1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Oxygen partial pressure dependence of the SiC oxidation process studied by in-situ spectroscopic ellipsometry
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/112/2/10.1063/1.4736801
1.
1. H. Matsunami, Jpn. J. Appl. Phys., Part 1 43, 6835 (2004).
http://dx.doi.org/10.1143/JJAP.43.6835
2.
2. G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, and J. W. Palmour, IEEE Electron Device Lett. 22, 176 (2001).
http://dx.doi.org/10.1109/55.915604
3.
3. A. Suzuki, H. Ashida, N. Furui, K. Mameno, and H. Matsunami, Jpn. J. Appl. Phys., Part 1 21, 579 (1982).
http://dx.doi.org/10.1143/JJAP.21.579
4.
4. Z. Zheng, R. E. Tressler, and K. E. Spear, J. Electrochem. Soc. 137, 854 (1990).
http://dx.doi.org/10.1149/1.2086568
5.
5. S. Song, S. Dhar, L. C. Feldman, G. Chung, and J. R. Williams, J. Appl. Phys. 95, 4953 (2004).
http://dx.doi.org/10.1063/1.1690097
6.
6. K. Kakubari, R. Kuboki, Y. Hijikata, H. Yaguchi, and S. Yoshida, Mater. Sci. Forum 527–529, 1031 (2006).
http://dx.doi.org/10.4028/www.scientific.net/MSF.527-529.1031
7.
7. B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).
http://dx.doi.org/10.1063/1.1713945
8.
8. T. Yamamoto, Y. Hijikata, H. Yaguchi, and S. Yoshida, Jpn. J. Appl. Phys., Part 2 46, L770 (2007).
http://dx.doi.org/10.1143/JJAP.46.L770
9.
9. T. Yamamoto, Y. Hijikata, H. Yaguchi, and S. Yoshida, Jpn. J. Appl. Phys., Part 1 47, 7803 (2008).
http://dx.doi.org/10.1143/JJAP.47.7803
10.
10. T. Yamamoto, Y. Hijikata, H. Yaguchi, and S. Yoshida, Mater. Sci. Forum 600–603, 667 (2009).
http://dx.doi.org/10.4028/www.scientific.net/MSF.600-603.667
11.
11. E. A. Ray, J. Rozen, S. Dhar, L. C. Feldman, and J. R. Williams, J. Appl. Phys. 103, 023522 (2008).
http://dx.doi.org/10.1063/1.2832408
12.
12. H. Z. Massoud, J. D. Plummer, and E. A. Irene, J. Electrochem. Soc. 132, 2685 (1985).
http://dx.doi.org/10.1149/1.2113648
13.
13. Y. Hijikata, H. Yaguchi, and S. Yoshida, Appl. Phys. Express 2, 021203 (2009).
http://dx.doi.org/10.1143/APEX.2.021203
14.
14. T. Iida, Y. Tomioka, K. Yoshimoto, M. Midorikawa, H. Tukada, Y. Hijikata, M. Orihara, H. Yaguchi, M. Yoshikawa, Y. Ishida, and S. Yoshida, Jpn. J. Appl. Phys., Part 1 41, 800 (2002).
http://dx.doi.org/10.1143/JJAP.41.800
15.
15. H. Seki, Y. Hijikata, H. Yaguchi, and S. Yoshida, Mater. Sci. Forum 615–617, 505 (2009).
http://dx.doi.org/10.4028/www.scientific.net/MSF.615-617.505
16.
16. M. E. Thomas, Handbook of Optical Constants of Solids (Academic, 1991), p. 177.
17.
17. P. Petrik, E. Szilágyi, T. Lohner, G. Battistig, M. Fried, G. Dobrik, and L. P. Biró, J. Appl. Phys. 106, 123506 (2009).
http://dx.doi.org/10.1063/1.3270424
18.
18. H. Hashimoto, Y. Hijikata, H. Yaguchi, and S. Yoshida, Appl. Surf. Sci. 255, 8648 (2009).
http://dx.doi.org/10.1016/j.apsusc.2009.06.058
19.
19. K. Kouda, Y. Hijikata, H. Yaguchi, and S. Yoshida, Mater. Sci. Forum 645–648, 813 (2010).
http://dx.doi.org/10.4028/www.scientific.net/MSF.645-648.813
20.
20. J. Farjas and P. Roura, J. Appl. Phys. 102, 054902 (2007).
http://dx.doi.org/10.1063/1.2773693
21.
21. H. Kageshima, K. Shiraishi, and M. Uematsu, Jpn. J. Appl. Phys., Part 2 38, L971 (1999).
http://dx.doi.org/10.1143/JJAP.38.L971
22.
22.The oxygen flux impinging from a gaseous atmosphere of pressure p to the solid surface is 3 × 1022p (m–2s–1). Since the areal density of Si atoms on SiO2 is about 8 × 1018 (m–2), the flux in the case that p = 0.02 atm corresponds to 75 [monolayer/s], which is the oxygen flux necessary for the oxide growth rate of 105 nm/h.
http://aip.metastore.ingenta.com/content/aip/journal/jap/112/2/10.1063/1.4736801
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Oxide thickness dependence at various oxygen partial pressures on the (000−1) C-face: (a) Interface layer thickness and (b) n (see Eq. (1)).

Image of FIG. 2.

Click to view

FIG. 2.

Oxide thickness dependence at various oxygen partial pressures on the (0001) Si-face: (a) Interface layer thickness and (b) n (see Eq. (1)).

Image of FIG. 3.

Click to view

FIG. 3.

Oxide growth rates as a function of oxide thickness at various oxygen partial pressures on (a) the (000−1) C-face and (b) the (0001) Si-face. Dotted lines are fitted to the experimental data using exponential functions.

Image of FIG. 4.

Click to view

FIG. 4.

Oxygen partial pressure dependence of the initial growth rate, R 0 (unfilled symbols), and the gentle deceleration growth rate, R 1 (filled symbols), on the C-face (circles) and Si-face (triangles).

Image of FIG. 5.

Click to view

FIG. 5.

Schematic illustration of the Si–C emission model.13 It is to be noted that Si and C atoms are emitted into not only to the SiO2-side, but also the SiC-side.

Loading

Article metrics loading...

/content/aip/journal/jap/112/2/10.1063/1.4736801
2012-07-16
2014-04-16

Abstract

The oxygen partial pressure dependence of the Siliconcarbide(SiC)oxidation process was investigated using in-situ spectroscopic ellipsometry at oxygen partial pressures between 1 and 0.02 atm for 4 H-SiC (0001) Si- and (000−1) C-faces. Analyses of the interface structure between the oxide and SiC indicate that the interface layer has a modified SiC-like structure around 1 nm thick accompanied by oxide growth; the structure and thickness do not change after an oxide growth of about 7 nm. The oxide thickness dependence of the growth rate at sub-atmospheric oxygen pressures is similar to that at 1 atm pressure, that is, just after oxidation starts, the growth rate rapidly decreases as the oxidation proceeds. After an oxide growth of about 7 nm thick, the deceleration of the growth rate suddenly changes to a gentle slope. The thickness at which deceleration changes depends slightly on both the oxygen partial pressure and surface polarity of the SiC substrate. The origins of these two deceleration stages, i.e., rapid and gentle decelerations, are discussed from their pressure dependencies based on the SiCoxidation model taking into account the interfacial emission of Si and C atoms. The formation and structures of the interface layers are also discussed in relation to the oxidation mechanisms.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/112/2/1.4736801.html;jsessionid=2k0o2ltpxe3nr.x-aip-live-01?itemId=/content/aip/journal/jap/112/2/10.1063/1.4736801&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Oxygen partial pressure dependence of the SiC oxidation process studied by in-situ spectroscopic ellipsometry
http://aip.metastore.ingenta.com/content/aip/journal/jap/112/2/10.1063/1.4736801
10.1063/1.4736801
SEARCH_EXPAND_ITEM