1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Thermal fluctuations of magnetic nanoparticles: Fifty years after Brown
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/112/12/10.1063/1.4754272
1.
1. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120S (1959).
http://dx.doi.org/10.1063/1.2185850
2.
2. Handbook of Advanced Magnetic Materials, edited by Y. Liu, D. J. Sellmyer, and D. Shindo (Springer, New York, 2006), Vol. I–II.
3.
3. C. D. Mee, The Physics of Magnetic Recording (North Holland, Amsterdam, 1986);
3. A. P. Guimarães, Principles of Nanomagnetism (Springer, Berlin, 2009).
4.
4. Q. A. Pankhurst, N. K. T. Thanh, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 42, 224001 (2009).
http://dx.doi.org/10.1088/0022-3727/42/22/224001
5.
5. Magnetic Nanoparticles, edited by S. P. Gubin (Wiley, New York, 2009).
6.
6. E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. London, Ser. A 240, 599 (1948).
http://dx.doi.org/10.1098/rsta.1948.0007
7.
7. L. Néel, C.R. Acad. Sci. Paris 228, 664 (1949);
7. L. Néel, Ann. Geophys. 5, 99 (1949).
8.
8. W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963).
http://dx.doi.org/10.1103/PhysRev.130.1677
9.
9. W. F. Brown, Jr., IEEE Trans. Magn. 15, 1196 (1979).
http://dx.doi.org/10.1109/TMAG.1979.1060329
10.
10. D. G. Rancourt, Rev. Mineral. Geochem. 44, 217 (2001).
http://dx.doi.org/10.2138/rmg.2001.44.07
11.
11. W. Wernsdorfer, Adv. Chem. Phys. 118, 99 (2001).
http://dx.doi.org/10.1002/9780470141786
12.
12. D. Kumar and S. Dattagupta, J. Phys. C: Solid State Phys. 16, 3779 (1983);
http://dx.doi.org/10.1088/0022-3719/16/19/018
12. G. S. Agarwal, S. Dattagupta, and K. P. N. Murthy, J. Phys. C: Solid State Phys. 17, 6869 (1984).
http://dx.doi.org/10.1088/0022-3719/17/36/037
13.
13. D. A. Garanin, V. V. Ischenko, and L. V. Panina, Teor. Mat. Fiz. 82, 242 (1990)
13. D. A. Garanin, V. V. Ischenko, and L. V. Panina, [Theor. Math. Phys. 82, 169 (1990)].
http://dx.doi.org/10.1007/BF01079045
14.
14. L. Bessais, L. B. Jaffel, and J. L. Dormann, Phys. Rev. B 45, 7805 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.7805
15.
15. W. T. Coffey, P. J. Cregg, and Yu. P. Kalmykov, Adv. Chem. Phys. 83, 263 (1993).
http://dx.doi.org/10.1002/9780470141410
16.
16. E. K. Sadykov and A. G. Isavnin, Fiz. Tverd. Tela (St. Petersburg) 38, 2104 (1996)
16. E. K. Sadykov and A. G. Isavnin, [Phys. Solid State 38, 1160 (1996)].
17.
17. T. Bitoh, K. Ohba, M. Takamatsu, T. Shirane, and S. Chikazawa, J. Phys. Soc. Jpn. 64, 1311 (1995);
http://dx.doi.org/10.1143/JPSJ.64.1311
17. T. Bitoh, K. Ohba, M. Takamatsu, T. Shirane, and S. Chikazawa, J. Magn. Magn. Mater. 154, 59 (1996).
http://dx.doi.org/10.1016/0304-8853(95)00572-2
18.
18. Yu. L. Raikher and V. I. Stepanov, Phys. Rev. B 55, 15005 (1997);
http://dx.doi.org/10.1103/PhysRevB.55.15005
18. Yu. L. Raikher and V. I. Stepanov,Phys. Rev. B66, 214406 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.214406
19.
19. Yu. P. Kalmykov and S. V. Titov, Fiz. Tverd. Tela (St. Petersburg) 40, 1642 (1998)
19. Yu. P. Kalmykov and S. V. Titov, [Phys. Solid State 40, 1492 (1998)].
http://dx.doi.org/10.1134/1.1130584
20.
20. Yu. P. Kalmykov and S. V. Titov, Zh. Exp. Teor. Fiz. 115, 101 (1999)
20. Yu. P. Kalmykov and S. V. Titov, [J. Exp. Theor. Phys. 88, 58 (1999)];
http://dx.doi.org/10.1134/1.558764
20. Yu. P. Kalmykov, S. V. Titov, and W. T. Coffey, Phys. Rev. B 58, 3267 (1998);
http://dx.doi.org/10.1103/PhysRevB.58.3267
20. Yu. P. Kalmykov and S. V. Titov, Fiz. Tverd. Tela (St. Petersburg) 40, 1898 (1998)
20. Yu. P. Kalmykov and S. V. Titov, [Phys. Solid State 40, 1721 (1998)].
http://dx.doi.org/10.1134/1.1130643
21.
21. M. Respaud, M. Goiran, J. M. Broto, F. Lionti, L. Thomas, B. Barbara, T. O. Ely, C. Amiens, and B. Chaudret, Europhys. Lett. 47, 122 (1999).
http://dx.doi.org/10.1209/epl/i1999-00361-2
22.
22. Yu. P. Kalmykov, Phys. Rev. B 61, 6205 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.6205
23.
23. J. L. García-Palacios and P. Svedlindh, Phys. Rev. Lett. 85, 3724 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3724
24.
24. W. T. Coffey, D. S. F. Crothers, Yu. P. Kalmykov, and S. V. Titov, Phys. Rev. B 64, 012411 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.012411
25.
25. Yu. L. Raikher and V. I. Stepanov, Adv. Chem. Phys. 129, 419 (2004).
http://dx.doi.org/10.1002/047168077X.ch4
26.
26. P. E. Jonsson, Adv. Chem. Phys. 128, 191 (2004).
http://dx.doi.org/10.1002/0471484237.ch3
27.
27. V. A. Ignatchenko and R. S. Gekht, Sov. Phys. JETP 40, 750 (1975).
28.
28. J. J. Lu, J. H. Huang, and I. Klik, J. Appl. Phys. 76, 1726 (1994);
http://dx.doi.org/10.1063/1.358424
28. I. Klik and Y. D. Yao, J. Appl. Phys. 89, 7457 (2001).
http://dx.doi.org/10.1063/1.1355347
29.
29. Yu. L. Raikher, V. I. Stepanov, and R. Perzynski, Physica B 343, 262 (2004);
http://dx.doi.org/10.1016/j.physb.2003.08.105
29. Yu. L. Raikher and V. I. Stepanov, J. Magn. Magn. Mater. 300, e311 (2006);
http://dx.doi.org/10.1016/j.jmmm.2005.10.108
29. Yu. L. Raikher and V. I. Stepanov, J. Magn. Magn. Mater.320, 2692 (2008);
http://dx.doi.org/10.1016/j.jmmm.2008.05.041
29. P. M. Déjardin, Yu. P. Kalmykov, B. E. Kashevsky, H. El Mrabti, I. S. Poperechny, Yu. L. Raikher, and S. V. Titov, J. Appl. Phys. 107, 073914 (2010).
http://dx.doi.org/10.1063/1.3359722
30.
30. V. Franco and A. Conde, J. Magn. Magn. Mater. 278, 28 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.11.370
31.
31. C. Tannous and J. Gieraltowski, Physica B 403, 3578 (2008).
http://dx.doi.org/10.1016/j.physb.2008.05.033
32.
32. N. A. Usov and Yu. B. Grebenshchikov, J. Appl. Phys. 106, 023917 (2009);
http://dx.doi.org/10.1063/1.3173280
32. N. A. Usov and B. Ya. Liubimov, J. Appl. Phys. 112, 023901 (2012).
http://dx.doi.org/10.1063/1.4737126
33.
33. I. S. Poperechny, Yu. L. Raikher, and V. I. Stepanov, Phys. Rev. B 82, 174423 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.174423
34.
34. J. Carrey, B. Mehdaoui, and M. Respaud, J. Appl. Phys. 109, 083921 (2011);
http://dx.doi.org/10.1063/1.3551582
34. B. Mehdaoui, J. Carrey, M. Stadler, A. Cornejo, C. Nayral, F. Delpeche, B. Chaudret, and M. Respaud, Appl. Phys. Lett. 100, 052403 (2012).
http://dx.doi.org/10.1063/1.3681361
35.
35. L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.223
36.
36. A. N. Grigorenko, V. I. Konov, and P. I. Nikitin, Pis'ma Zh. Exp. Teor. Fiz. 52, 1182 (1990)
36. A. N. Grigorenko, V. I. Konov, and P. I. Nikitin, [JETP Lett. 52, 593 (1990)];
36. A. N. Grigorenko, P. I. Nikitin, A. N. Slavin, and P. Y. Zhou, J. Appl. Phys. 76, 6335 (1994);
http://dx.doi.org/10.1063/1.358258
36. A. N. Grigorenko, P. I. Nikitin, and G. V. Roschepkin, J. Appl. Phys. 79, 6113 (1996);
http://dx.doi.org/10.1063/1.362104
36. A. N. Grigorenko, P. I. Nikitin, and G. V. Roschepkin, Zh. Eksp. Teor. Fiz. 112, 628 (1997)
36. A. N. Grigorenko, P. I. Nikitin, and G. V. Roschepkin, [J. Exp. Theor. Phys. 85, 343 (1997)].
http://dx.doi.org/10.1134/1.558283
37.
37. E. K. Sadykov, Fiz. Tverd. Tela (St. Petersburg) 33, 3302 (1991)
37. E. K. Sadykov, [Sov. Phys. Solid State 33, 1862 (1991)];
37. E. K. Sadykov, J. Phys. Condens. Matter 4, 3295 (1992).
http://dx.doi.org/10.1088/0953-8984/4/12/020
38.
38. Yu. L. Raikher and V. I. Stepanov, J. Phys. Condens. Matter 6, 4137 (1994);
http://dx.doi.org/10.1088/0953-8984/6/22/013
38. Yu. L. Raikher and V. I. Stepanov, Phys. Rev. B 52, 3493 (1995);
http://dx.doi.org/10.1103/PhysRevB.52.3493
38. Yu. L. Raikher, V. I. Stepanov, A. N. Grigorenko, and P. I. Nikitin, Phys. Rev. E 56, 6400 (1997);
http://dx.doi.org/10.1103/PhysRevE.56.6400
38. Yu. L. Raikher and V. I. Stepanov, Phys. Rev. Lett. 86, 1923 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1923
39.
39. P. C. Fannin and Yu. L. Raikher, J. Phys. D: Appl. Phys. 34, 1612 (2001);
http://dx.doi.org/10.1088/0022-3727/34/11/309
39. P. C. Fannin, Yu. L. Raikher, A. T. Giannitsis, and S. W. Charles, J. Magn. Magn. Mater. 252, 114 (2002);
http://dx.doi.org/10.1016/S0304-8853(02)00602-9
39. Yu. L. Raikher, V. I. Stepanov, and P. C. Fannin, J. Magn. Magn. Mater. 258–259, 369 (2003).
http://dx.doi.org/10.1016/S0304-8853(02)01112-5
40.
40. Yu. P. Kalmykov, Yu. L. Raikher, W. T. Coffey, and S. V. Titov, Phys. Rev. B 71, 012415 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.012415
41.
41. G. Bertotti, Hysteresis in Magnetism (Academic, San Diego, 1998).
42.
42. A. Thiaville, Phys. Rev. B 61, 12221 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.12221
43.
43. M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Mélinon, and A. Pérez, Phys. Rev. Lett. 86, 4676 (2001);
http://dx.doi.org/10.1103/PhysRevLett.86.4676
43. M. Jamet, W. Wernsdorfer, C. Thirion, V. Dupuis, P. Mélinon, A. Pérez, and D. Mailly, Phys. Rev. B 69, 024401 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.024401
44.
44. W. Wernsdorfer, C. Thirion, M. Jamet, V. Dupuis, P. Mélinon, A. Pérez, and D. Mailly, J. Appl. Phys. 91, 7062 (2002).
http://dx.doi.org/10.1063/1.1450788
45.
45. C. Vouille, A. Thiaville, and J. Miltat, J. Magn. Magn. Mater. 272–276, E1237 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.12.1353
46.
46. S. Mørup, J. Magn. Magn. Mater. 37, 39 (1983).
http://dx.doi.org/10.1016/0304-8853(83)90350-5
47.
47. D. H. Jones and K. K. P. Srivastava, Phys. Rev. B 34, 7542 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.7542
48.
48. J. L. Dormann, D. Fiorani, and E. Tronc, Adv. Chem. Phys. 98, 283 (1997).
http://dx.doi.org/10.1002/9780470141571
49.
49. J. van Lierop and D. H. Ryan, Phys. Rev. B 63, 064406 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.064406
50.
50. P. M. Déjardin and W. T. Coffey, Hyperfine Interact. 163, 73 (2005).
http://dx.doi.org/10.1007/s10751-004-5451-x
51.
51. P. Debye, Polar Molecules (Chemical Catalog Co., New York, 1929).
52.
52. W. F. Brown, Jr., in Handbuch der Physik, edited by S. Flügge (Springer-Verlag, Berlin, 1956), Vol. 17;
52. H. Fröhlich, Theory of Dielectrics, 2nd ed. (Oxford University Press, London, 1958).
53.
53. P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).
http://dx.doi.org/10.1103/RevModPhys.62.251
54.
54. H. A. Kramers, Physica 7, 284 (1940).
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
55.
55. V. I. Mel'nikov, Phys. Rep. 209, 1 (1991).
http://dx.doi.org/10.1016/0370-1573(91)90108-X
56.
56. W. T. Coffey, D. A. Garanin, and D. J. McCarthy, Adv. Chem. Phys. 117, 483 (2001).
http://dx.doi.org/10.1002/9780470141779
57.
57. E. Pollak and P. Talkner, Chaos 15, 026116 (2005).
http://dx.doi.org/10.1063/1.1858782
58.
58. W. T. Coffey and Yu. P. Kalmykov, The Langevin Equation, 3rd ed. (World Scientific, Singapore, 2012).
59.
59. L. J. Geoghegan, W. T. Coffey, and B. Mulligan, Adv. Chem. Phys. 100, 475 (1997).
http://dx.doi.org/10.1002/9780470141595
60.
60. V. I. Mel'nikov and S. V. Meshkov, J. Chem. Phys. 85, 1018 (1986).
http://dx.doi.org/10.1063/1.451844
61.
61. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I (McGraw-Hill, New York, 1953).
62.
62. H. Grabert, Phys. Rev. Lett. 61, 1683 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.1683
63.
63. E. Pollak, H. Grabert, and P. Hänggi, J. Chem. Phys. 91, 4073 (1989).
http://dx.doi.org/10.1063/1.456837
64.
64. M. Topaler and N. Makri, J. Chem. Phys. 101, 7500 (1994).
http://dx.doi.org/10.1063/1.468244
65.
65. A. N. Drozdov and P. Talkner, J. Chem. Phys. 109, 2080 (1998).
http://dx.doi.org/10.1063/1.476721
66.
66. H. X. Zhou, Chem. Phys. Lett. 164, 285 (1989).
http://dx.doi.org/10.1016/0009-2614(89)85030-4
67.
67. W. T. Coffey, Yu. P. Kalmykov, and S. V. Titov, J. Chem. Phys. 124, 024701 (2006).
http://dx.doi.org/10.1063/1.2141956
68.
68. R. Ferrando, R. Spadacini, and G. E. Tommei, Phys. Rev. A 46, R699 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.R699
69.
69. R. Ferrando, R. Spadacini, and G. E. Tommei, Phys. Rev. E 48, 2437 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.2437
70.
70. R. Ferrando, R. Spadacini, G. E. Tommei, and V. I. Mel'nikov, Phys. Rev. E 51, R1645 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.R1645
71.
71. W. T. Coffey, Yu. P. Kalmykov, S. V. Titov, and B. P. Mulligan, Phys. Rev. E 73, 061101 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.061101
72.
72. E. Pollak, J. Bader, B. J. Berne, and P. Talkner, Phys. Rev. Lett. 70, 3299 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.3299
73.
73. Yu. Georgievskii and E. Pollak, Phys. Rev. E 49, 5098 (1994).
http://dx.doi.org/10.1103/PhysRevE.49.5098
74.
74. E. Hershkovitz, P. Talkner, E. Pollak, and Yu. Georgievskii, Sur. Sci. 421, 73 (1999).
http://dx.doi.org/10.1016/S0039-6028(98)00820-6
75.
75. W. T. Coffey, Yu. P. Kalmykov, and S. V. Titov, J. Chem. Phys. 120, 9199 (2004).
http://dx.doi.org/10.1063/1.1703525
76.
76. Yu. P. Kalmykov, S. V. Titov, and W. T. Coffey, J. Chem. Phys. 123, 094503 (2005).
http://dx.doi.org/10.1063/1.2008250
77.
77. G. J. Moro and A. Polimeno, Chem. Phys. 131, 281 (1989).
http://dx.doi.org/10.1016/0301-0104(89)80176-4
78.
78. R. W. Pastor and A. Szabo, J. Chem. Phys. 97, 5098 (1992).
http://dx.doi.org/10.1063/1.463830
79.
79. Yu. P. Kalmykov, S. V. Titov, and W. T. Coffey, J. Chem. Phys. 130, 064110 (2009);
http://dx.doi.org/10.1063/1.3074330
79. Yu. P. Kalmykov, S. V. Titov, and W. T. Coffey, J. Chem. Phys. 134, 044530 (2011).
http://dx.doi.org/10.1063/1.3524534
80.
80. T. L. Gilbert, Phys. Rev. 100, 1243 (1955);
80.T. L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).
http://dx.doi.org/10.1109/TMAG.2004.836740
81.
81. H. Suhl, Relaxation Processes in Micromagnetics (Oxford University Press, Oxford, 2007).
82.
82. D. A. Smith and F. A. de Rozario, J. Magn. Magn. Mater. 3, 219 (1976).
http://dx.doi.org/10.1016/0304-8853(76)90035-4
83.
83. I. Klik and L. Gunther, J. Stat. Phys. 60, 473 (1990).
http://dx.doi.org/10.1007/BF01314931
84.
84. I. Klik and L. Gunther, J. Appl. Phys. 67, 4505 (1990).
http://dx.doi.org/10.1063/1.344896
85.
85. H. B. Braun, J. Appl. Phys. 76, 6310 (1994).
http://dx.doi.org/10.1063/1.358279
86.
86. J. S. Langer, Ann. Phys. (N.Y.) 54, 258 (1969).
http://dx.doi.org/10.1016/0003-4916(69)90153-5
87.
87. R. Becker and W. Döring, Ann. Phys. (Leipzig) 416, 719 (1935).
http://dx.doi.org/10.1002/andp.19354160806
88.
88. P. M. Déjardin, D. S. F. Crothers, W. T. Coffey, and D. J. McCarthy, Phys. Rev. E 63, 021102 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.021102
89.
89. Yu. P. Kalmykov, J. Appl. Phys. 96, 1138 (2004).
http://dx.doi.org/10.1063/1.1760839
90.
90. Yu. P. Kalmykov, W. T. Coffey, B. Ouari, and S. V. Titov, J. Magn. Magn. Mater. 292, 372 (2005);
http://dx.doi.org/10.1016/j.jmmm.2004.11.233
90. Yu. P. Kalmykov, W. T. Coffey, and S. V. Titov, Fiz. Tverd. Tela (St. Petersburg) 47, 260 (2005)
90. Yu. P. Kalmykov, W. T. Coffey, and S. V. Titov, [Phys. Solid. State 47, 272 (2005)];
http://dx.doi.org/10.1134/1.1866406
90. B. Ouari, S. Aktaou, and Yu. P. Kalmykov, Phys. Rev. B 81, 024412 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.024412
91.
91. Yu. P. Kalmykov and B. Ouari, Phys. Rev. B 71, 094410 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.094410
92.
92. Yu. P. Kalmykov, J. Appl. Phys. 101, 093909 (2007).
http://dx.doi.org/10.1063/1.2728783
93.
93. H. J. Suh, C. Heo, C. Y. You, W. Kim, T. D. Lee, and K. J. Lee, Phys. Rev. B 78, 064430 (2008);
http://dx.doi.org/10.1103/PhysRevB.78.064430
93. H. J. Suh and K. J. Lee, Curr. Appl. Phys. 9, 985 (2009).
http://dx.doi.org/10.1016/j.cap.2008.10.004
94.
94. N. A. Usov and Yu. B. Grebenshchikov, in Magnetic Nanoparticles, edited by S. P. Gubin (Wiley, New York, 2009), p. 303.
95.
95. W. T. Coffey, P. M. Déjardin, and Yu. P. Kalmykov, Phys. Rev. B 79, 054401 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.054401
96.
96. J. Schratzberger, J. Lee, M. Fuger, J. Fidler, G. Fiedler, T. Schrefl, and D. Suess, J. Appl. Phys. 108, 033915 (2010).
http://dx.doi.org/10.1063/1.3460639
97.
97. Y. P. Kalmykov, W. T. Coffey, U. Atxitia, O. Chubykalo-Fesenko, P. M. Déjardin, and R. W. Chantrell, Phys. Rev. B 82, 024412 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.024412
98.
98. W. F. Brown, Jr., Phys. Rev. 105, 1479 (1957).
http://dx.doi.org/10.1103/PhysRev.105.1479
99.
99. E. H. Frei, S. Shtrikman, and D. Treves, Phys. Rev. 106, 446 (1957);
http://dx.doi.org/10.1103/PhysRev.106.446
99. S. Shtrikman and D. Treves, J. Phys. Radium 20, 286 (1959).
http://dx.doi.org/10.1051/jphysrad:01959002002-3028600
100.
100. A. Aharoni and S. Shtrikman, Phys. Rev. 109, 1522 (1958);
http://dx.doi.org/10.1103/PhysRev.109.1522
100. A. Aharoni, Phys. Status Solidi B 16, 3 (1966).
http://dx.doi.org/10.1002/pssb.v16:1
101.
101. E. M. Chudnovsky and L. Gunther, Phys. Rev. Lett. 60, 661 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.661
102.
102. P. C. E. Stamp, E. M. Chudnovsky, and B. Barbara, Int. J. Mod. Phys. B 6, 1355 (1992).
http://dx.doi.org/10.1142/S0217979292000670
103.
103. E. M. Chudnovsky, J. Appl. Phys. 73, 6697(1993).
http://dx.doi.org/10.1063/1.352507
104.
104. H. B. Braun, Adv. Phys. 61, 1 (2012).
http://dx.doi.org/10.1080/00018732.2012.663070
105.
105. M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 (1945).
http://dx.doi.org/10.1103/RevModPhys.17.323
106.
106. A. Einstein, in Investigations on the Theory of the Brownian Movement, edited by R. H. Fürth (Methuen, London, 1926).
107.
107. C. W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 1985).
108.
108. H. Risken, The Fokker-Planck Equation, 2nd ed. (Springer, Berlin, 1989).
109.
109. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1998).
110.
110. Yu. P. Kalmykov and S. V. Titov, Phys. Rev. Lett. 82, 2967 (1999);
http://dx.doi.org/10.1103/PhysRevLett.82.2967
110. Yu. P. Kalmykov and S. V. Titov, Fiz. Tverd. Tela (St. Petersburg) 41, 2020 (1999)
110. Yu. P. Kalmykov and S. V. Titov, [Phys. Solid State 41, 1854 (1999)].
http://dx.doi.org/10.1134/1.1131113
111.
111. A. Lyberatos and R. W. Chantrell, J. Appl. Phys. 73, 6501 (1993).
http://dx.doi.org/10.1063/1.352594
112.
112. J. L. García-Palacios and F. J. Lazaro, Phys. Rev. B 58, 14937(1998);
http://dx.doi.org/10.1103/PhysRevB.58.14937
112. J. L. García-Palacios, Adv. Chem. Phys. 112, 1 (2000).
http://dx.doi.org/10.1002/9780470141717.ch1
113.
113. D. V. Berkov, IEEE Trans. Magn. 38, 2489 (2002);
http://dx.doi.org/10.1109/TMAG.2002.801905
113. D. V. Berkov and N. L. Gorn, J. Phys. Condens. Matter 14, 281 (2002);
http://dx.doi.org/10.1088/0953-8984/14/13/101
113. D. V. Berkov and N. L. Gorn, Handbook of Advanced Magnetic Materials, edited by Y. Liu, D. J. Sellmyer, and D. Shindo (Springer, New York, 2006), Vol. II, p. 422.
114.
114. O. Chubykalo, J. D. Hannay, M. A. Wongsam, R. W. Chantrell, and J. M. Gonzalez, Phys. Rev. B 65, 184428 (2002);
http://dx.doi.org/10.1103/PhysRevB.65.184428
114. O. Chubykalo, R. Smirnov-Rueda, J. M. Gonzalez, M. A. Wongsam, R. W. Chantrell, and U. Nowak, J. Magn. Magn. Mater. 266, 28 (2003).
http://dx.doi.org/10.1016/S0304-8853(03)00452-9
115.
115. X. Z. Cheng, M. B. A. Jalil, H. K. Lee, and Y. Okabe, Phys. Rev. B 72, 094420 (2005);
http://dx.doi.org/10.1103/PhysRevB.72.094420
115. X. Z. Cheng, M. B. A. Jalil, H. K. Lee, and Y. Okabe, J. Appl. Phys. 99, 08B901 (2006);
http://dx.doi.org/10.1063/1.2163845
115. X. Z. Cheng, M. B. A. Jalil, H. K. Lee, and Y. Okabe, Phys. Rev. Lett. 96, 067208 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.067208
116.
116. W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron, Physica A 208, 462 (1994).
http://dx.doi.org/10.1016/0378-4371(94)00048-4
117.
117. Yu. P. Kalmykov, Phys. Rev. E 62, 227 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.227
118.
118. A. Aharoni, Phys. Rev. 177, 793 (1969).
http://dx.doi.org/10.1103/PhysRev.177.793
119.
119. Yu. P. Kalmykov and S. V. Titov, Fiz. Tverd. Tela (St. Petersburg) 42, 893 (2000)
119. Yu. P. Kalmykov and S. V. Titov, [Phys. Solid State 42, 918 (2000)];
http://dx.doi.org/10.1134/1.1131312
119. W. T. Coffey, Yu. P. Kalmykov, and S. V. Titov, J. Magn. Magn. Mater. 241, 400 (2002);
http://dx.doi.org/10.1016/S0304-8853(01)00951-9
119. Yu. P. Kalmykov, and S. V. Titov, Fiz. Tverd. Tela (St. Petersburg) 44, 2174 (2002)
119. Yu. P. Kalmykov, and S. V. Titov, [Phys. Solid State 44, 2276 (2002)].
http://dx.doi.org/10.1134/1.1529924
120.
120. P. M. Déjardin and Yu. P. Kalmykov, J. Appl. Phys. 106, 123908 (2009);
http://dx.doi.org/10.1063/1.3272082
120. P. M. Déjardin and Yu. P. Kalmykov, J. Magn. Magn. Mater. 322, 3112 (2010);
http://dx.doi.org/10.1016/j.jmmm.2010.05.040
120. S. V. Titov, P. M. Déjardin, H. El Mrabti, and Yu. P. Kalmykov, Phys. Rev. B 82, 100413R (2010);
http://dx.doi.org/10.1103/PhysRevB.82.100413
120. H. El Mrabti, S. V. Titov, P. M. Déjardin, and Yu. P. Kalmykov, J. Appl. Phys. 110, 023901 (2011).
http://dx.doi.org/10.1063/1.3605536
121.
121. A. Aharoni, Introduction to the Theory of Ferromagnetism (Oxford University Press, London, 1996).
122.
122. W. T. Coffey, Adv. Chem. Phys. 103, 259 (1998);
http://dx.doi.org/10.1002/9780470141625
122. W. T. Coffey, J. Mol. Struct. 416, 221 (1997);
http://dx.doi.org/10.1016/S0022-2860(97)00051-3
122. W. T. Coffey, D. S. F. Crothers, and S. V. Titov, Physica A 298, 330 (2001).
http://dx.doi.org/10.1016/S0378-4371(01)00258-8
123.
123. W. T. Coffey, D. S. F. Crothers, Yu. P. Kalmykov, and J. T. Waldron, Phys. Rev. B 51, 15947 (1995);
http://dx.doi.org/10.1103/PhysRevB.51.15947
123. W. T. Coffey, D. S. F. Crothers, and Yu. P. Kalmykov, Phys. Rev. E 55, 4812 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.4812
124.
124. I. Klik and Y. D. Yao, J. Magn. Magn. Mater. 182, 335 (1998).
http://dx.doi.org/10.1016/S0304-8853(97)01033-0
125.
125. D. A. Garanin, Phys. Rev. E 54, 3250 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.3250
126.
126. Yu. P. Kalmykov, W. T. Coffey, and S. V. Titov, J. Magn. Magn. Mater. 265, 44 (2003);
http://dx.doi.org/10.1016/S0304-8853(03)00222-1
126. Yu. P. Kalmykov and S. V. Titov, Fiz. Tverdogo Tela (St. Petersburg) 45, 2042 (2003)
126. Yu. P. Kalmykov and S. V. Titov,[Phys. Solid State 45, 2140 (2003)].
http://dx.doi.org/10.1134/1.1626752
127.
127. W. T. Coffey, D. S. F. Crothers, Yu. P. Kalmykov, E. S. Massawe, and J. T. Waldron, Phys. Rev. E 49, 1869 (1994);
http://dx.doi.org/10.1103/PhysRevE.49.1869
127. W. T. Coffey, D. S. F. Crothers, Yu. P. Kalmykov, E. S. Massawe, and J. T. Waldron, J. Magn. Magn. Mater. 127, L254 (1993);
http://dx.doi.org/10.1016/0304-8853(93)90039-5
127. W. T. Coffey and D. S. F. Crothers, Phys. Rev. E 54, 4768 (1996);
http://dx.doi.org/10.1103/PhysRevE.54.4768
127. D. S. F. Crothers, Semiclassical Dynamics and Relaxation (Springer, New York, 2008).
128.
128. H. El Mrabti, S. V. Titov, P. M. Déjardin, and Yu. P. Kalmykov, Phys. Rev. B 85, 094425 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.094425
129.
129. G. T. Landi, J. Appl. Phys. 111, 043901 (2012);
http://dx.doi.org/10.1063/1.3684629
129. G. T. Landi and A. F. Bakuzis, J. Appl. Phys. 111, 083915 (2012);
http://dx.doi.org/10.1063/1.4705392
129. G. T. Landi and A. D. Santos, J. Appl. Phys. 111, 07D121 (2012).
http://dx.doi.org/10.1063/1.3676416
130.
130. P. J. Cregg, D. S. F. Crothers, and A. W. Wickstead, J. Appl. Phys. 76, 4900 (1994).
http://dx.doi.org/10.1063/1.357270
131.
131. D. A. Garanin, E. C. Kennedy, D. S. F. Crothers, and W. T. Coffey, Phys. Rev. E 60, 6499 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.6499
132.
132. N. A. Usov, J. Appl. Phys. 107, 123909 (2010).
http://dx.doi.org/10.1063/1.3445879
133.
133. W. F. Brown, Jr., J. Appl. Phys. 30, 130S (1959).
http://dx.doi.org/10.1063/1.2185851
134.
134. L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).
135.
135. R. Kubo, J. Math. Phys. 4, 174 (1963);
http://dx.doi.org/10.1063/1.1703941
135. R. Kubo and N. Hashitsume, Prog. Theor. Phys. Suppl. 46, 210 (1970);
http://dx.doi.org/10.1143/PTPS.46.210
135. A. Kawabata, Prog. Theor. Phys. 48, 2237 (1972).
http://dx.doi.org/10.1143/PTP.48.2237
136.
136. R. L. Stratonovich, Conditional Markov Processes and their Application to the Theory of Optimal Control (Elsevier, New York, 1968).
137.
137. H. Kachkachi, Europhys. Lett. 62, 650 (2003);
http://dx.doi.org/10.1209/epl/i2003-00423-y
137. H. Kachkachi, J. Mol. Liquids 114, 113 (2004).
http://dx.doi.org/10.1016/j.molliq.2004.02.009
138.
138. A. F. Franco, J. M. Martinez, J. L. Déjardin, and H. Kachkachi, Phys. Rev. B 84, 134423 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.134423
139.
139. Yu. L. Raikher and M. I. Shliomis, Zh. Eksp. Teor. Fiz. 67, 1060 (1974)
139. Yu. L. Raikher and M. I. Shliomis, [Sov. Phys. JETP 40, 526 (1974)].
140.
140. W. T. Coffey, D. S. F. Crothers, J. L. Dormann, L. J. Geoghegan, Yu. P. Kalmykov, J. T. Waldron, and A. W. Wickstead, Phys. Rev. B 52, 15951 (1995);
http://dx.doi.org/10.1103/PhysRevB.52.15951
140. W. T. Coffey, D. S. F. Crothers, J. L. Dormann, L. J. Geoghegan, and E. C. Kennedy, Phys. Rev. B 58, 3249 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.3249
141.
141. E. C. Kennedy, Adv. Chem. Phys. 112, 211 (2000).
http://dx.doi.org/10.1002/9780470141717.ch2
142.
142. H. Fukushima, Y. Uesaka, Y. Nakatani, and N. Hayashi, J. Appl. Phys. 101, 013901 (2007);
http://dx.doi.org/10.1063/1.2402032
142. H. Fukushima, Y. Uesaka, Y. Nakatani, and N. Hayashi, J. Magn. Magn. Mater. 323, 195 (2010).
http://dx.doi.org/10.1016/j.jmmm.2010.08.021
143.
143. W. T. Coffey, D. S. F. Crothers, J. L. Dormann, Yu. P. Kalmykov, E. C. Kennedy, and W. Wernsdorfer, Phys. Rev. Lett. 80, 5655 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.5655
144.
144. A. Aharoni, Phys. Rev. B 7, 1103 (1973).
http://dx.doi.org/10.1103/PhysRevB.7.1103
145.
145. I. Eisenstein and A. Aharoni, Phys. Rev. B 16, 1278 (1977);
http://dx.doi.org/10.1103/PhysRevB.16.1278
145. I. Eisenstein and A. Aharoni, Phys. Rev. B 16, 1285 (1977).
http://dx.doi.org/10.1103/PhysRevB.16.1285
146.
146. B. Ouari and Yu. P. Kalmykov, J. Appl. Phys. 100, 123912 (2006).
http://dx.doi.org/10.1063/1.2399304
147.
147. N. A. Usov and Yu. B. Grebenshchikov, J. Appl. Phys. 105, 043904 (2009).
http://dx.doi.org/10.1063/1.3078174
148.
148. D. A. Garanin and H. Kachkachi, Phys. Rev. Lett. 90, 065504 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.065504
149.
149. P. M. Déjardin, H. Kachkachi, and Yu. P. Kalmykov, J. Phys. D: Appl. Phys. 41, 134004 (2008).
http://dx.doi.org/10.1088/0022-3727/41/13/134004
150.
150. A. J. Newell, Geochem., Geophys., Geosyst. 7, Q03015, doi:10.1029/2005GC001147 (2006);
http://dx.doi.org/10.1029/2005GC001147
150. A. J. Newell, Geochem., Geophys., Geosyst. 7, Q03016, doi:10.1029/2005GC001146 (2006).
http://dx.doi.org/10.1029/2005GC001146
151.
151. P. Talkner and D. Ryter, Phys. Lett. A 88, 162 (1982).
http://dx.doi.org/10.1016/0375-9601(82)90552-7
152.
152. R. Bastardis, P. M. Déjardin, and Yu. P. Kalmykov, Physica A 387, 3432 (2008).
http://dx.doi.org/10.1016/j.physa.2008.02.027
153.
153. I. S. Gradshteyn and I. M. Rizhyk, Table of Integrals, Series, and Products, 2nd ed. (Academic, New York, 1980).
154.
154. S. Shtrikman and E. P. Wohlfarth, Phys. Lett. A 85, 467 (1981);
http://dx.doi.org/10.1016/0375-9601(81)90441-2
154. A. Lyberatos, E. P. Wohlfarth, and R. W. Chantrell, IEEE Trans. Magn. MAG-21, 1277 (1985);
http://dx.doi.org/10.1109/TMAG.1985.1063895
154. A. Lyberatos and R. W. Chantrell, J. Appl. Phys. 73, 6501 (1993);
http://dx.doi.org/10.1063/1.352594
154. D. Hinzke and U. Nowak, Phys. Rev. B 61, 6734 (2000);
http://dx.doi.org/10.1103/PhysRevB.61.6734
154. S. I. Denisov and K. N. Trohidou, Phys. Rev. B 64, 184433 (2001);
http://dx.doi.org/10.1103/PhysRevB.64.184433
154. D. V. Berkov and N. L. Gorn, J. Phys.: Condens. Matter 13, 9369 (2001).
http://dx.doi.org/10.1088/0953-8984/13/41/322
155.
155. J. L. Dormann, L. Bessais, and D. Fiorani, J. Phys. C 21, 2015 (1988);
http://dx.doi.org/10.1088/0022-3719/21/10/019
155. S. Mørup and E. Tronc, Phys. Rev. Lett. 72, 3278 (1994);
http://dx.doi.org/10.1103/PhysRevLett.72.3278
155. P. E. Jonsson and J. L. Garcia-Palacios, Europhys. Lett. 55, 418 (2001);
http://dx.doi.org/10.1209/epl/i2001-00430-0
155. P.-M. Déjardin, J. Appl. Phys. 110, 113921 (2011).
http://dx.doi.org/10.1063/1.3665886
156.
156. D. Rodé, H. N. Bertram, and D. R. Fredkin, IEEE Trans. Magn. MAG-23, 2224 (1987);
http://dx.doi.org/10.1109/TMAG.1987.1065641
156. W. Chen, S. Zhang, and H. N. Bertram, J. Appl. Phys. 71, 5579 (1992);
http://dx.doi.org/10.1063/1.351376
156. S. V. Titov, H. Kachkachi, Yu. P. Kalmykov, and W. T. Coffey, Phys. Rev. B 72, 134425 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.134425
157.
157. C. Thirion, W. Wernsdorfer, and D. Mailly, Nat. Mater. 2, 254 (2003).
http://dx.doi.org/10.1038/nmat946
158.
158. A. Sukhov and J. Berakdar, J. Phys.: Condens. Matter 20, 125226 (2008);
http://dx.doi.org/10.1088/0953-8984/20/12/125226
158. G. Bertotti, I. Mayergoyz, C. Serpico, M. d'Aquino, and R. Bonin, J. Appl. Phys. 105, 07B712 (2009).
http://dx.doi.org/10.1063/1.3072075
159.
159. S. I. Denisov, T. V. Lyutyy, P. Hänggi, and K. N. Trohidou, Phys. Rev. B 74, 104406 (2006);
http://dx.doi.org/10.1103/PhysRevB.74.104406
159. S. I. Denisov, K. Sakmann, P. Talkner, and P. Hänggi, Phys. Rev. B 75, 184432 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.184432
160.
160. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996);
http://dx.doi.org/10.1016/0304-8853(96)00062-5
160. J. C. Slonczewski,J. Magn. Magn. Mater. 247, 324 (2002);
http://dx.doi.org/10.1016/S0304-8853(02)00291-3
160. L. Berger, Phys. Rev. B 54, 9353 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9353
161.
161. G. Bertotti, I. Mayergoyz, and C. Serpico, Nonlinear Magnetization Dynamics in Nanosystems (Elsevier, Amsterdam, 2009).
162.
162. J. He, J. Z. Sun, and S. Zhang, J. Appl. Phys. 101, 09A501 (2007).
http://dx.doi.org/10.1063/1.2668365
163.
163. L. Landau and E. Lifshitz, Mécanique Quantique (Mir, Moscow, 1967).
164.
164. H. C. Brinkman, Physica (Utrecht) 22, 149 (1956).
http://dx.doi.org/10.1016/S0031-8914(56)80019-0
165.
165. R. Landauer and J. A. Swanson, Phys. Rev. 121, 1668 (1961).
http://dx.doi.org/10.1103/PhysRev.121.1668
166.
166. J. Frenkel, The Kinetic Theory of Liquids (Oxford University Press, London, 1946).
167.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/112/12/10.1063/1.4754272
Loading
/content/aip/journal/jap/112/12/10.1063/1.4754272
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/112/12/10.1063/1.4754272
2012-12-17
2014-09-22

Abstract

The reversal time, superparamagnetic relaxation time, of the magnetization of fine single domain ferromagnetic nanoparticles owing to thermal fluctuations plays a fundamental role in information storage, paleomagnetism, biotechnology, etc. Here a comprehensive tutorial-style review of the achievements of fifty years of development and generalizations of the seminal work of Brown [Phys. Rev. , 1677 (1963)] on thermal fluctuations of magnetic nanoparticles is presented. Analytical as well as numerical approaches to the estimation of the damping and temperature dependence of the reversal time based on Brown's Fokker-Planck equation for the evolution of the magnetic moment orientations on the surface of the unit sphere are critically discussed while the most promising directions for future research are emphasized.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/112/12/1.4754272.html;jsessionid=2xx90oo8kcr31.x-aip-live-06?itemId=/content/aip/journal/jap/112/12/10.1063/1.4754272&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermal fluctuations of magnetic nanoparticles: Fifty years after Brown
http://aip.metastore.ingenta.com/content/aip/journal/jap/112/12/10.1063/1.4754272
10.1063/1.4754272
SEARCH_EXPAND_ITEM