1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Plasma potential mapping of high power impulse magnetron sputtering discharges
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/111/8/10.1063/1.3700242
1.
1. A. Ehiasarian, in Plasma Surface Engineering Research and its Practical Applications, edited by R. Wei (Research Signpost, Kerala, India, 2008), p. 35.
2.
2. K. Sarakinos, J. Alami, and S. Konstantinidis, Surf. Coat. Technol. 204, 1661 (2010).
http://dx.doi.org/10.1016/j.surfcoat.2009.11.013
3.
3. J. T. Gudmundsson, Vacuum 84, 1360 (2010).
http://dx.doi.org/10.1016/j.vacuum.2009.12.022
4.
4. U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, Thin Solid Films 513, 1 (2006).
http://dx.doi.org/10.1016/j.tsf.2006.03.033
5.
5. A. Hecimovic and A. P. Ehiasarian, J. Appl. Phys. 108, 063301 (2010).
http://dx.doi.org/10.1063/1.3486018
6.
6. A. Anders, Thin Solid Films 518, 4087 (2010).
http://dx.doi.org/10.1016/j.tsf.2009.10.145
7.
7. J. Bohlmark, J. T. Gudmundsson, J. Alami, M. Lattemann, and U. Helmersson, IEEE Trans. Plasma Sci. 33, 346 (2005).
http://dx.doi.org/10.1109/TPS.2005.845022
8.
8. J. Alami, J. T. Gudmundsson, J. Bohlmark, J. Birch, and U. Helmersson, Plasma Sources Sci. Technol. 14, 525 (2005).
http://dx.doi.org/10.1088/0963-0252/14/3/015
9.
9. A. P. Ehiasarian, R. New, W.-D. Münz, L. Hultman, U. Helmersson, and V. Kouznetsov, Vacuum 65, 147 (2002).
http://dx.doi.org/10.1016/S0042-207X(01)00475-4
10.
10. J. Bohlmark, M. Lattemann, J. T. Gudmundsson, A. P. Ehiasarian, Y. Aranda Gonzalvo, N. Brenning, and U. Helmersson, Thin Solid Films 515, 1522 (2006).
http://dx.doi.org/10.1016/j.tsf.2006.04.051
11.
11. A. Anders, J. Andersson, and A. Ehiasarian, J. Appl. Phys. 102, 113303 (2007).
http://dx.doi.org/10.1063/1.2817812
12.
12. A. Anders, Surf. Coat. Technol. 205, S1 (2011).
http://dx.doi.org/10.1016/j.surfcoat.2011.03.081
13.
13. A. Anders, J. Čapek, M. Hála, and L. Martinu, J. Phys D: Appl. Phys. 45, 012003 (2012).
http://dx.doi.org/10.1088/0022-3727/45/1/012003
14.
14. S. M. Rossnagel and H. R. Kaufman, J. Vac. Sci. Technol. A 5, 88 (1987).
http://dx.doi.org/10.1116/1.574822
15.
15. J. Bohlmark, U. Helmersson, M. VanZeeland, I. Axnäs, J. Alami, and N. Brenning, Plasma Sources Sci. Technol. 13, 654 (2004).
http://dx.doi.org/10.1088/0963-0252/13/4/014
16.
16. D. Lundin, U. Helmersson, S. Kirkpatrick, S. Rohde, and N. Brenning, Plasma Sources Sci. Technol. 17, 025007 (2008).
http://dx.doi.org/10.1088/0963-0252/17/2/025007
17.
17. A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer, Berlin, 1984).
18.
18. A. P. Ehiasarian, A. Vetushka, A. Hecimovic, and S. Konstantinidis, J. Appl. Phys. 104, (2008).
http://dx.doi.org/10.1063/1.3000446
19.
19. L. de Poucques, J. C. Imbert, C. Boisse-Laporte, J. Bretagne, M. Ganciu, L. Teule-Gay, and M. Touzeau, Plasma Sources Sci. Technol. 15, 661 (2006).
http://dx.doi.org/10.1088/0963-0252/15/4/010
20.
20. V. Stranak, M. Cada, Z. Hubicka, M. Tichy, and R. Hippler, J. Appl. Phys. 108, 043305 (2010).
http://dx.doi.org/10.1063/1.3467001
21.
21. J. T. Gudmundsson, P. Sigurjonsson, P. Larsson, D. Lundin, and U. Helmersson, J. Appl. Phys. 105, 123302 (2009).
http://dx.doi.org/10.1063/1.3151953
22.
22. A. D. Pajdarová, J. Vlček, P. Kudláček, and J. Lukáš, Plasma Sources Sci. Technol. 18, 025008 (2009).
http://dx.doi.org/10.1088/0963-0252/18/2/025008
23.
23. K. Burcalova et al., J. Phys. D: Appl. Phys. 41, 115306 (2008).
http://dx.doi.org/10.1088/0022-3727/41/11/115306
24.
24. A. Hecimovic, K. Burcalova, and A. P. Ehiasarian, J. Phys. D: Appl. Phys. 41, 095203 (2008).
http://dx.doi.org/10.1088/0022-3727/41/9/095203
25.
25. J. Andersson, A. P. Ehiasarian, and A. Anders, Appl. Phys. Lett. 93, 071504 (2008).
http://dx.doi.org/10.1063/1.2973179
26.
26. P. Y. Jouan, L. Le Brizoual, M. Ganciu, C. Cardinaud, S. Tricot, and M. Djouadi, IEEE Trans. Plasma Sci. 38, 3089 (2010).
http://dx.doi.org/10.1109/TPS.2010.2073688
27.
27. J. Lazar, J. Vlcek, and J. Rezek, J. Appl. Phys. 108, 063307 (2010).
http://dx.doi.org/10.1063/1.3481428
28.
28. A. P. Ehiasarian, J. Andersson, and A. Anders, J. Phys D: Appl. Phys. 43, 275204 (2010).
http://dx.doi.org/10.1088/0022-3727/43/27/275204
29.
29. B. Liebig, N. S. J. Braithwaite, P. J. Kelly, and J. W. Bradley, Thin Solid Films 519, 1699 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.06.055
30.
30. M. Hála, O. Zabeida, B. Baloukas, J. E. Klemberg-Sapieha, and L. Martinu, IEEE Trans. Plasma Sci. 38, 3035 (2010).
http://dx.doi.org/10.1109/TPS.2010.2064183
31.
31. A. Anders, P. Ni, and A. Rauch, J. Appl. Phys. 111, 053304 (2012).
http://dx.doi.org/10.1063/1.3692978
32.
32. A. Vetushka, S. K. Karkari, and J. W. Bradley, J. Vac. Sci. Technol. A 22, 2459 (2004).
http://dx.doi.org/10.1116/1.1810167
33.
33. A. Mishra, G. Clarke, P. Kelly, and J. W. Bradley, Plasma Processes Polym. 6, S610 (2009).
http://dx.doi.org/10.1002/ppap.200931601
34.
34. A. Mishra, P. J. Kelly, and J. W. Bradley, Plasma Sources Sci. Technol. 19, 045014 (2010).
http://dx.doi.org/10.1088/0963-0252/19/4/045014
35.
35. A. Hecimovic and A. P. Ehiasarian, J. Phys. D: Appl. Phys. 42, (2009).
http://dx.doi.org/10.1088/0022-3727/42/13/135209
36.
36. P. Poolcharuansin and J. W. Bradley, Plasma Sources Sci. Technol. 19, 025010 (2010).
http://dx.doi.org/10.1088/0963-0252/19/2/025010
37.
37. P. M. Chung, L. Talbot, and K. J. Touryan, Electric Probes in Stationary and Flowing Plasmas: Theory and Applications (Springer, Berlin, 1975).
38.
38. I. H. Hutchinson, Principles of Plasma Diagnostics (Cambridge University Press, Cambridge, UK, 2002).
39.
39. J. W. Bradley, S. Thompson, and Y. A. Gonzalvo, Plasma Sources Sci. Technol. 10, 490 (2001).
http://dx.doi.org/10.1088/0963-0252/10/3/314
40.
40. J. W. Bradley, S. K. Karkari, and A. Vetushka, Plasma Sources Sci. Technol. 13, 189 (2004).
http://dx.doi.org/10.1088/0963-0252/13/2/001
41.
41. N. Hershkowitz, B. Nelson, J. Pew, and D. Gates, Rev. Sci. Instrum. 54, 29 (1983).
http://dx.doi.org/10.1063/1.1137210
42.
42. S. Iizuka et al., J. Phys. E: J. Sci. Instrum. 14, 1291 (1981).
http://dx.doi.org/10.1088/0022-3735/14/11/017
43.
43. R. F. Kemp and J. J. M. Sellen, Rev. Sci. Instrum. 37, 455 (1966).
http://dx.doi.org/10.1063/1.1720213
44.
44. N. Mahdizadeh et al., Plasma Phys. Controlled Fusion 47, 569 (2005).
http://dx.doi.org/10.1088/0741-3335/47/4/001
45.
45. I. Picková, A. Marek, M. Tichý, P. Kudrna, and R. Apetrei, Czech. J. Phys. 56, B1002 (2006).
http://dx.doi.org/10.1007/s10582-006-0317-x
46.
46. J. R. Smith, N. Hershkowitz, and P. Coakley, Rev. Sci. Instrum. 50, 210 (1979).
http://dx.doi.org/10.1063/1.1135789
47.
47. E. Y. Wang, T. Intrator, and N. Hershkowitz, Rev. Sci. Instrum. 56, 519 (1985).
http://dx.doi.org/10.1063/1.1138278
48.
48. J. P. Sheehan, Y. Raitses, N. Hershkowitz, I. Kaganovich, and N. J. Fisch, Phys. Plasmas 18, 073501 (2011).
http://dx.doi.org/10.1063/1.3601354
49.
49. A. Anders, Cathodic Arcs: From Fractal Spots to Energetic Condensation (Springer, New York, 2008).
50.
50. Smithells Metals Reference Book, edited by W. F. Gale and T. C. Totemeier (Elsevier, Amsterdam, 2004).
51.
51. P. Balan, R. Schrittwieser, C. Ionita, J. A. Cabral, H. F. C. Figueiredo, H. Fernandes, C. Varandas, J. Adamek, M. Hron, J. Stockel, E. Martines, M. Tichy, and G. Van Oost, Rev. Sci. Instrum. 74, 1583 (2003).
http://dx.doi.org/10.1063/1.1527258
52.
52. G. D. Hobbs and J. A. Wesson, Plasma Phys. 9, 85 (1967).
http://dx.doi.org/10.1088/0032-1028/9/1/410
53.
53. N. Hershkowitz, IEEE Trans. Plasma Sci. 22, 11 (1994).
http://dx.doi.org/10.1109/27.281545
54.
54. J. W. Bradley, R. A. Khamis, M. I. Sanduk, J. A. Elliott, and M. G. Rusbridge, J. Phys D: Appl. Phys. 25, 1443 (1992).
http://dx.doi.org/10.1088/0022-3727/25/10/009
55.
55. E. Mravlag and P. Krumm, Rev. Sci. Instrum. 61, 2164 (1990).
http://dx.doi.org/10.1063/1.1141384
56.
56. J. Sanders, A. Rauch, R. Mendelsberg, and A. Anders, Rev. Sci. Instrum. 82, 093505 (2011).
http://dx.doi.org/10.1063/1.3640408
57.
57. I. V. Svadkovski, D. A. Golosov, and S. M. Zavatskiy, Vacuum 68, 283 (2002).
http://dx.doi.org/10.1016/S0042-207X(02)00385-8
58.
58. G. Y. Yushkov and A. Anders, IEEE Trans. Plasma Sci. 38, 3028 (2010).
http://dx.doi.org/10.1109/TPS.2010.2063041
59.
59. D. Horwat and A. Anders, Appl. Phys. Lett. 97, 221501 (2010).
http://dx.doi.org/10.1063/1.3521264
60.
60. A. Rauch, J. M. Sanders, R. Mendelsberg, and A. Anders, in 2nd Int. Conf. on HIPIMS (Braunschweig, Germany, 2011).
61.
61. M. W. Thompson, Philos. Mag. 18, 377 (1968).
http://dx.doi.org/10.1080/14786436808227358
http://aip.metastore.ingenta.com/content/aip/journal/jap/111/8/10.1063/1.3700242
Loading
/content/aip/journal/jap/111/8/10.1063/1.3700242
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/111/8/10.1063/1.3700242
2012-04-23
2014-07-25

Abstract

Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for a pulse length of 100 s at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were recorded with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target’s racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic presheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local and static fields lets us derive the electrons’ drift velocity, which is about 105 m/s and shows structures in space and time.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/111/8/1.3700242.html;jsessionid=3lxb7w1eicqeh.x-aip-live-02?itemId=/content/aip/journal/jap/111/8/10.1063/1.3700242&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Plasma potential mapping of high power impulse magnetron sputtering discharges
http://aip.metastore.ingenta.com/content/aip/journal/jap/111/8/10.1063/1.3700242
10.1063/1.3700242
SEARCH_EXPAND_ITEM