1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Nanophotonic light trapping in solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/112/10/10.1063/1.4747795
1.
1.International Energy Agency (02.05.2011). World energy outlook 2010 Executive summary. Available at: http://www.worldenergyoutlook.org/docs/weo2010/WEO2010_ES_English.pdf.
2.
2.Solarbuzz. Solar Market Research and Analysis. Available at: http://www.solarbuzz.com/going-solar/understanding/technologies.
3.
3. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics 18(5 ), 346 (2010).
http://dx.doi.org/10.1002/pip.1021
4.
4. P. Campbell and M. A. Green, J. Appl. Phys. 62(1 ), 243 (1987).
http://dx.doi.org/10.1063/1.339189
5.
5. P. Campbell, S. R. Wenham, and M. A. Green, Sol. Energy Mater. Sol. Cells 31(2 ), 133 (1993).
http://dx.doi.org/10.1016/0927-0248(93)90046-6
6.
6. P. Campbell, Sol. Energy Mater. 21(2–3 ), 165 (1990).
http://dx.doi.org/10.1016/0165-1633(90)90051-2
7.
7. P. Campbell, J. Opt. Soc. Am. B 10(12 ), 2410 (1993).
http://dx.doi.org/10.1364/JOSAB.10.002410
8.
8. P. Campbell and M. A. Green, J. Appl. Phys. 62(1 ), 243 (1987).
http://dx.doi.org/10.1063/1.339189
9.
9. K. J. Weber and A. W. Blakers, Prog. Photovoltaics 13(8 ), 691 (2005).
http://dx.doi.org/10.1002/pip.632
10.
10. E. Yablonovitch and G. D. Cody, IEEE Trans. Electron Devices 29(2 ), 300 (1982).
http://dx.doi.org/10.1109/T-ED.1982.20700
11.
11. A. Göetzberger, in 15th Photovoltaic Specialists Conference, Kissimmee, FL, 1981.
12.
12. E. Yablonovitch, J. Opt. Soc. Am. 72(7 ), 899 (1982).
http://dx.doi.org/10.1364/JOSA.72.000899
13.
13. R. Brendel, in Thin-Film Crystalline Silicon Solar Cells (Wiley-VCH, 2005).
14.
14. M. A. Green, Prog. Photovoltaics 10, 235 (2002).
http://dx.doi.org/10.1002/pip.404
15.
15. M. A. Green, Prog. Photovoltaics 7(4 ), 327 (1999).
http://dx.doi.org/10.1002/(SICI)1099-159X(199907/08)7:4<327::AID-PIP250>3.0.CO;2-B
16.
16. O. D. Miller and E. Yablonovitch, arxiv preprint arXiv:1106.1603, 2011.
17.
17. G. Smestad and H. Ries, Sol. Eng. Mater. Sol. Cells 25, 51 (1992).
http://dx.doi.org/10.1016/0927-0248(92)90016-I
18.
18. R. T. Ross, J. Phys. Chem. 46, 4590 (1967).
http://dx.doi.org/10.1063/1.1840606
19.
19. A. Polman and H. A. Atwater, Nature Mater. 11(3 ), 174 (2012).
http://dx.doi.org/10.1038/nmat3263
20.
20. T. Trupke, J. Zhao, A. Wang, and M. A. Green, paper presented at the Conference on Optoelectronic and Microelectronic Materials and Devices, Sydney, 2002.
21.
21. M. Werner, U. Schubert, C. Hagendorf, J. Schneider, M. Keevers, and R. Egan, in Proceedings of the 24th European Photovoltaic Solar Energy Conference (Hamburg, 2009), p. 2482.
22.
22. X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt: Res. Appl. (to be published).
http://dx.doi.org/10.1002/pip.2159
23.
23. X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, Opt. Express 19(S4 ), A888 (2011).
http://dx.doi.org/10.1364/OE.19.00A888
24.
24. P. Basore, in IEEE Photovoltaic Specialists Conference (1993), p. 147.
25.
25. Y. Yang, S. Pillai, H. Mehrvarz, H. Kampwerth, A. Ho-Baillie, and M. A. Green, “ Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons,” Sol. Eng. Mater. Sol. Cells 101, 217226 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.02.009
26.
26. T. Trupke, E. Daub, and P. Wuerfel, Sol. Eng. Mater. Sol. Cells 53, 103 (1998).
http://dx.doi.org/10.1016/S0927-0248(98)00016-6
27.
27. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, Opt. Express 15(25 ), 16986 (2007).
http://dx.doi.org/10.1364/OE.15.016986
28.
28. A. Chutinan, N. P. Kherani, and S. Zukotynski, Opt. Express 17(11 ), 8871 (2009).
http://dx.doi.org/10.1364/OE.17.008871
29.
29. O. El Daif, E. Drouard, G. Gomard, A. Kaminski, A. Fave, M. Lemiti, S. Ahn, S. Kim, P. Roca i Cabarrocas, H. Jeon, and C. Seassal, Opt. Express 18(S3 ), A293.
http://dx.doi.org/10.1364/OE.18.00A293
30.
30. Erik Garnett and Peidong Yang, Nano Letters 10 (3 ), 1082 (2010).
http://dx.doi.org/10.1021/nl100161z
31.
31. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nature Mater. 9(3 ), 239 (2010).
http://dx.doi.org/10.1038/nmat2727
32.
32. Z. Fan, H. Razavi, J.-W. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, Nature Mater. 8(8 ), 648 (2009).
http://dx.doi.org/10.1038/nmat2493
33.
33. K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, MRS Bull. 36, 461 (2011).
http://dx.doi.org/10.1557/mrs.2011.132
34.
34. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, Opt. Express 17(25 ), 23058 (2009).
http://dx.doi.org/10.1364/OE.17.023058
35.
35. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, Prog. Photovoltaics 15(5 ), 415 (2007).
http://dx.doi.org/10.1002/pip.754
36.
36. Y. Kanamori, M. Sasaki, and K. Hane, Opt. Lett. 24(20 ), 1422 (1999).
http://dx.doi.org/10.1364/OL.24.001422
37.
37. T. K. Gaylord, W. E. Baird, and M. G. Moharam, Appl. Opt. 25(24 ), 4562 (1986).
http://dx.doi.org/10.1364/AO.25.004562
38.
38. S. Chih-Hung, M. Wei-Lun, C. L. Nicholas, J. Peng, and J. Bin, Appl. Phys. Lett. 91(23 ), 231105 (2007).
http://dx.doi.org/10.1063/1.2821833
39.
39. S. Chih-Hung, J. Peng, and J. Bin, Appl. Phys. Lett. 92(6 ), 061112 (2008).
http://dx.doi.org/10.1063/1.2870080
40.
40. C. Eisele, C. E. Nebel, and M. Stutzmann, J. Appl. Phys. 89(12 ), 7722 (2001).
http://dx.doi.org/10.1063/1.1370996
41.
41. L. Francisco and T. Ignacio, J. Appl. Phys. 100(12 ), 124504 (2006).
http://dx.doi.org/10.1063/1.2402348
42.
42. Y. M. Song, J. S. Yu, and Y. T. Lee, Opt. Lett. 35(3 ), 276 (2010).
http://dx.doi.org/10.1364/OL.35.000276
43.
43. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Thin Solid Films 351(1–2 ), 73 (1999).
http://dx.doi.org/10.1016/S0040-6090(98)01780-5
44.
44. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, Sol. Energy 68(4 ), 357 (2000).
http://dx.doi.org/10.1016/S0038-092X(00)00022-0
45.
45. K. Forberich, G. Dennler, M. C. Scharber, K. Hingerl, T. Fromherz, and C. J. Brabec, Thin Solid Films 516(20 ), 7167 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.12.088
46.
46. M. Auslender, D. Levy, and S. Hava, Appl. Opt. 37(2 ), 369 (1998).
http://dx.doi.org/10.1364/AO.37.000369
47.
47. L. Escoubas, J.-J. Simon, P. Torchio, D. Duché, S. Vedraine, W. Vervisch, J. Le Rouzo, F. Flory, G. Rivière, G. Yeabiyo, and H. Derbal, Appl. Opt. 50(9 ), C329 (2011).
http://dx.doi.org/10.1364/AO.50.00C329
48.
48. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Nano Lett. 9(1 ), 279 (2008).
http://dx.doi.org/10.1021/nl802886y
49.
49. A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, and V. Wittwer, Sol. Energy Mater. Sol. Cells 54(1–4 ), 333 (1998).
http://dx.doi.org/10.1016/S0927-0248(98)00084-1
50.
50. R. Bräuer and O. Bryngdahl, Appl. Opt. 33(34 ), 7875 (1994).
http://dx.doi.org/10.1364/AO.33.007875
51.
51. S. Mishra and S. Satpathy, Phys. Rev. B 68(4 ), 045121 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.045121
52.
52. P. Sheng, R. S. Stepleman, and P. N. Sanda, Phys. Rev. B 26(6 ), 2907 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.2907
53.
53. G. Lifante, Phys. Scr. 2005(T118 ), 72.
54.
54. K. R. Catchpole and M. A. Green, J. Appl. Phys. 101(6 ), 063105 (2007).
http://dx.doi.org/10.1063/1.2710765
55.
55. D. H. Raguin and G. Michael Morris, Appl. Opt. 32(14 ), 2582 (1993).
http://dx.doi.org/10.1364/AO.32.002582
56.
56. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, Appl. Opt. 26(6 ), 1142 (1987).
http://dx.doi.org/10.1364/AO.26.001142
57.
57. E. N. Glytsis and T. K. Gaylord, Appl. Opt. 31(22 ), 4459 (1992).
http://dx.doi.org/10.1364/AO.31.004459
58.
58. E. B. Grann, M. G. Varga, and D. A. Pommet, J. Opt. Soc. Am. A 12(2 ), 333 (1995).
http://dx.doi.org/10.1364/JOSAA.12.000333
59.
59. S. A. Boden and D. M. Bagnall, Prog. Photovoltaics 18(3 ), 195 (2010).
http://dx.doi.org/10.1002/pip.951
60.
60. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, Appl. Phys. Lett. 78(2 ), 142 (2001).
http://dx.doi.org/10.1063/1.1339845
61.
61. P. Sheng, A. N. Bloch, and R. S. Stepleman, Appl. Phys. Lett. 43(6 ), 579 (1983).
http://dx.doi.org/10.1063/1.94432
62.
62. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, Appl. Phys. Lett. 89(11 ), 111111 (2006).
http://dx.doi.org/10.1063/1.2349845
63.
63. D. Zhou and R. Biswas, J. Appl. Phys. 103(9 ), 093102 (2008).
http://dx.doi.org/10.1063/1.2908212
64.
64. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, Opt. Express 16(19 ), 15238 (2008).
http://dx.doi.org/10.1364/OE.16.015238
65.
65. F. Ning-Ning, J. Michel, Z. Lirong, L. Jifeng, H. Ching-Yin, L. C. Kimerling, and D. Xiaoman, IEEE Trans. Electron Devices 54(8 ), 1926 (2007).
http://dx.doi.org/10.1109/TED.2007.900976
66.
66. L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, Appl. Phys. Lett. 93(22 ), 221105 (2008).
http://dx.doi.org/10.1063/1.3039787
67.
67. L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, Sol. Energy 84(1 ), 110 (2010).
http://dx.doi.org/10.1016/j.solener.2009.10.014
68.
68. T. Kong Chong, J. Wilson, S. Mokkapati, and K. R. Catchpole, J. Opt. A, Pure Appl. Opt. 14, 024012 (2012).
http://dx.doi.org/10.1088/2040-8978/14/2/024012
69.
69. K. Xingze Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, Nano Lett. 12(3 ), 1616 (2012).
http://dx.doi.org/10.1021/nl204550q
70.
70. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, Appl. Phys. Lett. 95(5 ), 053115 (2009).
http://dx.doi.org/10.1063/1.3200948
71.
71. H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, Appl. Phys. Lett. 93(14 ), 143501 (2008).
http://dx.doi.org/10.1063/1.2993351
72.
72. U. W. Paetzold, E. Moulin, D. Michaelis, W. Bottler, C. Wachter, V. Hagemann, M. Meier, R. Carius, and U. Rau, Appl. Phys. Lett. 99(18 ), 181105 (2011).
http://dx.doi.org/10.1063/1.3657513
73.
73. V. E. Ferry, M. A. Verschuuren, M. Claire van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, Nano Lett. 11(10 ), 4239 (2011).
http://dx.doi.org/10.1021/nl202226r
74.
74. J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, Appl. Phys. Lett. 99(13 ), 131114 (2011).
http://dx.doi.org/10.1063/1.3641469
75.
75. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, ACS Nano 6(3 ), 2790 (2012).
http://dx.doi.org/10.1021/nn300287j
76.
76. O. Isabella, F. Moll, J. Krč, and M. Zeman, Phys. Status Solidi A 207(3 ), 642 (2010).
http://dx.doi.org/10.1002/pssa.200982828
77.
77. C. Haase and H. Stiebig, Prog. Photovoltaics 14(7 ), 629 (2006).
http://dx.doi.org/10.1002/pip.694
78.
78. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72(10 ), 1385 (1982).
http://dx.doi.org/10.1364/JOSA.72.001385
79.
79. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12(5 ), 1068 (1995).
http://dx.doi.org/10.1364/JOSAA.12.001068
80.
80. Z. Yu, A. Raman, and S. Fan, Opt. Express 18(S3 ), A366 (2010).
http://dx.doi.org/10.1364/OE.18.00A366
81.
81. T. Clausnitzer, T. Kämpfe, E. B. Kley, A. Tünnermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, Opt. Express 13(26 ), 10448 (2005).
http://dx.doi.org/10.1364/OPEX.13.010448
82.
82. A. V. Tishchenko, Opt. Quantum Electron. 37, 309 (2005).
http://dx.doi.org/10.1007/s11082-005-1188-2
83.
83. K. R. Catchpole, J. Appl. Phys. 102(1 ), 013102 (2007).
http://dx.doi.org/10.1063/1.2737628
84.
84. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University press, 2001).
85.
85. J. W. Goodman, Introduction to Fourier optics, 3rd ed. (McGraw-Hill, 1996).
86.
86. S. Sinzinger and M. Testorf, Appl. Opt. 34(26 ), 5970 (1995).
http://dx.doi.org/10.1364/AO.34.005970
87.
87. S. Mokkapati et al., J. Phys. D: Appl. Phys. 44(5 ), 055103 (2011).
http://dx.doi.org/10.1088/0022-3727/44/5/055103
88.
88. Z. Yu, A. Raman, and S. Fan, Proc. Natl. Acad. Sci. U. S. Am. 107, 17491 (2010).
http://dx.doi.org/10.1073/pnas.1008296107
89.
89. S. Basu Mallick, M. Agrawal, and P. Peumans, Opt. Express 18(6 ), 5691 (2010).
http://dx.doi.org/10.1364/OE.18.005691
90.
90. I. Tobias, A. Luque, and A. Marti, J. Appl. Phys. 104(3 ), 034502 (2008).
http://dx.doi.org/10.1063/1.2960586
91.
91. P. Campbell and M. A. Green, IEEE Trans. Electron Devices ED-33(2 ), 234 (1986).
http://dx.doi.org/10.1109/T-ED.1986.22472
92.
92. A. Luque, Sol. Energy Mater. 23, 152 (1991).
http://dx.doi.org/10.1016/0165-1633(91)90116-3
93.
93. R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983).
94.
94. I. Tobias, J. Appl. Phys. 104, 034502 (2008).
http://dx.doi.org/10.1063/1.2960586
95.
95. Z. Yu and S. Fan, Angular Constraint on Light-Trapping Absorption Enhancement in Solar Cells (AIP, 2011), p. 011106.
96.
96. Z. Yu, A. Raman, and S. Fan, Proc. Natl. Acad. Sci. U.S.A. 107(41 ), 17491 (2010).
http://dx.doi.org/10.1073/pnas.1008296107
97.
97. X. Sheng, S. G. Johnson, J. Michel, and L. C. Kimmerling, Opt. Express 19, A841 (2011).
http://dx.doi.org/10.1364/OE.19.00A841
98.
98. F. Llopis and I. Tobías, Sol. Energy Mater. Sol. Cells 87(1–4 ), 481 (2005).
http://dx.doi.org/10.1016/j.solmat.2004.06.015
99.
99. C. Heine and R. H. Morf, Appl. Opt. 34(14 ), 2476 (1995).
http://dx.doi.org/10.1364/AO.34.002476
100.
100. S. Eon Han and G. Chen, Nano Lett. 10(11 ), 4692 (2011).
http://dx.doi.org/10.1021/nl1029804
101.
101. H. R. Stuart and D. G. Hall, Absorption Enhancement in Silicon-on-Insulator Waveguides Using Metal Island Films (AIP, 1996), p. 2327.
102.
102. D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86(6 ), 063106 (2005).
http://dx.doi.org/10.1063/1.1855423
103.
103. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, Appl. Phys. Lett. 89(9 ), 093103 (2006).
http://dx.doi.org/10.1063/1.2336629
104.
104. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, Appl. Phys. Lett. 93(11 ), 113108 (2008).
http://dx.doi.org/10.1063/1.2957980
105.
105. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101(9 ), 093105 (2007).
http://dx.doi.org/10.1063/1.2734885
106.
106. N. Keisuke, T. Katsuaki, and A. Atwater Harry, Appl. Phys. Lett. 93(12 ), 121904 (2008).
http://dx.doi.org/10.1063/1.2988288
107.
107. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, Appl. Phys. Lett. 93(9 ), 091107 (2008).
http://dx.doi.org/10.1063/1.2973988
108.
108. B. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys. 96(12 ), 7519 (2004).
http://dx.doi.org/10.1063/1.1812589
109.
109. K. Seok-Soon, N. Seok-In, J. Jang, K. Dong-Yu, and N. Yoon-Chae, Appl. Phys. Lett. 93(7 ), 073307 (2008).
http://dx.doi.org/10.1063/1.2967471
110.
110. C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, Appl. Phys. Lett. 92(5 ), 053110 (2008).
http://dx.doi.org/10.1063/1.2840676
111.
111. T. Kume, S. Hayashi, H. Ohkuma, and K. Yamamoto, Jpn. J. Appl. Phys., Part 1 34(12A ), 6448 (1995).
http://dx.doi.org/10.1143/JJAP.34.6448
112.
112. R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, and A. Burger, Appl. Phys. Lett. 91(19 ), 191111 (2007).
http://dx.doi.org/10.1063/1.2807277
113.
113. M. Kirkengen, J. Bergli, and Y. M. Galperin, J. Appl. Phys. 102(9 ), 093713 (2007).
http://dx.doi.org/10.1063/1.2809368
114.
114. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett. 8(12 ), 4391 (2008).
http://dx.doi.org/10.1021/nl8022548
115.
115. K. R. Catchpole and A. Polman, Opt. Express 16(26 ), 21793 (2008).
http://dx.doi.org/10.1364/OE.16.021793
116.
116. H. A. Atwater and A. Polman, Nature Mater. 9(3 ), 205 (2010).
http://dx.doi.org/10.1038/nmat2629
117.
117. V. E. Ferry, J. N. Munday, and H. A. Atwater, Adv. Mater. 22(43 ), 4794 (2010).
http://dx.doi.org/10.1002/adma.201000488
118.
118. L. Tsakalakos, Nanotechnology for Photovoltaics, (CRC, MA, 2010), p. 49.
119.
119. C. Battaglia, K. Soderstrom, J. Escarre, F.-J. Haug, D. Domine, P. Cuony, M. Boccard, G. Bugnon, C. Denizot, M. Despeisse, A. Feltrin, and C. Ballif, Appl. Phys. Lett. 96(21 ), 213504 (2010).
http://dx.doi.org/10.1063/1.3432739
120.
120. C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F. J. Haug, T. Söderström, C. Ballif, and F. Lederer, Opt. Express 18(S3 ), A335 (2010).
http://dx.doi.org/10.1364/OE.18.00A335
121.
121. Y. Tawada, H. Yamagishi, and K. Yamamoto, Sol. Energy Mater. Sol. Cells 78(1–4 ), 647 (2003).
http://dx.doi.org/10.1016/S0927-0248(02)00456-7
122.
122. K. Yamamoto, M. Yoshimi, Y. Tawada, S. Fukuda, T. Sawada, T. Meguro, H. Takata, T. Suezaki, Y. Koi, K. Hayashi, T. Suzuki, M. Ichikawa, and A. Nakajima, Sol. Energy Mater. Sol. Cells 74(1–4 ), 449 (2002).
http://dx.doi.org/10.1016/S0927-0248(02)00113-7
123.
123. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics 19(1 ), 84 (2011).
http://dx.doi.org/10.1002/pip.1088
124.
124. S. Fahr, C. Rockstuhl, and F. Lederer, Appl. Phys. Lett. 92(17 ), 171114 (2008).
http://dx.doi.org/10.1063/1.2919094
125.
125. C. Rockstuhl, S. Fahr, F. Lederer, K. Bittkau, T. Beckers, and R. Carius, Appl. Phys. Lett. 93(6 ), 061105 (2008).
http://dx.doi.org/10.1063/1.2965117
126.
126. N. Bonod and E. Popov, Opt. Lett. 33, 2398 (2008).
http://dx.doi.org/10.1364/OL.33.002398
127.
127. R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, J. Appl. Phys. 102(1 ), 014503 (2007).
http://dx.doi.org/10.1063/1.2751117
128.
128. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 239 (2010).
http://dx.doi.org/10.1038/nmat2727
129.
129. E. Garnett and P. Yang, Nano Lett. 10, 1082 (2010).
http://dx.doi.org/10.1021/nl100161z
130.
130. O. L. Muskens, J. Gómez Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, Nano Lett. 8(9 ), 2638 (2008).
http://dx.doi.org/10.1021/nl0808076
131.
131. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, C. Martijn de Sterke, and R. C. McPhedran, Opt. Express 19(S5 ), A1067 (2011).
http://dx.doi.org/10.1364/OE.19.0A1067
132.
132. B. M. Kayes, H. A. Atwater, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005).
http://dx.doi.org/10.1063/1.1901835
133.
133. M. C. Putnam, D. B. Turner-Evans, M. D. Kelzenberg, S. W. Boettcher, N. S. Lewis, and H. A. Atwater, Appl. Phys. Lett. 95(16 ), 163116 (2009).
http://dx.doi.org/10.1063/1.3247969
134.
134. K. E. Plass, M. A. Filler, J. M. Spurgeon, B. M. Kayes, S. Maldonado, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, Adv. Mater. 21, 325 (2009).
http://dx.doi.org/10.1002/adma.200802006
135.
135. R. Kapadia, Z. Fan, and A. Javey, Appl. Phys. Lett. 96, 103116 (2010).
http://dx.doi.org/10.1063/1.3340938
136.
136. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature (London) 449(7164 ), 885 (2007).
http://dx.doi.org/10.1038/nature06181
137.
137. V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, Nano Lett. 9(4 ), 1549 (2009).
http://dx.doi.org/10.1021/nl803641f
138.
138. Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, Nano Lett. 9(5 ), 2183 (2009).
http://dx.doi.org/10.1021/nl900858v
139.
139. Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, Nano Lett. 8(12 ), 4191 (2008).
http://dx.doi.org/10.1021/nl801728d
140.
140. M. J. Stocks, A. Cuevas, and A. W. Blakers, Prog. Photovoltaics 4, 35 (1996).
http://dx.doi.org/10.1002/(SICI)1099-159X(199601/02)4:1<35::AID-PIP115>3.0.CO;2-F
141.
141. K. R. Catchpole, S. Mokkapati, and F. Beck, J. Appl. Phys. 109, 084519 (2011).
http://dx.doi.org/10.1063/1.3579420
142.
142. H. R. Stuart and D. G. Hall, J. Opt. Soc. Am. A 14(11 ), 3001 (1997).
http://dx.doi.org/10.1364/JOSAA.14.003001
143.
143. D. M. Callahan, J. N. Munday, and H. A. Atwater, Nano Lett. 12, 214 (2011).
http://dx.doi.org/10.1021/nl203351k
144.
144. J. N. Munday, D. M. Callahan, and H. A. Atwater, Appl. Phys. Lett. 100, 121121 (2012).
http://dx.doi.org/10.1063/1.3695156
145.
145. M. A. Green, Prog. Photovoltaics 19, 473 (2011).
http://dx.doi.org/10.1002/pip.1038
146.
146. E. A. Schiff, J. Appl. Phys. 110(10 ), 104501 (2011).
http://dx.doi.org/10.1063/1.3658848
147.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/112/10/10.1063/1.4747795
Loading
/content/aip/journal/jap/112/10/10.1063/1.4747795
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/112/10/10.1063/1.4747795
2012-11-19
2014-07-28

Abstract

Nanophotonic light trapping for solar cells is an exciting field that has seen exponential growth in the last few years. There has been a growing appreciation for solar energy as a major solution to the world’s energy problems, and the need to reduce materials costs by the use of thinner solar cells. At the same time, we have the newly developed ability to fabricate controlled structures on the nanoscale quickly and cheaply, and the computational power to optimize the structures and extract physical insights. In this paper, we review the theory of nanophotonic light trapping, with experimental examples given where possible. We focus particularly on periodic structures, since this is where physical understanding is most developed, and where theory and experiment can be most directly compared. We also provide a discussion on the parasitic losses and electrical effects that need to be considered when designing nanophotonic solar cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/112/10/1.4747795.html;jsessionid=3liqln0rkj7om.x-aip-live-03?itemId=/content/aip/journal/jap/112/10/10.1063/1.4747795&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nanophotonic light trapping in solar cells
http://aip.metastore.ingenta.com/content/aip/journal/jap/112/10/10.1063/1.4747795
10.1063/1.4747795
SEARCH_EXPAND_ITEM