Nanotechnology 22, 415701 (2011).
http://dx.doi.org/10.1088/0957-4484/22/41/415701
49.
49. J.-L. Rouviere, C. Bougerol, B. Amstatt, E. Bellet-Almaric, and B. Daudin, Appl. Phys. Lett. 92, 201904 (2008).
http://dx.doi.org/10.1063/1.2917449
50.
50. J. D. Wei, S. F. Li, A. Atamuratov, H. -H.-H. Wehmann, and A. Waag, Appl. Phys. Lett. 97, 17 2111, (2010).
http://dx.doi.org/10.1063/1.3511541
51.
51. B. J. Rodriguez, A. Gruverman, A. I. Kingon, and R. J. Nemanich, J. Cryst. Growth 246, 252 (2002).
http://dx.doi.org/10.1016/S0022-0248(02)01749-9
52.
52. M. Sumiya, M. Tanaka, K. Ohtsuka, S. Fuke, T. Ohnishi, I. Ohkubo, M. Yoshimoto, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 75, 674 (1999).
http://dx.doi.org/10.1063/1.124478
53.
53. Q. Zhang, X. Q. Wang, X. W. He, C. M. Yin, F. J. Xu, B. Shen, Y. H. Chen, Z. G. Wang, Y. Ishitani, and A. Yoshikawa, Appl. Phys. Lett. 95, 031902 (2009).
http://dx.doi.org/10.1063/1.3186042
54.
54. For example, H. M. Ng, N. G. Weimann, and A. Chowdhury, J. Appl. Phys. 94, 650 (2003);
54. H. M. Ng, N. G. Weimann, and A. Chowdhury, III-Nitride Semiconductor Materials, edited by Z. C. Feng (Imperial College Press, London, 2006), p. 377.
55.
55. N. A. Fichtenbaum, T. E. Mates, S. Keller, S. P. DenBaars, and U. K. Mishra, J. Cryst. Growth 310, 1124 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2007.12.051
56.
56. L. Macht, J. L. Weyher, P. R. Hageman, M. Zielinski, and P. K. Larsen, J. Phys.: Condens. Matter 14, 13345 (2002).
http://dx.doi.org/10.1088/0953-8984/14/48/387
57.
57. H. M. Ng and A. Y. Cho, J. Vac. Sci. Technol. B 20, 1217 (2002).
http://dx.doi.org/10.1116/1.1463723
58.
58. L. K. Li, M. J. Jurkovic, W. I. Wang, J. M. Van Hove, and P. P. Chow, Appl. Phys. Lett. 76, 1740 (2000).
http://dx.doi.org/10.1063/1.126152
59.
59. M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Namkoong, W. A. Doolittle, and A. S. Brown, J. Appl. Phys. 95, 8408 (2004).
http://dx.doi.org/10.1063/1.1745124
60.
60. J. D. Wei, X. Wang, R. Neumann, S. F. Li, S. Fündling, S. Merzsch, M. -A. M.M. Suleiman, Ü. Sökmen, H.-H. Wehmann, and A. Waag, Phys. Status Solidi C 8, 2157 (2011).
http://dx.doi.org/10.1002/pssc.201000982
61.
61. D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S. V. Novikov, N. R. S. Farley, R. P. Campion, and C. T. Foxon, Appl. Phys. Lett. 92, 121902 (2008).
http://dx.doi.org/10.1063/1.2899944
62.
62. L. Lymperakis and J. Neugebauer, Phys. Rev. B 79, 241308(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.241308
63.
63. Eric A. Stach, Peter J. Pauzauskie, Tevye Kuykendall, Joshua Goldberger, Rongrui He, and Peidong Yang, Nano Lett. 3, 867 (2003).
http://dx.doi.org/10.1021/nl034222h
64.
64. H. W. Kim, H. S. Kim, H. G. Na, J. C. Yang, S. S. Kim, and C. M. Lee, Chem. Eng. J. 165, 720 (2010).
http://dx.doi.org/10.1016/j.cej.2010.09.035
65.
65. T. Stoica, R. J. Meijers, T. Richter, K. Jeganathan, R. K. Debnath, M. Marso, H. Lüth, and R. Calarco. presented at the Workshop on GaN Nanowires at the Paul-Drude-Insitute, Berlin, 2009.
66.
66. T. Richter, H. Lüth, R. Meijers, R. Calarco, and M. Marso, Nano Lett. 8, 3056 (2008).
http://dx.doi.org/10.1021/nl8014395
67.
67. F. Furtmayr, M. Vielemeyer, M. Stutzmann, J. Arbiol, S. Estradé, F. Peirò, J. R. Morante, and M. Eickhoff, J. Appl. Phys. 104, 034309 (2008).
http://dx.doi.org/10.1063/1.2953087
68.
68. R. Koester, J. S. Hwang, C. Durand, Le Si Dang, and J. Eymery, Nanotechnology 21, 015602 (2010).
http://dx.doi.org/10.1088/0957-4484/21/1/015602
69.
69. S. Haffouz, B. Beaumont, and P. Gibart, MRS Internet J. Nitride Semicond. Res. 3, 8 (1998).
70.
70. J. Arbiol, S. Estradé, J. D. Prades, A. Cirera, F. Furtmayr, C. Stark, A. Laufer, M. Stutzmann, M. Eickhoff, M. H. Gass, A. L. Bleloch, F. Peiróm, and Joan R. Morante, Nanotechnology 20, 145704 (2009).
http://dx.doi.org/10.1088/0957-4484/20/14/145704
71.
71. S. D. Hersee, X. Y. Sun, and X. Wang, Nano Lett. 6, 1808 (2006).
http://dx.doi.org/10.1021/nl060553t
72.
72. K. Kishino, S. Sekiguchi, and A. Kikuchi, J. Cryst. Growth 311, 2063 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.11.056
73.
73. A. Bengoechea-Encabo, F. Barbagini, S. Fernandez-Garrido, J. Grandal, J. Ristic, M. A. Sanchez-Garcia, E. Calleja, U. Jahn, E. Luna, and A. Trampert, J. Cryst. Growth 325, 89 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.04.035
74.
74. S. F. Li, S. Fündling, X. Wang, J. D. Wei, S. Merzsch, M. M. -AM.-A Suleiman, Ü. Sökmen, E. Peiner, H.-H. Wehmann, A. Waag, W. Bergbauer, and M. Strassburg, Phys. Status Solidi C 8, 2318 (2011).
http://dx.doi.org/10.1002/pssc.201001003
75.
75. T. Eriksson, S. Yamada, P. V. Krishnan, S. Ramasamy, and B. Heidari, Microelectron. Eng. 88 293 (2011).
http://dx.doi.org/10.1016/j.mee.2010.11.024
76.
76. H. Sekiguchi, K. Kishino, and A. Kikuchi, Appl. Phys. Express 1, 124002 (2008).
http://dx.doi.org/10.1143/APEX.1.124002
77.
77. K. A. Bertness, A. W. Sanders, D. M. Rourke, T. E. Harvey, A. Roshko, J. B. Schlager, and N. A. Sanford, Adv. Funct. Mater. 20, 2911 (2010).
http://dx.doi.org/10.1002/adfm.201000381
78.
78. E. Calleja, J. Ristíc, S. Fernández-Garrido, L. Cerutti, M. A. Sánchez-García, J. Grandal, A. Trampert, U. Jahn, G. Sánchez, A. Griol, and B. Sánchez, Phys. Status Solidi B 244, 2816 (2007).
http://dx.doi.org/10.1002/pssb.200675628
79.
79. T. Schumann, T. Gotschke, F. Limbach, T. Stoica, and R. Calarco, Nanotechnology 22, 095603 (2011).
http://dx.doi.org/10.1088/0957-4484/22/9/095603
80.
80. T. Gotschke, T. Schumann, F. Limbach, T. Stoica, and R. Calarco, Appl. Phys. Lett. 98, 103102 (2011).
http://dx.doi.org/10.1063/1.3559618
81.
81. Shunfeng Li, Sönke Fündling, Ünsal Sökmen, Richard Neumann, Stephan Merzsch, Peter Hinze, Thomas Weimann, Uwe Jahn, Achim Trampert, Henning Riechert, Erwin Peiner, Hergo-Heinrich Wehmann, and Andreas Waag, Phys. Status Solidi C 7, 2224 (2010).
http://dx.doi.org/10.1002/pssc.200983457
82.
82. Tsung-Yi Tang, Wen-Yu Shiao, Cheng-Hung Lin, Kun-Ching Shen, Jeng-Jie Huang, Shao-Ying Ting, Tzu-Chi Liu, C. C. Yang, Chiu-Lin Yao, Jui-Hung Yeh, Ta-Cheng Hsu, Wei-Chao Chen, Hsu-Cheng Hsu, and Li-Chyong Chen, J. Appl. Phys. 105, 023501 (2009).
http://dx.doi.org/10.1063/1.3065527
83.
83. W. Bergbauer, M. Strassburg, Ch. Kölper, N. Linder, C. Roder, J. Lähnemann, A. Trampert, S. Fündling, S. F. Li, H.-H. Wehmann, and A. Waag, J. Cryst. Growth 315, 164 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2010.07.067
84.
84. X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, Appl. Phys. Lett. 97, 151909 (2010).
http://dx.doi.org/10.1063/1.3497078
85.
85. X. J. Chen, J. S. Hwang, G. Perillat-Merceroz, S. Landis, B. Martin, D. Le Si Dang, J. Eymery, and C. Durand, J. Cryst. Growth 322, 15 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.03.007
86.
86. S. Fündling, Ü. Sökmen, E. Peiner, T. Weimann, P. Hinze, U. Jahn, A. Trampert, H. Riechert, A. Bakin, H.-H. Wehmann, and A. Waag, Nanotechnology 19, 405301 (2008).
http://dx.doi.org/10.1088/0957-4484/19/40/405301
87.
87. K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, Phys. Status Solidi B 176, 535 (1999).
http://dx.doi.org/10.1002/(SICI)1521-396X(199911)176:1<535::AID-PSSA535>3.0.CO;2-I
88.
88. B. L. VanMil, H. C. Guo, L. J. Holbert, K.-N. Lee, T. H. Myers, T. Liu, and D. Korakakis, J. Vac. Sci. Technol. B 22, 2149 (2004).
http://dx.doi.org/10.1116/1.1768531
89.
89. J. E. Northrup and J. Neugebauer, Appl. Phys. Lett. 85, 3429 (2004).
http://dx.doi.org/10.1063/1.1808227
90.
90. R. M. Feenstra, Y. Dong, C. D. Lee, and J. E. Northrup, J. Vac. Sci. Technol. B 23, 1174 (2005).
http://dx.doi.org/10.1116/1.1881612
91.
91. A. Kelly, G. W. Groves, and P. Kidd, in Crystallography and Crystal Defects (Wiley & Sons Ltd., West Sussex, England, 2000), p. 391.
92.
92. E. V. Yakovlev, R. A. Talalaev, A. S. Segal, A. V. Lobanova, W. V. Lundin, E. E. Zavarin, M. A. Sinitsyn, A. F. Tsatsulnikov, and A. E. Nikolaev, J. Cryst. Growth 310, 4862 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.07.099
93.
93. A. Koukitu, M. Mayumi, and Y. Kumagai, J. Cryst. Growth 246, 230 (2002).
http://dx.doi.org/10.1016/S0022-0248(02)01746-3
94.
94. B. M. Imer, F. Wu, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 88, 061908 (2006).
http://dx.doi.org/10.1063/1.2172159
95.
95. M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J -C. Harmand, Le Si Dang, J. Renard, B. Gayral, L. Nevou, and F. Julien, Nanotechnology 18, 385306 (2007).
http://dx.doi.org/10.1088/0957-4484/18/38/385306
96.
96. L. Cerutti, J. Ristić, S. Fernández-Garrido, E. Calleja, A. Trampert, K. H. Ploog, S. Lazic, and J. M. Calleja, Appl. Phys. Lett. 88, 213114 (2006).
http://dx.doi.org/10.1063/1.2204836
97.
97. Shou-Yi Kuo, C. C. Kei, C. N. Hsiao, and C. K. Chao, J. Vac. Sci. Technol. B 24, 695 (2006).
http://dx.doi.org/10.1116/1.2172252
98.
98. Lawrence H. Robins, K. A. Bertness, J. M. Barker, N. A. Sanford, and J. B. Schlager, J. Appl. Phys. 101, 113505 (2007).
http://dx.doi.org/10.1063/1.2736264
99.
99. V. Consonni, M. Knelangen, U. Jahn, A. Trampert, L. Geelhaar, and H. Riechert, Appl. Phys. Lett. 95, 241910 (2009).
http://dx.doi.org/10.1063/1.3275793
100.
100. A. Armstrong, Q. Li, Y. Lin, A. A. Talin, and G. T. Wang, Appl. Phys. Lett. 96, 163106 (2010).
http://dx.doi.org/10.1063/1.3404182
101.
101. Q. Li and G. T. Wang, Nano Lett. 10, 1554 (2010).
http://dx.doi.org/10.1021/nl903517t
102.
102. P. Lefebvre, S. Fernández-Garrido, J. Grandal, J. Ristić, M.-A. Sánchez-García, and E. Calleja, Appl. Phys. Lett. 98, 083104 (2011).
http://dx.doi.org/10.1063/1.3556643
103.
103. J. Yoon, A. M. Girgis, I. Shalish, L. R. Ram-Mohan, and V. Narayanamurti, Appl. Phys. Lett. 94, 142102 (2009).
http://dx.doi.org/10.1063/1.3115769
104.
104. A. A. Talin, G. T. Wang, E. Lai, and R. J. Anderson, Appl. Phys. Lett. 92, 093105 (2008).
http://dx.doi.org/10.1063/1.2889941
105.
105. J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, J. Appl. Phys. 103, 124309 (2008).
http://dx.doi.org/10.1063/1.2940732
106.
106. K. A. Bertness, N. A. Sanford, and A. V. Davydov, IEEE J. Sel. Top. Quantum Electron. 17, 847 (2011).
http://dx.doi.org/10.1109/JSTQE.2010.2082504
107.
107. L. Geelhaar, C. Chèze, B. Jenichen, O. Brandt, C. Pfüller, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G. P. Dimitrakopulos, T. Karakostas, L. Lari, P. R. Chalker, M. H. Gass, and H. Riechert, IEEE J. Sel. Top. Quantum Electron. 17, 878 (2011).
http://dx.doi.org/10.1109/JSTQE.2010.2098396
108.
108. O. Brandt, C. Pfüller, C. Chèze, L. Geelhaar, and H. Riechert, Phys. Rev. B 81, 045302 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.045302
109.
109. E. Schlenker, A. Bakin, T. Weimann, P. Hinze, D. H. Weber, A. Gölzhäuser, H. H. Wehmann, and A. Waag, Nanotechnology 19, 365707 (2008).
http://dx.doi.org/10.1088/0957-4484/19/36/365707
110.
110. R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. Hart, T. Stoica, and H. Luth, Nano Lett. 5, 981 (2005).
http://dx.doi.org/10.1021/nl0500306
111.
111. A. Alec Talin, Francois Léonard, B. S. Swartzentruber, Xin Wang, and Stephen D. Hersee Phys. Rev. Lett. 101, 076802 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.076802
112.
112. Y. Gu and L. J. Lauhon, Appl. Phys. Lett. 89, 143102 (2006).
http://dx.doi.org/10.1063/1.2358316
113.
113. H. Kim, Y. Cho, H. Lee, S. Kim, S. Ryu, D. Kim, T. Kang, and K. Chung, Nano Lett. 4, 1059 (2004).
http://dx.doi.org/10.1021/nl049615a
114.
114. A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, Jpn. J. Appl. Phys. 43, L1524 (2004).
http://dx.doi.org/10.1143/JJAP.43.L1524
115.
115. C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, Nanotechnology 18, 445201 (2007).
http://dx.doi.org/10.1088/0957-4484/18/44/445201
116.
116. H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, J. Vac. Sci. Technol. B 24, 1909 (2006).
http://dx.doi.org/10.1116/1.2221317
117.
117. Cheng-Yin Wang, Liang-Yi Chen, Cheng-Pin Chen, Yun-Wei Cheng, Min-Yung Ke, Min-Yann Hsieh, Han-Ming Wu, Lung-Han Peng, and JianJang Huang, Opt. Express 16, 10549 (2008).
http://dx.doi.org/10.1364/OE.16.010549
118.
118. Min-Yann Hsieh, Cheng-Yin Wang, Liang-Yi Chen, Tzu-Pu Lin, Min-Yung Ke, Yun-Wei Cheng, Yi-Cheng Yu, Cheng-Pin Chen, Dong-Ming Yeh, Chih-Feng Lu, Chi-Feng Huang, C. C. Yang, and Jian-Jang Huang, IEEE Electron Device Lett. 29, 658 (2008).
http://dx.doi.org/10.1109/LED.2008.2000918
119.
119. V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, and Y. Kawakami, J. Appl. Phys. 107, 114303 (2010).
http://dx.doi.org/10.1063/1.3369434
120.
120. Q. Wang, J. Bai, Y. P. Gong, and T. Wang, J. Phys. D: Appl. Phys. 44, 395102 (2011).
http://dx.doi.org/10.1088/0022-3727/44/39/395102
121.
121. R. Neumann, et al, unpublished work from institute of semiconductor technology, Braunschweig university of technology.
122.
122. A.-L. Bavencove, G. Tourbot, E. Pougeoise, J. Garcia, P. Gilet, F. Levy, B. Andre, G. Feuillet, B. Gayral, B. Daudin, and Le Si Dang, Phys. Status Solidi A 207, 1425 (2010).
http://dx.doi.org/10.1002/pssa.200983603
123.
123. S. D. Hersee, M. Fairchild, A. K. Rishinaramangalam, M. S. Ferdous, L. Zhang, P. M. Varangis, B. S. Swartzentruber, and A. A. Talin, Electron. Lett. 45, 75 (2009).
http://dx.doi.org/10.1049/el:20092391
124.
124. R. Neumann, M. Al-Suleiman, M. Erenburg, J. Ledig, H.-H. Wehmann, and A. Waag, Microelectron. Eng. 88, 3224 (2011).
http://dx.doi.org/10.1016/j.mee.2011.09.002
125.
125. N. Heuck, G. Palm, T. Sauerberg, A. Stranz, A. Waag, and A. Bakin, Mater. Sci. Forum 645–648, 741 (2010).
http://dx.doi.org/10.4028/www.scientific.net/MSF.645-648.741
126.
126. H. Schwarzbauer and R. Kuhnert, IEEE Trans. Ind. Appl. 27, 93 (1991).
http://dx.doi.org/10.1109/28.67536
127.
127. F. Qian, D. Gradecak, Y. Li, C.-Y. Wen, and C. M. Lieber, Nano Lett. 5, 2287 (2005).
http://dx.doi.org/10.1021/nl051689e
128.
128. Tevye Kuykendall, Shaul Aloni, Ilan Jen-La Plante, and Taleb Mokari, Int. J. Photoenergy, vol: 2009, 767951 (2009) doi:10.1155/2009/767951.
http://dx.doi.org/10.1155/2009/767951
129.
129. A.-L. Bavencove, D. Salomon, M. Lafossas, B. Martin, A. Dussaigne, F. Levy, B. Andre, P. Ferret, C. Durand, J. Eymery, Lesi Dand, P. Gilet, Electron. Lett. 47, 765 (2011).
http://dx.doi.org/10.1049/el.2011.1242
130.
130. R. Koester, J.-S. Hwang, D. Salomon, X. J. Chen, C. Bougerol, J.-P. Barnes, D. L. S. Dang, L. Rigutti, A. d. L. Bugallo, G. Jacopin, M Tchernycheva, C. Durand, and J. Eymery, Nano Lett. 11, 4839 (2011).
http://dx.doi.org/10.1021/nl202686n
131.
131. Q. M. Li and G. T. Wang, Appl. Phys. Lett. 97, 181107 (2010).
http://dx.doi.org/10.1063/1.3513345
132.
132. N. A. Fichtenbaum, C. J. Neufeld, C. Schaake, Y. Wu, M. H. Wong, M. Grundmann, S. Keller, S. P. Denbaars, J. S. Speck, and U. K. Mishra, Jpn. J. Appl. Phys. 46, L230 (2007).
http://dx.doi.org/10.1143/JJAP.46.L230
133.
133. F. Qian, Y. Li, S. Gradecak, H. G. Park, Y. J. Dong, Y. Ding, Z. L. Wang, and C. M. Lieber, Nature Mater. 7, 701 (2008).
http://dx.doi.org/10.1038/nmat2253
134.
134. Y. J. Hong, C -H. Lee, A. Yoon, M. Y. Kim, H.-K. Seong, H. J. Chung, Ch. Sone, Y. J. Park, and G.-C. Yi, Adv. Mater. 23, 3284 (2011).
http://dx.doi.org/10.1002/adma.201100806
135.
135. Hon-Way Lin, Yu-Jung Lu, Hung-Ying Chen, Hong-Mao Lee, and Shangjr Gwo, Appl. Phys. Lett. 97, 073101 (2010).
http://dx.doi.org/10.1063/1.3478515
136.
136. H. P. T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. A. Botton, and Z. Mi, Nano Lett. 11, 1919 (2011).
http://dx.doi.org/10.1021/nl104536x
137.
137. K. Kishino, A. Kikuchi, S. Sekiguchi, and S. Ishizawa, Proc. SPIE 6473, 64730T (2007).
http://dx.doi.org/10.1117/12.695168
138.
138. T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, Opt. Express 17, 20440 (2009).
http://dx.doi.org/10.1364/OE.17.020440
139.
139. C. Kölper, W. Bergbauer, P. Drechsel, M. Sabathil, M. Straßburg, H.-J. Lugauer, B. Witzigmann, S. Fündling, S. Li, H. -H Wehmann, and A. Waag, Phys. Status Solidi C 8, 2305 (2011).
http://dx.doi.org/10.1002/pssc.201000922
140.
140. J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, Appl. Phys. Lett. 84, 3885 (2004).
http://dx.doi.org/10.1063/1.1738934
141.
141. E. Calleja, J. Ristíc, S. Fernández-Garrido, L. Cerutti, M. A. Sánchez-García, J. Grandal, A. Trampert, U. Jahn, G. Sánchez, A. Griol, and B. Sánchez, Phys. Status Solidi B 244, 2816 (2007).
http://dx.doi.org/10.1002/pssb.200675628
142.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/111/7/10.1063/1.3694674
Loading
/content/aip/journal/jap/111/7/10.1063/1.3694674
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/111/7/10.1063/1.3694674
2012-04-02
2014-09-01

Abstract

In recent years, GaN nanorods are emerging as a very promising novel route toward devices for nano-optoelectronics and nano-photonics. In particular, core-shell light emitting devices are thought to be a breakthrough development in solid state lighting, nanorod based LEDs have many potential advantages as compared to their 2 D thin film counterparts. In this paper, we review the recent developments of GaN nanorod growth, characterization, and related device applications based on GaN nanorods. The initial work on GaN nanorod growth focused on catalyst-assisted and catalyst-free statistical growth. The growth condition and growth mechanisms were extensively investigated and discussed. Doping of GaN nanorods, especially p-doping, was found to significantly influence the morphology of GaN nanorods. The large surface of 3 D GaN nanorods induces new optical and electrical properties, which normally can be neglected in layered structures. Recently, more controlled selective area growth of GaN nanorods was realized using patterned substrates both by metalorganic chemical vapor deposition (MOCVD) and by molecular beam epitaxy (MBE). Advanced structures, for example, photonic crystals and DBRs are meanwhile integrated in GaN nanorod structures. Based on the work of growth and characterization of GaN nanorods, GaN nanoLEDs were reported by several groups with different growth and processing methods. Core/shell nanoLED structures were also demonstrated, which could be potentially useful for future high efficient LED structures. In this paper, we will discuss recent developments in GaN nanorod technology, focusing on the potential advantages, but also discussing problems and open questions, which may impose obstacles during the future development of a GaN nanorod based LED technology.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/111/7/1.3694674.html;jsessionid=6om5eolmib5lq.x-aip-live-02?itemId=/content/aip/journal/jap/111/7/10.1063/1.3694674&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: GaN based nanorods for solid state lighting
http://aip.metastore.ingenta.com/content/aip/journal/jap/111/7/10.1063/1.3694674
10.1063/1.3694674
SEARCH_EXPAND_ITEM