1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
On physical aspects of the Jiles-Atherton hysteresis models
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/112/4/10.1063/1.4747915
1.
1. I. D. Mayergoyz, Mathematical Models of Hysteresis (Springer-Verlag, New York, 1991).
2.
2. D. C. Jiles and D. L. Atherton, J. Magn. Magn. Mater. 61, 48 (1986).
http://dx.doi.org/10.1016/0304-8853(86)90066-1
3.
3. O. Benda and J. Bydžovský, J. Magn. Magn. Mater. 160, 87 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00167-9
4.
4. D. R. Cornejo and F. P. Missell, Physica B 275, 159 (2000).
http://dx.doi.org/10.1016/S0921-4526(99)00747-4
5.
5. D. C. Crew, S. H. Farrant, P. G. McCormick, and R. Street, J. Magn. Magn. Mater. 163, 299 (1996).
http://dx.doi.org/10.1016/S0304-8853(96)00342-3
6.
6. R. G. Harrison, IEEE Trans. Magn. 45, 1922 (2009).
http://dx.doi.org/10.1109/TMAG.2008.2008010
7.
7. R. G. Harrison, IEEE Trans. Magn. 48, 1115 (2012).
http://dx.doi.org/10.1109/TMAG.2011.2170846
8.
8. D. C. Jiles, IEEE Trans. Magn. 30, 4326 (1994).
http://dx.doi.org/10.1109/20.334076
9.
9. D. C. Jiles, J. Appl. Phys. 76, 5849 (1994).
http://dx.doi.org/10.1063/1.358399
10.
10. A. Benabou, S. Clenet, and F. Piriou, Int. J. Appl. Electromagn. Mech. 19, 187 (2004).
11.
11. K. Chwastek, Math. Comput. Model. Dyn. Syst. 15(1), 95 (2009).
http://dx.doi.org/10.1080/13873950802432016
12.
12. H. Li, Q. Li, X.-B. Xu, T. Lu, J. Zhang, and L. Li, IEEE Trans. Magn. 47, 1094 (2011).
http://dx.doi.org/10.1109/TMAG.2010.2072493
13.
13. The International Standards IEC 60404-2:1996 and IEC 60404-3 (1992).
14.
14. ASTM Standards, A343, A348, A778.
15.
15. G. Bertotti, Hysteresis in Magnetism (Academic, New York, 1998).
16.
16. R. M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1951).
17.
17. V. N. Mittle and A. Mittal, Basic Electrical Engineering, 2nd ed. (Tata McGraw-Hill, New Delhi, 2006), p. 490.
18.
18. L. Petkovska and G. Cvetkovski, in Proceedings of the International Conference on Electrical Engineering, Okinawa, Japan, July 2008, Paper No. O-001.
19.
19. A. Chiba, O. Ichikawa, M. Oshima, M. Takemoto, and D. G. Dorell, Magnetic Bearings and Bearingless Drives (Elsevier, Oxford, 2005), p22.
20.
20. R. Venkataraman and P. S. Krishnaprasad, in Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, USA, 1998, p. 2443.
21.
21. F. Henrotte and K. Hameyer, IEEE Trans. Magn. 42, 899 (2006).
http://dx.doi.org/10.1109/TMAG.2006.872473
22.
22. S. E. Zirka, Y. I. Moroz, P. Marketos, A. J. Moses, and D. C. Jiles, IEEE Trans. Magn. 42, 3177 (2006).
http://dx.doi.org/10.1109/TMAG.2006.880090
23.
23. S. E. Zirka, Y. I. Moroz, P. Marketos, A. J. Moses, D. C. Jiles, and T. Matsuo, IEEE Trans. Magn. 44, 2113 (2008).
http://dx.doi.org/10.1109/TMAG.2008.2000662
24.
24. Grain-Oriented Electrical Sheet Steel Catalogue (Nippon Steel Corporation, Japan, 1972).
25.
25. ARMCO Design Manual (Armco Inc., Middletown, Ohio, 1979).
26.
26. S. Zurek, P. Marketos, T. Meydan, and A. J. Moses, IEEE Trans. Magn. 41, 4242 (2005).
http://dx.doi.org/10.1109/TMAG.2005.854438
27.
27. S. E. Zirka, Y. I. Moroz, C. M. Arturi, and A. J. Moses, IEEE Trans. Power Deliv. 26, 2352 (2011).
http://dx.doi.org/10.1109/TPWRD.2011.2140404
28.
28. S. E. Zirka, Y. I. Moroz, P. Marketos, and A. J. Moses, IEEE Trans. Magn. 40, 390 (2004).
http://dx.doi.org/10.1109/TMAG.2004.824137
29.
29. J. V. Leite, N. Sadowski, P. Kuo-Peng, and A. Benabou, J. Microwaves, Optoelectron. Electromagn. Appl. 8(1), 49S (2009).
30.
30. S. E. Zirka, Y. I. Moroz, and E. Della Torre, IEEE Trans. Magn. 41, 2426 (2005).
http://dx.doi.org/10.1109/TMAG.2005.854335
31.
31. D. C. Jiles, IEEE Trans. Magn. 28, 2602 (1992).
http://dx.doi.org/10.1109/20.179570
32.
32. A. Benabou, S. Clénet, and F. Piriou, J. Magn. Magn. Mater. 261(1–2), 139 (2003).
http://dx.doi.org/10.1016/S0304-8853(02)01463-4
33.
33. K. Chwastek and J. Szczyglowski, J. Magn. Magn. Mater. 314, 47 (2007).
http://dx.doi.org/10.1016/j.jmmm.2007.02.157
34.
34. J. H. B. Deane, IEEE Trans. Magn. 30, 2795 (1994).
http://dx.doi.org/10.1109/20.312521
35.
35. D. Miljavec and B. Zidarič, J. Magn. Magn. Mater. 320, 763 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.08.016
36.
36. N. Sadowski, N. J. Batistela, J. P. A. Bastos, and M. Lajoie-Mazenc, IEEE Trans. Magn. 38, 797 (2002).
http://dx.doi.org/10.1109/20.996206
http://aip.metastore.ingenta.com/content/aip/journal/jap/112/4/10.1063/1.4747915
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The curves calculated with the static JA model.

Image of FIG. 2.

Click to view

FIG. 2.

Energy, coenergy, and the energetic function E JA. (a) Voltage-driven regime, (b) current-driven regime.

Image of FIG. 3.

Click to view

FIG. 3.

Time dependencies of the energy components and of the JA model in the VDR (solid lines) and the CDR (dashed lines).

Image of FIG. 4.

Click to view

FIG. 4.

Dynamic loops predicted (a) by the DHM-B and (b) by the DHM-J, compared with experimental loops of GO steel (solid curves).

Image of FIG. 5.

Click to view

FIG. 5.

H-field waveforms at (a) 50 Hz, (b) 100 Hz, (c) 200 Hz. Measured waveforms are shown as solid curves, waveforms predicted with the DHM-J as dashed curves, those predicted with the DHM-B as dashed-dotted curves.

Image of FIG. 6.

Click to view

FIG. 6.

Dynamic loops (dashed curves) predicted by the DHM-B with K exc(B), compared with experimental loops of GO steel (solid curves).

Image of FIG. 7.

Click to view

FIG. 7.

Static hysteresis loops calculated with the JA model (dashed and dashed-dotted curves) vs. the measured quasi-static loop of GO steel (solid line).

Image of FIG. 8.

Click to view

FIG. 8.

The RMS fitted static loop (dashed curve) and anhysteretic curve (dashed-dotted curve) generated with the JA model vs. the measured quasi-static loop of GO steel (solid line).

Loading

Article metrics loading...

/content/aip/journal/jap/112/4/10.1063/1.4747915
2012-08-30
2014-04-24

Abstract

The physical assumptions underlying the static and dynamic Jiles-Atherton (JA) hysteresismodels are critically analyzed. It is shown that the energy-balance method used in deriving these models is actually closer to a balance of coenergies, thereby depriving the resulting JA phenomenology of physical meaning. The non-physical basis of its dynamic extension is demonstrated by a sharp contrast between hysteresis loops predicted by the model and those measured for grain-oriented steel under conditions of controlled sinusoidal flux density at frequencies of 50, 100, and 200 Hz.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/112/4/1.4747915.html;jsessionid=99hc0frs2tt74.x-aip-live-03?itemId=/content/aip/journal/jap/112/4/10.1063/1.4747915&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: On physical aspects of the Jiles-Atherton hysteresis models
http://aip.metastore.ingenta.com/content/aip/journal/jap/112/4/10.1063/1.4747915
10.1063/1.4747915
SEARCH_EXPAND_ITEM