1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Detection of low frequency hurricane emissions using a ring laser interferometer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/112/7/10.1063/1.4757037
1.
1. W. M. Macek, D. T. M. Davis, Jr., R. W. Olthius, J. R. Schneider, and G. R. White, “ Ring laser rotation rate sensor,” in Optical Lasers, edited by J. Fox (Polytechnic, Brooklyn, 1963), pp. 199207.
2.
2. W. W. Chow, J. Gea-Banaclocke, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “ The ring laser gyro,” Rev. Mod. Phys. 57, 61103 (1985).
http://dx.doi.org/10.1103/RevModPhys.57.61
3.
3. G. E. Stedman, “ Ring laser tests of fundamental physics and geophysics,” Rep. Prog. Phys. 60, 615688 (1997).
http://dx.doi.org/10.1088/0034-4885/60/6/001
4.
4. F. Aronowitz, “ The laser gyro,” in Laser Applications, Vol. 1, edited by M. Ross (Academic, New York, 1971), pp. 133200.
5.
5. R. W. Dunn, “ Multimode ring laser lock-in,” Appl. Opt. 28, 25842587 (1989).
http://dx.doi.org/10.1364/AO.28.002584
6.
6. K. U. Schreiber, J. N. Hautmann, A. Velikoseltsev, J. Wassermann, H. Igel, J. Otero, F. Vernon, and J. P. R. Wells, “ Ring laser measurements of ground rotations for seismology,” Bull. Seismol. Soc. Am. 99(2B ), 11901198 (2009).
http://dx.doi.org/10.1785/0120080171
7.
7. K. U. Schreiber, G. E. Stedman, and T. Klugel, “ Earth tide and tilt detection by a ring laser gyroscope,” J. Geophys. Res. 108(B ), 2132, doi:10.1029/2001JB000569 (2003).
http://dx.doi.org/10.1029/2001JB000569
8.
8. K. U. Schreiber, A. Velikoseltsev, R. Rothacher, T. Klugel, G. E. Stedman, and D. L. Wiltshire, “ Direct measurements of diurnal polar motion by ring laser gyroscopes,” J. Geophys. Res. 109(B6 ), B06405, doi:10.1029/2003JB002803 (2004).
http://dx.doi.org/10.1029/2003JB002803
9.
9. A. Pancha, T. Webb, G. Stedman, D. McLeod, and K. Schreiber, “ Ring laser detection of rotations from teleseismic waves,” Geophys. Res. Lett. 27(21 ), 35533556, doi:10.1029/2000GL011734 (2000).
http://dx.doi.org/10.1029/2000GL011734
10.
10. H. Igel, K. U. Schreiber, A. Flaws, B. Schuberth, A. Velikoseltsev, and A. Cochard, “ Rotational motions induced by the M8.1 Tokachi-oki earthquake, September 25, 2003,” Geophys. Res. Lett. 32, L08309, doi:10.1029/2004GL022336 (2005).
http://dx.doi.org/10.1029/2004GL022336
11.
11. R. W. Dunn, H. H. Mahdi, and H. J. Al-Shukri, “ Design of a relatively inexpensive ring laser seismic detector,” Bull. Seismol. Soc. Am. 99(2B ), 14371442, (2009).
http://dx.doi.org/10.1785/0120080092
12.
12. A. J. Bedard and T. M. Georges, “ Atmospheric infrasound,” Phys. Today 53(3 ), 3237 (2000).
http://dx.doi.org/10.1063/1.883019
13.
13. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, 3rd ed. (Wiley, New York, 1982), pp. 225227.
14.
14. F. G. Stremler, Introduction to Communication Systems, 2nd ed. (Addison-Wesley, Reading, MA, 1982), pp. 315326.
15.
15. P. Gerstoft, M. C. Fehler, and K. G. Sabra, “ When Katrina hit California,” Geophys. Res. Lett. 33, L17308, doi:10.1029/2006GL027270 (2006).
http://dx.doi.org/10.1029/2006GL027270
16.
16. M. N. Toksoz and R. T. Lacoss, “ Microseisms: mode structure and sources,” Science 159(3817 ), 872873 (1968).
http://dx.doi.org/10.1126/science.159.3817.872
17.
17. R. D. Knabb, J. R. Rhome, and D. P. Brown, see http://www.nhc.noaa.gov for National Hurricane Center, 20 December 2005, archived data 2005, Hurricane Katrina.
18.
18. J. L. Franklin, see http://www.nhc.noaa.gov for National hurricane Center, 31 January 2008, archived data 2007, Hurricane Dean.
19.
19. R. J. Pasch, E. S. Blake, H. D. Cobb III, and D. P. Roberts, see http://www.nhc.noaa.gov. for National Hurricane Center, 12 January 2006, archived data 2005, Hurricane Wilma.
20.
20. W. L. Donn and E. Posmentier, in Proceedings of the 1968 ESSA/ARPA Symposium on Acoustic-Gravity Waves in the Atmosphere, edited by T. M. Georges (ESSA Research Laboratories Boulder CO), U.S. Government Printing Office, Washington, DC (1968), pp. 195208.
21.
21. J. D. Hawkins, M. Helveston, T. F. Lee, F. J. Turk, K. Richardson, C. Sampson, J. Kent, and R. Wade, “ Tropical cyclone multiple eyewall configurations,” in 26th Conference on Hurricanes and Tropical Meteorology, July 19, 2006, Monterey, CA, Sponsored by the American Meteorological Society, http://ams.confex.com/ams/27Hurricanes/techprogram/paper_ 108864. htm.
22.
22. W. Zurn and R. Widmer, “ Worldwide observation of bichromatic long-period Rayleigh waves excited during the June 15, 1991, eruption of Mount Pinatubo,” in Fire and mud eruptions and lahars Mount Pinatubo, Philippines (U.S Geol. Surv. pubs. 2004), http://pubs.usgs.gov/pinatubo/zurn.
23.
23. J. Oswalt, W. Nichols, and J. F. O'Hara, “ Meteorological observations of the 1991 Mount Pinatubo eruption,”in Fire and mud eruptions and lahars Mount Pinatubo, Philippines (U.S.Geol. Surv. pubs. 2004), http://pubs.usgs.gov/pinatubo/oswalt.
24.
24. P. Lognonne, E. Clevede, and Hiroo Kanamori, “ Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical earth model with realistic atmosphere,” Geophys. J. Int. 135, 388406 (1998).
http://dx.doi.org/10.1046/j.1365-246X.1998.00665.x
25.
25. R. A. Bauer, W. Su, R. C. Counts, and M. D. Karaffa, “ Shear wave velocity, geology and geotechnical data of earth materials in the central U.S. urban hazards mapping areas,” USGC External Grant, http://earthquake.usgc/research/external/reports/06HQGR0192.
26.
26. C. A. Langston, “ Local earthquake propagation through Mississippi Embayment sediments, Part I: Body-wave phases and local site responses,” Bull Seismol. Soc. Am. 93(6 ), 26642684 (2003).
http://dx.doi.org/10.1785/0120030046
27.
27. H. E. Bass, L. N. Bolen, D. Cress, J. Lundien, and M. Flohr, “ Coupling of airborne sound into the earth: Frequency dependence,” J. Acoust. Soc. Am. 67(5 ), 15021506 (1980).
http://dx.doi.org/10.1121/1.384312
28.
28. J. M. Sabatier, H. E. Bass, L. N. Bolen, and K. Attenborough, “ The interaction of airborne sound with the porous ground: the theoretical formulation,” J. Acoust. Soc. Am. 79(5 ), 13451352 (1986).
http://dx.doi.org/10.1121/1.393662
29.
29. J. M. Sabatier, H. E. Bass, L. N. Bolen, and K. Attenborough, “ Acoustically induced seismic waves,” J. Acoust. Soc. Am. 80(2 ), 646649 (1986).
http://dx.doi.org/10.1121/1.394058
30.
30. C. A. Langston, “ Seismic ground motions from a bolide shock wave,” J. Geophys. Res. 109, B12309, doi:10.1029/2004JB003167 (2004).
http://dx.doi.org/10.1029/2004JB003167
31.
31. S. A. Elder, “ Acoustical origin of rainbands in an ideal tropical hurricane,” J. Acoust. Soc. Am. 119(5 ), 26452650 (2006).
http://dx.doi.org/10.1121/1.2181087
32.
32. M. E. Nicholls and R. A. Pielke Sr., “ Thermally induced compression waves and gravity waves generated by convective storms,” J. Atmos. Sci. 57, 32513271 (2000).
http://dx.doi.org/10.1175/1520-0469(2000)057<3251:TICWAG>2.0.CO;2
33.
33. D. Schecter, “ A method for diagnosing the sources of infrasound in convective storm simulations,” J. App. Meteor. Climatol. 50, 25262542 (2011).
http://dx.doi.org/10.1175/JAMC-D-11-010.1
34.
34. A. J. Bedard, “ Low frequency atmospheric acoustic energy associated with vortices produced by thunderstorms,” Mon. Weather Rev. 133, 241263 (2005).
http://dx.doi.org/10.1175/MWR-2851.1
35.
35. A. J. Abdullah, “ The musical sound emitted by a tornado,” Mon. Weather Rev. 94, 213220 (1966).
http://dx.doi.org/10.1175/1520-0493(1966)094<0213:TMSEBA>2.3.CO;2
36.
36. D. Schecter, “ A brief critique of a theory used to interpret the infrasound of tornadic thunderstorms,” Mon. Weather Rev. 140, 20802089 (2012).
http://dx.doi.org/10.1175/MWR-D-11-00194.1
37.
37.See http://rapidfire. sci. gsfc. nasa.gov/ for High Pressure Cloud Patterns, Eastern U.S.: Image of the Day, September 28, 2010.
38.
38. J. Rhie and B. Romanowicz, “ A study of the relation between ocean storms and the Earth's hum,” Geochem. Geophys. Geosyt. 7(10 ), 136, doi:10.1029/2006GC001274 (2006).
http://dx.doi.org/10.1029/2006GC001274
http://aip.metastore.ingenta.com/content/aip/journal/jap/112/7/10.1063/1.4757037
Loading
/content/aip/journal/jap/112/7/10.1063/1.4757037
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/112/7/10.1063/1.4757037
2012-10-08
2014-07-29

Abstract

Over the last decade, large horizontally mounted ring laserinterferometers have demonstrated the capacity to measure numerous geophysical effects. In this paper, responses from large ring laserinterferometers to low frequency hurricane emissions are presented. Hurricanes create a broad spectrum of noise that extends into the millihertz range. In addition to microseisms, hurricanes with established eyewalls were found to create distinct frequency peaks close to 7 mHz as they came ashore or moved over shallow water. Selected emissions from Hurricanes Katrina, Wilma, and Dean are presented. The exact coupling mechanism between the ∼7 mHz hurricane emissions and the ring lasers remains under active investigation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/112/7/1.4757037.html;jsessionid=mqjvan6ka5m3.x-aip-live-06?itemId=/content/aip/journal/jap/112/7/10.1063/1.4757037&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Detection of low frequency hurricane emissions using a ring laser interferometer
http://aip.metastore.ingenta.com/content/aip/journal/jap/112/7/10.1063/1.4757037
10.1063/1.4757037
SEARCH_EXPAND_ITEM