Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. M. Macek, D. T. M. Davis, Jr., R. W. Olthius, J. R. Schneider, and G. R. White, “ Ring laser rotation rate sensor,” in Optical Lasers, edited by J. Fox (Polytechnic, Brooklyn, 1963), pp. 199207.
2. W. W. Chow, J. Gea-Banaclocke, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “ The ring laser gyro,” Rev. Mod. Phys. 57, 61103 (1985).
3. G. E. Stedman, “ Ring laser tests of fundamental physics and geophysics,” Rep. Prog. Phys. 60, 615688 (1997).
4. F. Aronowitz, “ The laser gyro,” in Laser Applications, Vol. 1, edited by M. Ross (Academic, New York, 1971), pp. 133200.
5. R. W. Dunn, “ Multimode ring laser lock-in,” Appl. Opt. 28, 25842587 (1989).
6. K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J. P. R. Wells, “ Ring laser measurements of ground rotations for seismology,” Bull. Seismol. Soc. Am. 99(2B ), 11901198 (2009).
7. K. U. Schreiber, G. E. Stedman, and T. Klugel, “ Earth tide and tilt detection by a ring laser gyroscope,” J. Geophys. Res. 108(B ), 2132, doi:10.1029/2001JB000569 (2003).
8. K. U. Schreiber, A. Velikoseltsev, R. Rothacher, T. Klugel, G. E. Stedman, and D. L. Wiltshire, “ Direct measurements of diurnal polar motion by ring laser gyroscopes,” J. Geophys. Res. 109(B6 ), B06405, doi:10.1029/2003JB002803 (2004).
9. A. Pancha, T. Webb, G. Stedman, D. McLeod, and K. Schreiber, “ Ring laser detection of rotations from teleseismic waves,” Geophys. Res. Lett. 27(21 ), 35533556, doi:10.1029/2000GL011734 (2000).
10. H. Igel, K. U. Schreiber, A. Flaws, B. Schuberth, A. Velikoseltsev, and A. Cochard, “ Rotational motions induced by the M8.1 Tokachi-oki earthquake, September 25, 2003,” Geophys. Res. Lett. 32, L08309, doi:10.1029/2004GL022336 (2005).
11. R. W. Dunn, H. H. Mahdi, and H. J. Al-Shukri, “ Design of a relatively inexpensive ring laser seismic detector,” Bull. Seismol. Soc. Am. 99(2B ), 14371442, (2009).
12. A. J. Bedard and T. M. Georges, “ Atmospheric infrasound,” Phys. Today 53(3 ), 3237 (2000).
13. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, 3rd ed. (Wiley, New York, 1982), pp. 225227.
14. F. G. Stremler, Introduction to Communication Systems, 2nd ed. (Addison-Wesley, Reading, MA, 1982), pp. 315326.
15. P. Gerstoft, M. C. Fehler, and K. G. Sabra, “ When Katrina hit California,” Geophys. Res. Lett. 33, L17308, doi:10.1029/2006GL027270 (2006).
16. M. N. Toksoz and R. T. Lacoss, “ Microseisms: mode structure and sources,” Science 159(3817 ), 872873 (1968).
17. R. D. Knabb, J. R. Rhome, and D. P. Brown, see for National Hurricane Center, 20 December 2005, archived data 2005, Hurricane Katrina.
18. J. L. Franklin, see for National hurricane Center, 31 January 2008, archived data 2007, Hurricane Dean.
19. R. J. Pasch, E. S. Blake, H. D. Cobb III, and D. P. Roberts, see for National Hurricane Center, 12 January 2006, archived data 2005, Hurricane Wilma.
20. W. L. Donn and E. Posmentier, in Proceedings of the 1968 ESSA/ARPA Symposium on Acoustic-Gravity Waves in the Atmosphere, edited by T. M. Georges (ESSA Research Laboratories Boulder CO), U.S. Government Printing Office, Washington, DC (1968), pp. 195208.
21. J. D. Hawkins, M. Helveston, T. F. Lee, F. J. Turk, K. Richardson, C. Sampson, J. Kent, and R. Wade, “ Tropical cyclone multiple eyewall configurations,” in 26th Conference on Hurricanes and Tropical Meteorology, July 19, 2006, Monterey, CA, Sponsored by the American Meteorological Society, 108864. htm.
22. W. Zurn and R. Widmer, “ Worldwide observation of bichromatic long-period Rayleigh waves excited during the June 15, 1991, eruption of Mount Pinatubo,” in Fire and mud eruptions and lahars Mount Pinatubo, Philippines (U.S Geol. Surv. pubs. 2004),
23. J. Oswalt, W. Nichols, and J. F. O'Hara, “ Meteorological observations of the 1991 Mount Pinatubo eruption,”in Fire and mud eruptions and lahars Mount Pinatubo, Philippines (U.S.Geol. Surv. pubs. 2004),
24. P. Lognonne, E. Clevede, and Hiroo Kanamori, “ Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical earth model with realistic atmosphere,” Geophys. J. Int. 135, 388406 (1998).
25. R. A. Bauer, W. Su, R. C. Counts, and M. D. Karaffa, “ Shear wave velocity, geology and geotechnical data of earth materials in the central U.S. urban hazards mapping areas,” USGC External Grant, http://earthquake.usgc/research/external/reports/06HQGR0192.
26. C. A. Langston, “ Local earthquake propagation through Mississippi Embayment sediments, Part I: Body-wave phases and local site responses,” Bull Seismol. Soc. Am. 93(6 ), 26642684 (2003).
27. H. E. Bass, L. N. Bolen, D. Cress, J. Lundien, and M. Flohr, “ Coupling of airborne sound into the earth: Frequency dependence,” J. Acoust. Soc. Am. 67(5 ), 15021506 (1980).
28. J. M. Sabatier, H. E. Bass, L. N. Bolen, and K. Attenborough, “ The interaction of airborne sound with the porous ground: the theoretical formulation,” J. Acoust. Soc. Am. 79(5 ), 13451352 (1986).
29. J. M. Sabatier, H. E. Bass, L. N. Bolen, and K. Attenborough, “ Acoustically induced seismic waves,” J. Acoust. Soc. Am. 80(2 ), 646649 (1986).
30. C. A. Langston, “ Seismic ground motions from a bolide shock wave,” J. Geophys. Res. 109, B12309, doi:10.1029/2004JB003167 (2004).
31. S. A. Elder, “ Acoustical origin of rainbands in an ideal tropical hurricane,” J. Acoust. Soc. Am. 119(5 ), 26452650 (2006).
32. M. E. Nicholls and R. A. Pielke Sr., “ Thermally induced compression waves and gravity waves generated by convective storms,” J. Atmos. Sci. 57, 32513271 (2000).<3251:TICWAG>2.0.CO;2
33. D. Schecter, “ A method for diagnosing the sources of infrasound in convective storm simulations,” J. App. Meteor. Climatol. 50, 25262542 (2011).
34. A. J. Bedard, “ Low frequency atmospheric acoustic energy associated with vortices produced by thunderstorms,” Mon. Weather Rev. 133, 241263 (2005).
35. A. J. Abdullah, “ The musical sound emitted by a tornado,” Mon. Weather Rev. 94, 213220 (1966).<0213:TMSEBA>2.3.CO;2
36. D. Schecter, “ A brief critique of a theory used to interpret the infrasound of tornadic thunderstorms,” Mon. Weather Rev. 140, 20802089 (2012).
37.See http://rapidfire. sci. gsfc. for High Pressure Cloud Patterns, Eastern U.S.: Image of the Day, September 28, 2010.
38. J. Rhie and B. Romanowicz, “ A study of the relation between ocean storms and the Earth's hum,” Geochem. Geophys. Geosyt. 7(10 ), 136, doi:10.1029/2006GC001274 (2006).

Data & Media loading...


Article metrics loading...



Over the last decade, large horizontally mounted ring laserinterferometers have demonstrated the capacity to measure numerous geophysical effects. In this paper, responses from large ring laserinterferometers to low frequency hurricane emissions are presented. Hurricanes create a broad spectrum of noise that extends into the millihertz range. In addition to microseisms, hurricanes with established eyewalls were found to create distinct frequency peaks close to 7 mHz as they came ashore or moved over shallow water. Selected emissions from Hurricanes Katrina, Wilma, and Dean are presented. The exact coupling mechanism between the ∼7 mHz hurricane emissions and the ring lasers remains under active investigation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd