1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Passivation of Zn3P2 substrates by aqueous chemical etching and air oxidation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/112/10/10.1063/1.4765030
1.
1. G. M. Kimball, A. M. Muller, N. S. Lewis, and H. A. Atwater, Appl. Phys. Lett. 95, 112103 (2009).
http://dx.doi.org/10.1063/1.3225151
2.
2. N. C. Wyeth and A. Catalano, J. Appl. Phys. 50, 1403 (1979).
http://dx.doi.org/10.1063/1.326122
3.
3. G. M. Kimball, N. S. Lewis, and H. A. Atwater, in Proceedings of IEEE 35th Photovoltaic Specialist Conference, Honolulu, HI, 20–25 June 2010, (IEEE, New York, 2010), p. 1039.
4.
4. M. Bhushan and A. Catalano, Appl. Phys. Lett. 38, 39 (1981).
http://dx.doi.org/10.1063/1.92124
5.
5. N. C. Wyeth and A. Catalano, J. Appl. Phys. 51, 2286 (1980).
http://dx.doi.org/10.1063/1.327862
6.
6. M. Ginting and J. D. Leslie, Can. J. Phys. 67, 448 (1989).
http://dx.doi.org/10.1139/p89-080
7.
7. T. Suda, M. Suzuki, and S. Kurita, Jpn. J. Appl. Phys., Part 2 22, L656 (1983).
http://dx.doi.org/10.1143/JJAP.22.L656
8.
8. P. S. Nayar and A. Catalano, Appl. Phys. Lett. 39, 105 (1981).
http://dx.doi.org/10.1063/1.92537
9.
9. M. Casey, J. Appl. Phys. 61, 2941 (1987).
http://dx.doi.org/10.1063/1.337841
10.
10. P. S. Nayar, J. Appl. Phys. 53, 1069 (1982).
http://dx.doi.org/10.1063/1.330518
11.
11. A. J. Nelson, L. L. Kazmerski, M. Engelhardt, and H. Hochst, J. Appl. Phys. 67, 1393 (1990).
http://dx.doi.org/10.1063/1.345695
12.
12. Y. Kato, Appl. Phys. Lett. 52, 2133 (1988).
http://dx.doi.org/10.1063/1.99756
13.
13. U. Elrod, M. C. Luxsteiner, M. Obergfell, E. Bucher, and L. Schlapbach, Appl. Phys. B: Photophys. Laser Chem. 43, 197 (1987).
http://dx.doi.org/10.1007/BF00695623
14.
14. A. Catalano, J. Cryst. Growth 49, 681 (1980).
http://dx.doi.org/10.1016/0022-0248(80)90294-8
15.
15. G. M. Kimball, N. S. Lewis, and H. A. Atwater, in Proceedings of IEEE 33rd Photovoltaic Specialist Conference, San Diego, CA, 11–16 May 2008, (IEEE, New York, 2008), p. 150.
16.
16. See supplementary material at http://dx.doi.org/10.1063/1.4765030 for substrate orientation maps collected by electron backscattered diffraction; MATLAB code used for numerical simulation of time-resolved photoluminescence data. [Supplementary Material]
17.
17. S. W. Feldberg, M. Evenor, D. Huppert, and S. Gottesfeld, J. Electroanal. Chem. 185, 209 (1985).
http://dx.doi.org/10.1016/0368-1874(85)80130-1
18.
18. M. Bhushan, J. Appl. Phys. 53, 514 (1982).
http://dx.doi.org/10.1063/1.329956
19.
19. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley-Interscience, 2006).
20.
20. M. P. Seah, Practical Surface Analysis, 2nd ed. (John Wiley & Sons, Chichester, 1990).
21.
21. L. M. Terman, Solid-State Electron. 5, 285 (1962).
http://dx.doi.org/10.1016/0038-1101(62)90111-9
22.
22. J. Misiewicz, J. M. Wrobel, and B. P. Clayman, Solid State Commun. 66, 747 (1988).
http://dx.doi.org/10.1016/0038-1098(88)90997-0
23.
23. K. Kamimura, T. Suzuki, and A. Kunioka, Appl. Phys. Lett. 38, 259 (1981).
http://dx.doi.org/10.1063/1.92336
http://aip.metastore.ingenta.com/content/aip/journal/jap/112/10/10.1063/1.4765030
Loading
/content/aip/journal/jap/112/10/10.1063/1.4765030
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/112/10/10.1063/1.4765030
2012-11-21
2014-08-22

Abstract

Surface recombination velocities measured by time-resolved photoluminescence and compositions of Zn3P2surfaces measured by x-ray photoelectron spectroscopy(XPS) have been correlated for a series of wet chemical etches of Zn3P2 substrates. Zn3P2 substrates that were etched with Br2 in methanol exhibited surface recombination velocity values of 2.8 × 104 cm s−1, whereas substrates that were further treated by aqueous HF–H2O2 exhibited surface recombination velocity values of 1.0 × 104 cm s−1. Zn3P2 substrates that were etched with Br2 in methanol and exposed to air for 1 week exhibited surface recombination velocity values of 1.8 × 103 cm s−1, as well as improved ideality in metal/insulator/semiconductor devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/112/10/1.4765030.html;jsessionid=1nv8dn0atcwhd.x-aip-live-03?itemId=/content/aip/journal/jap/112/10/10.1063/1.4765030&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Passivation of Zn3P2 substrates by aqueous chemical etching and air oxidation
http://aip.metastore.ingenta.com/content/aip/journal/jap/112/10/10.1063/1.4765030
10.1063/1.4765030
SEARCH_EXPAND_ITEM