1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Multi-functional dielectric elastomer artificial muscles for soft and smart machines
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/112/4/10.1063/1.4740023
1.
1. R. Pelrine, R. D. Kornbluh, Q. Pei, S. Stanford, S. Oh, and J. Eckerle, Proc. SPIE 4695, 126 (2002).
http://dx.doi.org/10.1117/12.475157
2.
2. M. H. Dickinson, C. T. Farley, R. J. Full, M. A. R. Koehl, R. Kram, and S. Lehman, Science 288(5463 ), 100 (2000).
http://dx.doi.org/10.1126/science.288.5463.100
3.
3. F. H. Martini, M. J. Timmons, and R. B. Tallitsch, Human Anatomy, 6th ed. (Pearson Education, San Francisco, 2008).
4.
4. G. A. Bekey, Autonomous Robots: From Biological Inspiration to Implementation and Control (MIT, Boston, 2005).
5.
5. S. Mense, Pain 54(3 ), 241 (1993).
http://dx.doi.org/10.1016/0304-3959(93)90027-M
6.
6. A. R. Hobson and Q. Aziz, News Physiol. Sci. 18(3 ), 109 (2003).
http://dx.doi.org/10.1152/nips.01428.2002
7.
7. F. Daerden and D. Lefeber, Eur. J. Mech. Environ. Eng. 47(1 ), 10 (2002).
8.
8. R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D. Mazzeo, X. Chen, M. Wang, and G. M. Whitesides, “ Multigait soft robotProc. Natl. Acad. Sci. U.S.A. (2011).
http://dx.doi.org/10.1073/pnas.1116564108
9.
9. J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. Takshi, R. Z. Pytel, S. R. Lafontaine, P. A. Wieringa, and I. W. Hunter, IEEE J. Ocean. Eng. 29(3 ), 706 (2004).
http://dx.doi.org/10.1109/JOE.2004.833135
10.
10. F. Carpi, S. Bauer, and D. De Rossi, Science 330(6012 ), 1759 (2010).
http://dx.doi.org/10.1126/science.1194773
11.
11. W. C. Röntgen, Ann. Phys. Chem. 11, 771 (1880).
12.
12. C. Keplinger, M. Kaltenbrunner, N. Arnold, and S. Bauer, Proc. Natl. Acad. Sci. U.S.A. 107(10 ), 4505 (2010).
http://dx.doi.org/10.1073/pnas.0913461107
13.
13. R. Pelrine, R. Kornbluh, J. Joseph, and S. Chiba, in Tenth Annual International Workshop on Micro Electro Mechanical Systems, 26–30 January 1997 (IEEE, 1997), p. 238.
14.
14. R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, Sens. Actuators, A 64(1 ), 77 (1998).
http://dx.doi.org/10.1016/S0924-4247(97)01657-9
15.
15. T. A. Gisby, S. Xie, E. P. Calius, and I. A. Anderson, Proc. SPIE 7287, 728707 (2009).
http://dx.doi.org/10.1117/12.815645
16.
16. G. Kofod, “ Dielectric elastomer actuators,” Ph.D. thesis (The Technical University of Denmark, 2001), available at: www.risoe.dk/rispubl/pol/polpdf/ris-r-1286.pdf.
17.
17. M. Wissler, “ Modeling dielectric elastomer actuators,” Dr. sc. thesis (ETH, Zurich, 2007), available at: www.empa.ch/plugin/template/empa/*/78910.
18.
18. Z. Suo, Acta Mech. Solida Sinica 23(6 ), 549 (2010).
http://dx.doi.org/10.1016/S0894-9166(11)60004-9
19.
19. R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, Science 287(5454 ), 836 (2000).
http://dx.doi.org/10.1126/science.287.5454.836
20.
20. C. Keplinger, T. Li, R. Baumgartner, Z. Suo, and S. Bauer, Soft Matter 8, 285 (2012).
http://dx.doi.org/10.1039/c1sm06736b
21.
21. P. Brochu and Q. Pei, Macromol. Rapid Commun. 31(1 ), 10 (2010).
http://dx.doi.org/10.1002/marc.200900425
22.
22. X. Qi, Z. Zheng, and S. Boggs, in Presented at the 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2003.
23.
23. L. A. Dissado and J. C. Fothergill, Electrical Degradation and Breakdown in Polymers (Peter Peregrinus, Stevenage, UK, 1992).
24.
24. R. D. Kornbluh, R. Pelrine, Q. Pei, S. Oh, and J. Joseph, Proc. SPIE 3987, 51 (2000).
http://dx.doi.org/10.1117/12.387763
25.
25. T. McKay, “ Towards a wearable contractile dielectric elastomer actuator,” ME thesis (University of Auckland, 2006).
26.
26. J.-S. Plante and S. Dubowsky, Int. J. Solids Struct. 43(25–26), 7727 (2006).
http://dx.doi.org/10.1016/j.ijsolstr.2006.03.026
27.
27. X. Zhao and Z. Suo, Appl. Phys. Lett. 91(6 ), 061921 (2007).
http://dx.doi.org/10.1063/1.2768641
28.
28. M. C. Boyce and E. M. Arruda, Rubber Chem. Technol. 73(3 ), 504 (2000).
http://dx.doi.org/10.5254/1.3547602
29.
29. X. Zhao and Z. Suo, Phys. Rev. Lett. 104, 178302 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.178302
30.
30. R. Kornbluh, A. Wong-Foy, R. Pelrine, H. Prahlad, and B. McCoy, “ Long-lifetime all-polymer artificial muscle,” MRS Proc. (2010), doi: 10.1557/PROC-1271-JJ03-01.
http://dx.doi.org/10.1557/PROC-1271-JJ03-01
31.
31. N. Bonwit, J. Heim, M. Rosenthal, C. Duncheon, and A. Beavers, Proc. SPIE 6168, 616805 (2006).
http://dx.doi.org/10.1117/12.658775
32.
32. M. Rosenthal, personal communication (7 February 2012).
33.
33. T. A. Gisby, S. Q. Xie, E. P. Calius, and I. A. Anderson, Proc. SPIE 7642, 764213 (2010).
http://dx.doi.org/10.1117/12.847835
34.
34. F. Carpi and D. D. Rossi, Bioinspirat. Biomimet. 2(2 ), S50 (2007).
http://dx.doi.org/10.1088/1748-3182/2/2/S06
35.
35. G. Kovacs, P. Lochmatter, and M. Wissler, Smart Mater. Struct. 16(2 ), S306 (2007).
http://dx.doi.org/10.1088/0964-1726/16/2/S16
36.
36. Y. Bar-Cohen, Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 221(4 ), 553 (2007).
http://dx.doi.org/10.1243/09544100JAERO141
37.
37. Q. Pei, R. Pelrine, S. Stanford, R. Kornbluh, and M. Rosenthal, Synth. Met. 135–136, 129 (2003).
http://dx.doi.org/10.1016/S0379-6779(02)00535-0
38.
38. Q. Pei, M. Rosenthal, S. Stanford, H. Prahlad, and R. Pelrine, Smart Mater. Struct. 13(5 ), N86 (2004).
http://dx.doi.org/10.1088/0964-1726/13/5/N03
39.
39. R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei, and S. Chiba, Mater. Sci. Eng. C 11(2 ), 89 (2000).
http://dx.doi.org/10.1016/S0928-4931(00)00128-4
40.
40. M. Hodgins, A. York, and S. Seelecke, Smart Mater. Struct. 20(9 ), 094012 (2011).
http://dx.doi.org/10.1088/0964-1726/20/9/094012
41.
41. G. Berselli, R. Vertechy, G. Vassura, and V. Parenti Castelli, J. Mech. Rob. 1(3 ), 7 (2009).
http://dx.doi.org/10.1115/DETC2008-49836
42.
42. H. R. Choi, K. M. Jung, J. W. Kwak, S. W. Leea, H. M. Kim, J. W. Jeonb, and J. D. Nam, in Proceedings of the 2003 IEEE International Conference on Robotics and Automation, Taipei, Tairxo, Vol. 2, 14–19 September 2003 (IEEE, 2003), p. 1857.
43.
43. M. Potz, M. Artusi, M. Soleimani, C. Menon, S. Cocuzza, and S. Debei, Smart Mater. Struct. 19(12 ), 127001 (2010).
http://dx.doi.org/10.1088/0964-1726/19/12/127001
44.
44. H. R. Choi, K. Jung, S. Ryew, J.-D. Nam, J. Jeon, J. C. Koo, and K. Tanie, IEEE/ASME Trans. Mechatron. 10(5 ), 581 (2005).
http://dx.doi.org/10.1109/TMECH.2005.856108
45.
45. M. Rosenthal and Q. Pei, in Dielectric Elastomers as Electromechanical Transducers, edited by F. Carpi, D. De Rossi, R. Kornbluh et al. (Elsevier, Amsterdam, 2008), p. 91.
46.
46. K. Jung, J. C. Koo, J. Nam, Y. K. Lee, and H. R. Choi, Bioinspirat. Biomimet. 2, S42 (2007).
http://dx.doi.org/10.1088/1748-3182/2/2/S05
47.
47. J.-S. Plante, “ Dielectric elastomer actuators for binary robotics and mechatronics,” Ph.D. thesis (Massachusetts Institute of Technology, 2006), available at: http://hdl.handle.net/1721.1/35305.
48.
48. Z. Yu, W. Yuan, P. Brochu, B. Chen, Z. Liu, and Q. Pei, Appl. Phys. Lett. 95(19 ), 192904 (2009).
http://dx.doi.org/10.1063/1.3263729
49.
49. A. T. Conn and J. Rossiter, Proc. SPIE 7976, 79761Z (2011).
http://dx.doi.org/10.1117/12.880438
50.
50. A. T. Conn and J. Rossiter, Smart Mater. Struct. 21, 035012 (2012).
http://dx.doi.org/10.1088/0964-1726/21/3/035012
51.
51. J. Rossiter, P. Walters, and B. Stoimenov, Proc. SPIE 7287, 72870H (2009).
http://dx.doi.org/10.1117/12.815746
52.
52. C. Jordi et al., Bioinspirat. Biomimet. 5(2), 026007 (2010).
http://dx.doi.org/10.1088/1748-3182/5/2/026007
53.
53. G. Kofod, M. Paajanen, and S. Bauer, Appl. Phys. A: Mater. Sci. Process. 85(2 ), 141 (2006).
http://dx.doi.org/10.1007/s00339-006-3680-3
54.
54. G. Kofod, W. Wirges, M. Paajanen, and S. Bauer, Appl. Phys. Lett. 90(8 ), 081916 (2007).
http://dx.doi.org/10.1063/1.2695785
55.
55. B. O’Brien, T. McKay, E. Calius, S. Xie, and I. Anderson, Appl. Phys. A: Mater. Sci. Process. 94(3 ), 507 (2009).
http://dx.doi.org/10.1007/s00339-008-4946-8
56.
56. F. Carpi, A. Migliore, S. Giorgio, and D. De Rossi, Smart Mater. Struct. 14(6 ), 1210 (2005).
http://dx.doi.org/10.1088/0964-1726/14/6/014
57.
57. F. Carpi, C. Salaris, and D. De Rossi, Smart Mater. Struct. 16(2 ), S300 (2007).
http://dx.doi.org/10.1088/0964-1726/16/2/S15
58.
58. G. Kovacs, L. During, S. Michel, and G. Terrasi, Sens. Actuators, 155A(2 ), 299 (2009).
http://dx.doi.org/10.1016/j.sna.2009.08.027
59.
59. S. M. Ha, W. Yuan, Q. Pei, R. Pelrine, and S. Stanford, Adv. Mater. 18(7 ), 887 (2006).
http://dx.doi.org/10.1002/adma.200502437
60.
60. F. Carpi and D. De Rossi, in Dielectric Elastomers as Electromechanical Transducers, edited by F. Carpi, D. De Rossi, R. Kornbluh et al. (Elsevier, Amsterdam, 2008), p. 123.
61.
61. H. F. Schlaak, P. Lotz, and M. Matysek, in Dielectric Elastomers as Electromechanical Transducers, edited by F. Carpi, D. De Rossi, R. Kornbluh et al. (Elsevier, Amsterdam, 2008), p. 109.
62.
62. P. Lotz, M. Matysek, and H. F. Schlaak, IEEE/ASME Trans. Mechatron. 16(1 ), 58 (2011).
http://dx.doi.org/10.1109/TMECH.2010.2090164
63.
63. P. E. K. Donaldson, Eng. Sci. Educ. J. 3(3 ), 117 (1994).
http://dx.doi.org/10.1049/esej:19940308
64.
64. R. Kornbluh, R. E. Pelrine, J. Eckerle, and J. Joseph, in Proceedings of the IEEE International Conference on Robotics and Automation, 16–20 May 1998, Vol. 3, (IEEE, 1998), pp. 21472154.
65.
65. I. A. Anderson, E. P. Calius, T. Gisby, T. Hale, T. McKay, B. O’Brien, and S. Walbran, Proc. SPIE 7287, 72871H (2009).
http://dx.doi.org/10.1117/12.815823
66.
66. I. Anderson, T. Hale, T. Gisby, T. Inamura, T. McKay, B. O’Brien, S. Walbran, and E. Calius, Appl. Phys. A 98(1 ), 75 (2010).
http://dx.doi.org/10.1007/s00339-009-5434-5
67.
67. I. Anderson, T. Tse, T. Inamura, B. O’Brien, T. McKay, and T. Gisby, Appl. Phys. Lett. 98, 123704 (2011).
http://dx.doi.org/10.1063/1.3565195
68.
68. J. D. Madden, Science 318(5853 ), 1094 (2007).
http://dx.doi.org/10.1126/science.1146351
69.
69. B. M. O’Brien, E. P. Calius, T. Inamura, S. Q. Xie, and I. A. Anderson, Appl. Phys. A 100(2 ), 385 (2010).
http://dx.doi.org/10.1007/s00339-010-5857-z
70.
70. B. M. O’Brien, T. G. McKay, T. A. Gisby, and I. A. Anderson, Appl. Phys. Lett. 100(7 ), 074108 (2012).
http://dx.doi.org/10.1063/1.3685708
71.
71. T. A. Gisby, B. M. O’Brien, S. Q. Xie, E. P. Calius, and I. A. Anderson, Proc. SPIE 7976, 797620 (2011).
http://dx.doi.org/10.1117/12.880711
72.
72. T. Gisby, “Smart artificial muscles,” Ph.D. thesis (University of Auckland, 2011), available at: http://hdl.handle.net/2292/7158.
73.
73. N. C. Goulbourne, S. Son, and J. W. Fox, Proc. SPIE 6524, 652414 (2007).
http://dx.doi.org/10.1117/12.716274
74.
74. S. Son and N. C. Goulbourne, Int. J. Solids Struct. 47, 2672 (2010).
http://dx.doi.org/10.1016/j.ijsolstr.2010.05.019
75.
75. L. A. Toth and A. A. Goldenberg, Proc. SPIE 4695, 323 (2002).
http://dx.doi.org/10.1117/12.475179
76.
76. K. Jung, K. J. Kim, and H. R. Choi, Sens. Actuators, A 143(2 ), 343 (2008).
http://dx.doi.org/10.1016/j.sna.2007.10.076
77.
77. K. Jung, K. J. Kim, and H. R. Choi, Proc. SPIE 6927, 69271S (2008).
http://dx.doi.org/10.1117/12.776831
78.
78. N. H. Chuc, D. V. Thuy, J. Park, D. Kim, J. Koo, Y. Lee, J.-D. Nam, and H. R. Choi, Proc. SPIE 6927, 69270V (2008).
http://dx.doi.org/10.1117/12.777900
79.
79. M. Kujawski, J. D. Pearse, and E. Smela, Carbon 48(9 ), 2409 (2010).
http://dx.doi.org/10.1016/j.carbon.2010.02.040
80.
80. B. O’Brien, J. Thode, I. Anderson, E. Calius, and E. Haemmerle, and S. Xie, Proc. SPIE 6524, 652415 (2007).
http://dx.doi.org/10.1117/12.715823
81.
81. M. Benslimane, P. Graveson, and P. Sommer-Larsen, Proc. SPIE 4695, 150 (2002).
http://dx.doi.org/10.1117/12.475160
82.
82. P. Sommer-Larsen and M. Benslimane, in Dielectric Elastomers as Electromechanical Transducers, edited by F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, and P. Sommer-Larsen (Elsevier, Amsterdam, 2008).
83.
83. M. Matysek, H. Haus, H. Moessinger, D. Brokken, P. Lotz, and H. F. Schlaak, Proc. SPIE 7976, 797612 (2011).
http://dx.doi.org/10.1117/12.879438
84.
84. T. A. Gisby, E. P. Calius, S. Xie, and I. A. Anderson, Proc. SPIE 6927, 69271C (2008).
http://dx.doi.org/10.1117/12.776503
85.
85. B. O’Brien, T. Gisby, E. Calius, S. Xie, and I. Anderson, Proc. SPIE 7287, 728706 (2009).
http://dx.doi.org/10.1117/12.815818
86.
86. B. M. O’Brien, “ Simulation, fabrication, and control of biomimetic actuator arrays,” Ph.D. thesis (University of Auckland, 2011), avaiilable at: http://hdl.handle.net/2292/6058.
87.
87. I. Anderson, The Surface of the Sea, Encounters with New Zealand’s Upper Ocean Life (Penguin, Auckland, NZ, 2007), p. 151.
88.
88. C. Keplinger, M. Kaltenbrunner, N. Arnold, and S. Bauer, Appl. Phys. Lett. 92(19 ), 192903 (2008).
http://dx.doi.org/10.1063/1.2929383
89.
89. J.-S. Plante and S. Dubowsky, Smart Mater. Struct. 16(2 ), S227 (2007).
http://dx.doi.org/10.1088/0964-1726/16/2/S05
90.
90. R. Pelrine and R. Kornbluh, in Dielectric Elastomers as Electromechanical Transducers, edited by F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, and P. Sommer-Larsen (Elsevier, Amsterdam, 2008), p. 3.
91.
91. R. Pelrine, R. D. Kornbluh, J. Eckerle, P. Jeuck, S. Oh, Q. Pei, and S. Stanford, Proc. SPIE 4329, 148 (2001).
http://dx.doi.org/10.1117/12.432640
92.
92. R. E. Pelrine, R. D. Kornbluh, J. S. Eckerle, and Q. Pei, U.S. patent No. 6628040 (23 February 2001).
93.
93. R. E. Pelrine, R. D. Kornbluh, J. S. Eckerle, S. E. Stanford, S. Oh, and P. E. Garcia, U.S. patent No. 6768246 (23 February 2001).
94.
94. C. Jean-Mistral, S. Basrour, and J.-J. Chaillout, Proc. SPIE 6927, 692716 (2008).
http://dx.doi.org/10.1117/12.776879
95.
95. G. Kang, K.-S. Kim, and S. Kim, Rev. Sci. Instrum. 82(4 ), 046101 (2011).
http://dx.doi.org/10.1063/1.3541811
96.
96. H. Prahlad, R. D. Kornbluh, R. Pelrine, S. Stanford, J. Eckerle, and S. Oh, in Proc. ISSS (2005), Vol. 13, p. 100.
97.
97. M. Waki, S. Chiba, R. Kornbluh, R. Pelrine, and U. Kunihiko, in Oceans 2008—MTS/IEEE Kobe Techno-Ocean, 8–11 April 2008, pp. 1–3 (2008).
98.
98. I. A. Anderson, I. A. Ieropoulos, T. McKay, B. O’Brien, and C. Melhuish, IEEE/ASME Trans. Mechatron. 16(1 ), 107 (2011).
http://dx.doi.org/10.1109/TMECH.2010.2090894
99.
99. T. Hiscock, M. Warner, and P. Palffy-Muhoray, J. Appl. Phys. 109(10 ), 104506 (2011).
http://dx.doi.org/10.1063/1.3581134
100.
100. S. Chiba, M. Waki, R. Kornbluh, and R. Pelrine, Proc. SPIE 6927, 692715 (2008).
http://dx.doi.org/10.1117/12.778345
101.
101. C. Jean-Mistral, S. Basrour, J. J. Chaillout, and A. Bonvilain, in Dans Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (EDA, Stresa, Italy, 2007).
102.
102. C. Jean-Mistral, S. Basrour, and J.-J. Chaillout, Smart Mater. Struct. 19(10 ), 105006 (2010).
http://dx.doi.org/10.1088/0964-1726/19/10/105006
103.
103. S. J. A. Koh, X. Zhao, and Z. Suo, Appl. Phys. Lett. 94(26 ), 262902 (2009).
http://dx.doi.org/10.1063/1.3167773
104.
104. S. J. A. Koh, C. Keplinger, T. Li, S. Bauer, and Z. Suo, IEEE/ASME Trans. Mechatron. 16(1 ), 33 (2011).
http://dx.doi.org/10.1109/TMECH.2010.2089635
105.
105. Y. Liu, L. Liu, Z. Zhang, Y. Jiao, S. Sun, and J. Leng, EPL 90(3 ), 36004 (2010).
http://dx.doi.org/10.1209/0295-5075/90/36004
106.
106. R. Díaz-Calleja and P. Llovera-Segovia, J. Polym. Sci., Part B: Polym. Phys. 49(19 ), 2023 (2010).
http://dx.doi.org/10.1002/polb.22078
107.
107. C. Graf, J. Maas, and D. Schapeler, Proc. SPIE 7642, 764217 (2010).
http://dx.doi.org/10.1117/12.853597
108.
108. C. Graf, J. Maas, and D. Schapeler, in 10th IEEE International Conference on Solid Dielectrics (ICSD), 4–9 July 2010, pp. 1–5 (IEEE, 2010).
109.
109. P. Brochu, H. Li, X. Niu, and Q. Pei, Proc. SPIE 7642, 76422J (2010).
http://dx.doi.org/10.1117/12.847736
110.
110. R. Kaltseis, C. Keplinger, R. Baumgartner, M. Kaltenbrunner, T. Li, P. Mächler, R. Schwödiauer, Z. Suo, and S. Bauer, Appl. Phys. Lett. 99, 162904 (2011).
http://dx.doi.org/10.1063/1.3653239
111.
111. P. Brochu, W. Yuan, H. Zhang, and Q. Pei, ASME Conf. Proc. 197, 48968 (2009).
http://dx.doi.org/10.1115/SMASIS2009-1335
112.
112. G. Lin, M. Chen, and D. Song, in International Conference on Energy and Environment Technology (ICEET ’09), 16–18 October 2009, Vol. 1, pp. 782786 (2009).
113.
113. C. Jean-Mistral and S. Basrour, Proc. SPIE 7642, 764209 (2010).
http://dx.doi.org/10.1117/12.847771
114.
114. R. Pelrine, R. Kornbluh, J. Joseph, and H. Prahlad, U.S. patent No. 7977923 (6 March 2008).
115.
115. R. Kornbluh, R. E. Pelrine, H. Prahlad, S. Chiba, J. S. Eckerle, B. Chavez, S. E. Stanford, and T. Low, U.S. patent No. 7557456 (9 March 2007).
116.
116. T. McKay, B. O’Brien, E. Calius, and I. Anderson, Smart Mater. Struct. 19(5 ), 055025 (2010).
http://dx.doi.org/10.1088/0964-1726/19/5/055025
117.
117. S. Chiba, M. Waki, R. Kornbluh, and R. Pelrine, Proc. SPIE 6524, 652424 (2007).
http://dx.doi.org/10.1117/12.728671
118.
118. T. McKay, B. O’Brien, E. Calius, and I. Anderson, Proc. SPIE 7976, 79760B (2011).
http://dx.doi.org/10.1117/12.880717
119.
119. T. McKay, B. O’Brien, E. Calius, and I. Anderson, Appl. Phys. Lett. 97(6 ), 062911 (2010).
http://dx.doi.org/10.1063/1.3478468
120.
120. T. G. McKay, B. M. O’Brien, E. P. Calius, and I. A. Anderson, Appl. Phys. Lett. 98(14 ), 142903 (2011).
http://dx.doi.org/10.1063/1.3572338
121.
121. J. Nicod, Proc. Cambridge Philos. Soc. 19, 32 (1920).
122.
122. B. M. O’Brien, T. G. McKay, S. Q. Xie, E. P. Calius, and I. A. Anderson, Proc. SPIE 7976, 797621 (2011).
http://dx.doi.org/10.1117/12.880718
123.
123. B. O’Brien and I. A. Anderson, IEEE/ASME Trans. Mechatron. 17(1 ), 197 (2011), doi:10.1109/TMECH.2011.2165553.
http://dx.doi.org/10.1109/TMECH.2011.2165553
124.
124. M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi, and P. Dario, Bioinspirat. Biomimet. 6(3 ), 036002 (2011).
http://dx.doi.org/10.1088/1748-3182/6/3/036002
125.
125. G. Sumbre, G. Yoram, G. Fiorito, T. Flash, and B. Hochner, Science 293(5536 ), 1845 (2001).
http://dx.doi.org/10.1126/science.1060976
126.
126. N. H. Chuc, N. H. L. Vuong, D. S. Kim, H. P. Moon, J. C. Koo, Y. K. Lee, J.-D. Nam, and H. R. Choi, IEEE/ASME Trans. Mechatron. 16(1 ), 167 (2011).
http://dx.doi.org/10.1109/TMECH.2009.2038223
127.
127. K. Flittner, M. Schlosser, P. Lotz, M. Matysek, and H. F. Schlaak, Proc. SPIE 7642, 76422W (2010).
http://dx.doi.org/10.1117/12.847473
128.
128. M. Aschwanden, M. Beck, and A. Stemmer, IEEE Photon. Technol. Lett. 19(14 ), 1090 (2007).
http://dx.doi.org/10.1109/LPT.2007.900055
129.
129. B. F. Grewe, F. F. Voigt, M. van’t Hoff, and F. Helmchen, Biomed. Opt. Exp. 7(2 ), 2035 (2011).
http://dx.doi.org/10.1364/BOE.2.002035
130.
130. S. Akbari, M. Niklaus, and H. Shea, Proc. SPIE 7642, 76420H (2010).
http://dx.doi.org/10.1117/12.847125
131.
131. P. Dubois, A. Rosset, S. Koster, J. Stauffer, S. Mikhaïlov, M. Dadras, N.-F. de Rooij, and H. Shea, Sens. Actuators, 130–131, 147 (2006).
http://dx.doi.org/10.1016/j.sna.2005.11.069
132.
132. S. Rosset, M. Niklaus, P. Dubois, and H. R. Shea, J. Microelectromech. Syst. 18(6 ), 1300 (2009).
http://dx.doi.org/10.1109/JMEMS.2009.2031690
133.
133. K. Flittner, M. Schlosser, and H. F. Schlaak, Proc. SPIE 7976, 79761K (2011).
http://dx.doi.org/10.1117/12.880050
134.
134. T. McKay, “ Soft, low complexity dielectric elastomer generators,” Ph.D. thesis (University of Auckland, 2011), available at: http://hdl.handle.net/2292/7661.
135.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/112/4/10.1063/1.4740023
Loading
/content/aip/journal/jap/112/4/10.1063/1.4740023
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/112/4/10.1063/1.4740023
2012-08-28
2014-07-22

Abstract

Dielectric elastomer (DE) actuators are popularly referred to as artificial muscles because their impressive actuation strain and speed, low density, compliant nature, and silent operation capture many of the desirable physical properties of muscle. Unlike conventional robots and machines, whose mechanisms and drive systems rapidly become very complex as the number of degrees of freedom increases, groups of DE artificial muscles have the potential to generate rich motions combining many translational and rotational degrees of freedom. These artificial muscle systems can mimic the agonist-antagonist approach found in nature, so that active expansion of one artificial muscle is taken up by passive contraction in the other. They can also vary their stiffness. In addition, they have the ability to produce electricity from movement. But departing from the high stiffness paradigm of electromagnetic motors and gearboxes leads to new control challenges, and for soft machines to be truly dexterous like their biological analogues, they need precise control. Humans control their limbs using sensory feedback from strain sensitive cells embedded in muscle. In DE actuators, deformation is inextricably linked to changes in electrical parameters that include capacitance and resistance, so the state of strain can be inferred by sensing these changes, enabling the closed loop control that is critical for a soft machine. But the increased information processing required for a soft machine can impose a substantial burden on a central controller. The natural solution is to distribute control within the mechanism itself. The octopus arm is an example of a soft actuator with a virtually infinite number of degrees of freedom (DOF). The arm utilizes neural ganglia to process sensory data at the local “arm” level and perform complex tasks. Recent advances in soft electronics such as the piezoresistive dielectric elastomer switch (DES) have the potential to be fully integrated with actuators and sensors. With the DE switch, we can produce logic gates, oscillators, and a memory element, the building blocks for a soft computer, thus bringing us closer to emulating smart living structures like the octopus arm. The goal of future research is to develop fully soft machines that exploit smart actuation networks to gain capabilities formerly reserved to nature, and open new vistas in mechanical engineering.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/112/4/1.4740023.html;jsessionid=3g9tiq6nnf52s.x-aip-live-02?itemId=/content/aip/journal/jap/112/4/10.1063/1.4740023&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Multi-functional dielectric elastomer artificial muscles for soft and smart machines
http://aip.metastore.ingenta.com/content/aip/journal/jap/112/4/10.1063/1.4740023
10.1063/1.4740023
SEARCH_EXPAND_ITEM