1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Small particles, big impacts: A review of the diverse applications of nanofluids
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/1/10.1063/1.4754271
1.
1. E. A. Hauser, “The history of colloid science,” J. Chem. Educ. 32(1), 2 (1955).
http://dx.doi.org/10.1021/ed032p2
2.
2. A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” Int. J. Heat Mass Transfer 54(17–18), 40514068 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.04.014
3.
3. S. Özerinç, S. Kakaç, and A. G. Yazıcıoğlu, “Enhanced thermal conductivity of nanofluids: A state-of-the-art review,” Microfluid. Nanofluid. 8(2), 145170 (2010).
http://dx.doi.org/10.1007/s10404-009-0524-4
4.
4. Y.-D. Liu, Y.-G. Zhou, M.-W. Tong, and X.-S. Zhou, “Experimental study of thermal conductivity and phase change performance of nanofluids PCMs,” Microfluid. Nanofluid. 7(4), 579584 (2009).
http://dx.doi.org/10.1007/s10404-009-0423-8
5.
5. H. U. Kang, S. H. Kim, and J. M. Oh, “Estimation of thermal conductivity of nanofluid using experimental effective particle volume,” Exp. Heat Transfer 19(3), 181191 (2006).
http://dx.doi.org/10.1080/08916150600619281
6.
6. P. Keblinski, R. Prasher, and J. Eapen, “Thermal conductance of nanofluids: Is the controversy over?,” J. Nanopart. Res. 10(7), 10891097 (2008).
http://dx.doi.org/10.1007/s11051-007-9352-1
7.
7. Y. Hwang et al., “Stability and thermal conductivity characteristics of nanofluids,” Thermochim. Acta 455(1–2), 7074 (2007).
http://dx.doi.org/10.1016/j.tca.2006.11.036
8.
8. S. Murshed, K. Leong, and C. Yang, “Investigations of thermal conductivity and viscosity of nanofluids,” Int. J. Therm. Sci. 47(5), 560568 (2008).
http://dx.doi.org/10.1016/j.ijthermalsci.2007.05.004
9.
9. D. Yoo, K. Hong, and H. Yang, “Study of thermal conductivity of nanofluids for the application of heat transfer fluids,” Thermochim. Acta 455(1–2), 6669 (2007).
http://dx.doi.org/10.1016/j.tca.2006.12.006
10.
10. M. Liu, M. Lin, C. Tsai, and C. Wang, “Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method,” Int. J. Heat Mass Transfer 49(17–18), 30283033 (2006).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.02.012
11.
11. Y. Hwang et al., “Investigation on characteristics of thermal conductivity enhancement of nanofluids,” Curr. Appl. Phys. 6(6), 10681071 (2006).
http://dx.doi.org/10.1016/j.cap.2005.07.021
12.
12. X. Zhang, H. Gu, and M. Fujii, “Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles,” Exp. Therm. Fluid Sci. 31(6), 593599 (2007).
http://dx.doi.org/10.1016/j.expthermflusci.2006.06.009
13.
13. Y. Hwang, H. S. Park, J. K. Lee, and W. H. Jung, “Thermal conductivity and lubrication characteristics of nanofluids,” Curr. Appl. Phys. 6, e67e71 (2006).
http://dx.doi.org/10.1016/j.cap.2006.01.014
14.
14. X. Zhang, H. Gu, and M. Fujii, “Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids,” Int. J. Thermophys. 27(2), 569580 (2006).
http://dx.doi.org/10.1007/s10765-006-0054-1
15.
15. K. Kwak and C. Kim, “Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol,” Rheology 17(2), 3540 (2005).
16.
16. W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinski, “Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids,” Int. J. Heat Mass Transfera 51(5–6), 14311438 (2008).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.10.017
17.
17. S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” J. Heat Transfer 125(4), 567 (2003).
http://dx.doi.org/10.1115/1.1571080
18.
18. M. J. Pastoriza-Gallego, L. Lugo, J. L. Legido, and M. M. Piñeiro, “Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids,” Nanoscale Res. Lett. 6(1), 221 (2011).
http://dx.doi.org/10.1186/1556-276X-6-221
19.
19. S. B. White, A. J. -M. Shih, and K. P. Pipe, “Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids,” Nanoscale Res. Lett. 6(1), 346 (2011).
http://dx.doi.org/10.1186/1556-276X-6-346
20.
20. H. A. Mintsa, G. Roy, C. T. A. M. Nguyen, and D. Doucet, “New temperature dependent thermal conductivity data for water-based nanofluids,” Int. J. Therm. Sci. 48(2), 363371 (2009).
http://dx.doi.org/10.1016/j.ijthermalsci.2008.03.009
21.
21. S. H. Kim, S. R. Choi, and D. Kim, “Thermal conductivity of metal-oxide nanofluids: Particle size dependence and effect of laser irradiation,” J. Heat Transfer 129(3), 298 (2007).
http://dx.doi.org/10.1115/1.2427071
22.
22. X.-j. Wang, X. Li, and S. Yang, “Influence of pH and SDBS on the stability and thermal conductivity of nanofluids,” Energy Fuels 23, 26842689 (2009).
http://dx.doi.org/10.1021/ef800865a
23.
23. R. S. Vajjha and D. K. Das, “Experimental determination of thermal conductivity of three nanofluids and development of new correlations,” Int. J. Heat Mass Transfer 52(21–22), 46754682 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.06.027
24.
24. T.-K. Hong, H.-S. Yang, and C. J. Choi, “Study of the enhanced thermal conductivity of Fe nanofluids,” J. Appl. Phys. 97(6), 064311 (2005).
http://dx.doi.org/10.1063/1.1861145
25.
25. C. Kleinstreuer and Y. Feng, “Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review,” Nanoscale Res. Lett. 6(1), 229 (2011).
http://dx.doi.org/10.1186/1556-276X-6-229
26.
26. E. Timofeeva et al., “Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory,” Phys. Rev. E 76(6), 061203 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.061203
27.
27. K. S. Hong, T.-K. Hong, and H.-S. Yang, “Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles,” Appl. Phys. Lett. 88(3), 031901 (2006).
http://dx.doi.org/10.1063/1.2166199
28.
28. W. Yu, H. Xie, L. Chen, and Y. Li, “Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid,” Thermochim. Acta 491(1–2), 9296 (2009).
http://dx.doi.org/10.1016/j.tca.2009.03.007
29.
29. H. E. Patel, S. K. Das, T. Sundararajan, A. Sreekumaran Nair, B. George, and T. Pradeep, “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects,” Appl. Phys. Lett. 83(14), 2931 (2003).
http://dx.doi.org/10.1063/1.1602578
30.
30. W. Yu, D. M. France, J. L. Routbort, and S. U. S. Choi, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transfer Eng. 29(5), 432460 (2008).
http://dx.doi.org/10.1080/01457630701850851
31.
31. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett. 78(6), 718 (2001).
http://dx.doi.org/10.1063/1.1341218
32.
32. J. Lee et al., “Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles,” Int. J. Heat Mass Transfer 51(11–12), 26512656 (2008).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.10.026
33.
33. H. Zhu, C. Zhang, S. Liu, Y. Tang, and Y. Yin, “Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids,” Appl. Phys. Lett. 89(2), 023123 (2006).
http://dx.doi.org/10.1063/1.2221905
34.
34. M.-S. Liu, M. C. -C. Lin, I.-T. Huang, and C.-C. Wang, “Enhancement of thermal conductivity with CuO for nanofluids,” Chem. Eng. Technol. 29(1), 7277 (2006).
http://dx.doi.org/10.1002/ceat.200500184
35.
35. S. M. S. Murshed, K. C. Leong, and C. Yang, “A combined model for the effective thermal conductivity of nanofluids,” Appl. Therm. Eng. 29(11–12), 24772483 (2009).
http://dx.doi.org/10.1016/j.applthermaleng.2008.12.018
36.
36. B. Yang and Z. H. Han, “Temperature-dependent thermal conductivity of nanorod-based nanofluids,” Appl. Phys. Lett. 89, 083111 (2006).
http://dx.doi.org/10.1063/1.2338424
37.
37. J. Buongiorno et al., “A benchmark study on the thermal conductivity of nanofluids,” J. Appl. Phys. 106(9), 094312 (2009).
http://dx.doi.org/10.1063/1.3245330
38.
38. H. Xie, H. Lee, W. Youn, and M. Choi, “Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities,” J. Appl. Phys. 94(8), 4967 (2003).
http://dx.doi.org/10.1063/1.1613374
39.
39. R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, and P. Keblinski, “Effect of aggregation on thermal conduction in colloidal nanofluids,” Appl. Phys. Lett. 89(14), 143119 (2006).
http://dx.doi.org/10.1063/1.2360229
40.
40. S. P. Jang and S. U. S. Choi, “Role of Brownian motion in the enhanced thermal conductivity of nanofluids,” Appl. Phys. Lett. 84(21), 4316 (2004).
http://dx.doi.org/10.1063/1.1756684
41.
41. C. H. Li and G. P. Peterson, “The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids,” J. Appl. Phys. 101, 0443121 (2007).
http://dx.doi.org/10.1063/1.2436472
42.
42. J. Eapen et al., “Mean-field versus microconvection effects in nanofluid thermal conduction,” Phys. Rev. Lett. 99(9), 095901 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.095901
43.
43. J. Wensel et al., “Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes,” Appl. Phys. Lett. 92(2), 023110 (2008).
http://dx.doi.org/10.1063/1.2834370
44.
44. B. Wright et al., “Magnetic field enhanced thermal conductivity in heat transfer nanofluids containing Ni coated single wall carbon nanotubes,” Appl. Phys. Lett. 91(17), 173116 (2007).
http://dx.doi.org/10.1063/1.2801507
45.
45. D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundararajan, T. Pradeep, and S. K. Das, “Model for heat conduction in nanofluids,” Phys. Rev. Lett. 93(14), 144301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.144301
46.
46. R. Prasher, P. Bhattacharya, and P. Phelan, “Thermal conductivity of nanoscale colloidal solutions (Nanofluids),” Phys. Rev. Lett. 94(2), 025901 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.025901
47.
47. J. Lee, P. E. Gharagozloo, B. Kolade, J. K. Eaton, and K. E. Goodson, “Nanofluid convection in microtubes,” J. Heat Transfer 132(9), 092401 (2010).
http://dx.doi.org/10.1115/1.4001637
48.
48. W. Y. Lai, S. Vinod, P. E. Phelan, and R. Prasher, “Convective heat transfer for water-based alumina nanofluids in a single 1.02-mm tube,” J. Heat Transfer 131(11), 112401 (2009).
http://dx.doi.org/10.1115/1.3133886
49.
49. S. Zeinaliheris, S. Etemad, and M. Nasresfahany, “Experimental investigation of oxide nanofluids laminar flow convective heat transfer,” Int. Commun. Heat Mass Transfer 33(4), 529535 (2006).
http://dx.doi.org/10.1016/j.icheatmasstransfer.2006.01.005
50.
50. D. Wen and Y. Ding, “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” Int. J. Heat Mass Transfer 47(24), 51815188 (2004).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
51.
51. S. Z. Heris, M. N. Esfahany, and S. G. Etemad, “Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube,” Int. J. Heat Fluid Flow 28(2), 203210 (2007).
http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.05.001
52.
52. W. Williams, J. Buongiorno, and L.-W. Hu, “Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes,” J. Heat Transfer 130(4), 042412 (2008).
http://dx.doi.org/10.1115/1.2818775
53.
53. W. Daungthongsuk and S. Wongwises, “A critical review of convective heat transfer of nanofluids,” Renewable Sustainable Energy Rev. 11(5), 797817 (2007).
http://dx.doi.org/10.1016/j.rser.2005.06.005
54.
54. J. Jung, H. Oh, and H. Kwak, “Forced convective heat transfer of nanofluids in microchannels,” Int. J. Heat Mass Transfer 52(1–2), 466472 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.03.033
55.
55. J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transfer 128(3), 240 (2006).
http://dx.doi.org/10.1115/1.2150834
56.
56. T. L. Bergman, “Effect of reduced specific heats of nanofluids on single phase, laminar internal forced convection,” Int. J. Heat Mass Transfer 52(5–6), 12401244 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.08.019
57.
57. D. Kim et al., “Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions,” Curr. Appl. Phys. 9(2), e119e123 (2009).
http://dx.doi.org/10.1016/j.cap.2008.12.047
58.
58. J. Sarkar, “A critical review on convective heat transfer correlations of nanofluids,” Renewable Sustainable Energy Rev. 15(6), 32713277 (2011).
http://dx.doi.org/10.1016/j.rser.2011.04.025
59.
59. S. M. S. Murshed, C. A. Nieto de Castro, M. J. V. Lourenço, M. L. M. Lopes, and F. J. V. Santos, “A review of boiling and convective heat transfer with nanofluids,” Renewable Sustainable Energy Rev. 15(5), 23422354 (2011).
http://dx.doi.org/10.1016/j.rser.2011.02.016
60.
60. W.-Y. Lai, Experiments on Laminar Convective Heat Transfer with Gamma-Al2O3 Nanofluids (Arizona State University, 2010).
61.
61. D. Vollath, “Plasma synthesis of nanoparticles,” Kona 1(25), 3955 (2007).
62.
62. S. Senara, Synthesis and Characterization of Nanofluids for Cooling Applications (University of the Western Cape, South Africa, 2007).
63.
63. T. Phuoc, Y. Soong, and M. Chyu, “Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids,” Opt. Lasers Eng. 45(12), 10991106 (2007).
http://dx.doi.org/10.1016/j.optlaseng.2007.06.005
64.
64. Z. H. Han, F. Y. Cao, and B. Yang, “Synthesis and thermal characterization of phase-changeable indium/polyalphaolefin nanofluids,” Appl. Phys. Lett. 92(24), 243104 (2008).
http://dx.doi.org/10.1063/1.2944914
65.
65. J. Tavares and S. Coulombe, “Dual plasma synthesis and characterization of a stable copper–ethylene glycol nanofluid,” Powder Technol. 210(2), 132142 (2011).
http://dx.doi.org/10.1016/j.powtec.2011.03.006
66.
66. X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications,” Chem. Rev. 107(7), 28912959 (2007).
http://dx.doi.org/10.1021/cr0500535
67.
67. C.-H. Lo, T.-T. Tsung, and H.-M. Lin, “Preparation of silver nanofluid by the submerged arc nanoparticle synthesis system (SANSS),” J. Alloys Compd. 434–435, 659662 (2007).
http://dx.doi.org/10.1016/j.jallcom.2006.08.217
68.
68. X. Fang, Y. Xuan, and Q. Li, “Experimental investigation on enhanced mass transfer in nanofluids,” Appl. Phys. Lett. 95(20), 203108 (2009).
http://dx.doi.org/10.1063/1.3263731
69.
69. J. Veilleux and S. Coulombe, “A dispersion model of enhanced mass diffusion in nanofluids,” Chem. Eng. Sci. 66(11), 23772384 (2011).
http://dx.doi.org/10.1016/j.ces.2011.02.053
70.
70. J. Veilleux and S. Coulombe, “A total internal reflection fluorescence microscopy study of mass diffusion enhancement in water-based alumina nanofluids,” J. Appl. Phys. 108(10), 104316 (2010).
http://dx.doi.org/10.1063/1.3514138
71.
71. E. Nagy, T. Feczko, and B. Koroknai, “Enhancement of oxygen mass transfer rate in the presence of nanosized particles,” Chem. Eng. Sci. 62(24), 73917398 (2007).
http://dx.doi.org/10.1016/j.ces.2007.08.064
72.
72. S. Komati and A. K. Suresh, “Anomalous enhancement of interphase transport rates by nanoparticles: Effect of magnetic iron oxide on gas-liquid mass transfer,” Ind. Eng. Chem. Res. 49(1), 390405 (2010).
http://dx.doi.org/10.1021/ie900302z
73.
73. M. A. Kedzierski, “Effect of CuO nanoparticle concentration on R134a/lubricant pool-boiling heat transfer,” J. Heat Transfer 131(4), 043205 (2009).
http://dx.doi.org/10.1115/1.3072926
74.
74. G. Ding, H. Peng, W. Jiang, and Y. Gao, “The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant–oil mixture,” Int. J. Refrig. 32(1), 114123 (2009).
http://dx.doi.org/10.1016/j.ijrefrig.2008.08.007
75.
75. H. Peng, G. Ding, W. Jiang, H. Hu, and Y. Gao, “Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube,” Int. J. Refrig. 32(6), 12591270 (2009).
http://dx.doi.org/10.1016/j.ijrefrig.2009.01.025
76.
76. K. Park and D. Jung, “Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning,” Energy Build. 39(9), 10611064 (2007).
http://dx.doi.org/10.1016/j.enbuild.2006.12.001
77.
77. B. H. Truong, Determination of Pool Boiling Critical Heat Flux Enhancement in Nanofluids (ASME, 2007).
78.
78. D. Wen, G. Lin, S. Vafaei, and K. Zhang, “Review of nanofluids for heat transfer applications,” Particuology 7(2), 141150 (2009).
http://dx.doi.org/10.1016/j.partic.2009.01.007
79.
79. R. A. Taylor and P. E. Phelan, “Pool boiling of nanofluids: Comprehensive review of existing data and limited new data,” Int. J. Heat Mass Transfer 52(23–24), 53395347 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.06.040
80.
80. G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Letters 7(7), 19471952 (2007).
http://dx.doi.org/10.1021/nl070648a
81.
81. N. Piatkowski, C. Wieckert, and A. Steinfeld, “Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks,” Fuel Process. Technol. 90(3), 360366 (2009).
http://dx.doi.org/10.1016/j.fuproc.2008.10.007
82.
82. X. Huang, P. K. Jain, I. H. El-Sayed, and M. a El-Sayed, “Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles,” Photochem. Photobiol. 82(2), 412417 (2006).
http://dx.doi.org/10.1562/2005-12-14-RA-754
83.
83. G. E. Shaw, “Inversion of optical scattering and spectral extinction measurements to recover aerosol size spectra,” Appl. Opt. 18(7), 988993 (1979).
http://dx.doi.org/10.1364/AO.18.000988
84.
84. R. A. Taylor, P. E. Phelan, R. J. Adrian, and R. S. Prasher, “Experimental results for light-induced boiling in water-based graphite nanoparticle suspensions,” in Proceedings of the ASME 2009 Summer Heat Transfer Conference (2009), pp. 19.
85.
85. T. P. Otanicar, P. E. Phelan, R. A. Taylor, and H. Tyagi, “Spatially varying extinction coefficient for direct absorption solar thermal collector optimization,” J. Sol. Energy Eng. 133(2), 024501 (2011).
http://dx.doi.org/10.1115/1.4003679
86.
86. D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy,” Nat. Nanotechnol. 2(12), 751760 (2007).
http://dx.doi.org/10.1038/nnano.2007.387
87.
87. R. A. Taylor et al., “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3(2), 023104 (2011).
http://dx.doi.org/10.1063/1.3571565
88.
88. R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: Towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).
http://dx.doi.org/10.1186/1556-276X-6-225
89.
89. S. Zou, G. C. Schatz, and I. Introduction, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121(24), 1260612612 (2004).
http://dx.doi.org/10.1063/1.1826036
90.
90. N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1–3), 167171 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.09.154
91.
91. N. G. Khlebtsov, L. A. Trachuk, and A. G. Mel'nikov, “The effect of the size, shape, and structure of metal nanoparticles on the dependence of their optical properties on the refractive index of a disperse medium,” Opt. Spectrosc. 98(1), 7783 (2005).
http://dx.doi.org/10.1134/1.1858043
92.
92. S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B 66(15), 155431 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.155431
93.
93. G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
http://dx.doi.org/10.1063/1.1894590
94.
94. A. M. Schwartzberg and J. Z. Zhang, “Novel optical properties and emerging applications of metal nanostructures,” J. Phys. Chem. C 112(28), 1032310337 (2008).
http://dx.doi.org/10.1021/jp801770w
95.
95. G. Garcia et al., “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11(10), 44154420 (2011).
http://dx.doi.org/10.1021/nl202597n
96.
96. E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 21502154 (2006).
http://dx.doi.org/10.1021/jp056606x
97.
97. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nature Photon. 1(11), 641648 (2007).
http://dx.doi.org/10.1038/nphoton.2007.223
98.
98. A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1(1), 1852 (2000).
http://dx.doi.org/10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L
99.
99. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nature Mater. 5(1), 2732 (2006).
http://dx.doi.org/10.1038/nmat1528
100.
100. P. M. Tessier, O. D. Velev, A. T. Kalambur, J. F. Rabolt, A. M. Lenhoff, and E. W. Kaler, “Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 122(39), 95549555 (2000).
http://dx.doi.org/10.1021/ja0022831
101.
101. L. Shi, J. Shan, Y. Ju, P. Aikens, and R. K. Prud'homme, “Nanoparticles as delivery vehicles for sunscreen agents,” Colloids Surf., A 396, 122129 (2011).
102.
102. A. P. R. Mary et al., “Nonlinear and magneto-optical transmission studies on magnetic nanofluids of non-interacting metallic nickel nanoparticles,” Nanotechnology 22(37), 375702 (2011).
http://dx.doi.org/10.1088/0957-4484/22/37/375702
103.
103. T. Roques-Carmes, F. Aldeek, L. Balan, S. Corbel, and R. Schneider, “Aqueous dispersions of core/shell CdSe/CdS quantum dots as nanofluids for electrowetting,” Colloids Surf., A 377(1–3), 269277 (2011).
http://dx.doi.org/10.1016/j.colsurfa.2011.01.018
104.
104. J. N. Solanki and Z. V. P. Murthy, “Preparation of silver nanofluids with high electrical conductivity,” J. Dispersion Sci. Technol. 32(5), 724 (2011).
http://dx.doi.org/10.1080/01932691.2010.480863
105.
105. J.-C. Lee, H.-S. Seo, and Y.-J. Kim, “Experimental study on the dielectric breakdown performance with magnetic field and concentrations of magnetic nanofluids,” Int. Commun. Heat Mass Transfer 10, 7 (2011).
106.
106. H. Konakanchi, R. Vajjha, D. Misra, and D. Das, “Electrical conductivity measurements of nanofluids and development of new correlations,” J. Nanosci. Nanotechnol. 11(8), 67886795 (2011).
http://dx.doi.org/10.1166/jnn.2011.4217
107.
107. N. JHA, Synthesis of Carbon Based Nanostructures and Their Applications in Direct Methanol Fuel Cell, Nanofluids and Biosensors (Indian Institute of Technology, Chennai, 2009).
108.
108. X. Shi, X. Jiang, L. Lu, X. Yang, and X. Wang, “Structure and catalytic activity of nanodiamond/Cu nanocomposites,” Mater. Lett. 62(8–9), 12381241 (2008).
http://dx.doi.org/10.1016/j.matlet.2007.08.019
109.
109. R. Kumar and D. Milanova, “Effect of surface tension on nanotube nanofluids,” Appl. Phys. Lett. 94(7), 073107 (2009).
http://dx.doi.org/10.1063/1.3085766
110.
110. B. Xu, Y. Qiao, Y. Li, Q. Zhou, and X. Chen, “An electroactuation system based on nanofluids,” Appl. Phys. Lett. 98(22), 221909 (2011).
http://dx.doi.org/10.1063/1.3597367
111.
111. D. Orejon, K. Sefiane, and M. E. R. Shanahan, “Stick-slip of evaporating droplets: Substrate hydrophobicity and nanoparticle concentration,” Langmuir 27(21), 1283412843 (2011).
http://dx.doi.org/10.1021/la2026736
112.
112. M. E. R. Shanahan, K. Sefiane, and J. R. Moffat, “Dependence of volatile droplet lifetime on the hydrophobicity of the substrate,” Langmuir 27(8), 45724577 (2011).
http://dx.doi.org/10.1021/la200437s
113.
113. M. R. Mitchell, R. E. Link, M.-J. Kao, C.-C. Ting, B.-F. Lin, and T.-T. Tsung, “Aqueous aluminum nanofluid combustion in diesel fuel,” J. Test. Eval. 36(2), 100579 (2008).
http://dx.doi.org/10.1520/JTE100579
114.
114. A. Bahmanyar, N. Khoobi, M. R. Mozdianfard, and H. Bahmanyar, “The influence of nanoparticles on hydrodynamic characteristics and mass transfer performance in a pulsed liquid–liquid extraction column,” Chem. Eng. Process. 50(11–12), 11981206 (2011).
http://dx.doi.org/10.1016/j.cep.2011.08.008
115.
115. X. Fan, H. Chen, Y. Ding, P. K. Plucinski, and A. A. Lapkin, “Potential of ‘nanofluids' to further intensify microreactors,” Green Chem. 10(6), 670 (2008).
http://dx.doi.org/10.1039/b717943j
116.
116. T. Sharma, A. Mohanareddy, T. Chandra, and S. Ramaprabhu, “Development of carbon nanotubes and nanofluids based microbial fuel cell,” Int. J. Hydrogen Energy 33(22), 67496754 (2008).
http://dx.doi.org/10.1016/j.ijhydene.2008.05.112
117.
117. X. B. Wang, Z. M. Liu, P. A. Hu, Y. Q. Liu, B. X. Han, and D. B. Zhu, “Nanofluids in carbon nanotubes using supercritical CO2: A first step towards a nanochemical reaction,” Appl. Phys. A 80(3), 637639 (2003).
http://dx.doi.org/10.1007/s00339-003-2264-8
118.
118. C.-C. Yang, Y.-H. Yu, B. van der Linden, J. C. S. Wu, and G. Mul, “Artificial photosynthesis over crystalline TiO2-based catalysts: Fact or fiction?,” J. Am. Chem. Soc. 132(24), 83988406 (2010).
http://dx.doi.org/10.1021/ja101318k
119.
119. K. Kočí, L. Obalová, and Z. Lacný, “Photocatalytic reduction of CO2 over TiO2 based catalysts,” Chem. Pap. 62(1), 19 (2008).
http://dx.doi.org/10.2478/s11696-007-0072-x
120.
120. C.-X. Zhao, L. He, S. Z. Qiao, and A. P. J. Middelberg, “Nanoparticle synthesis in microreactors,” Chem. Eng. Sci. 66(7), 14631479 (2011).
http://dx.doi.org/10.1016/j.ces.2010.08.039
121.
121. S. U. S. Choi and J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles (Argonne, IL, 1995).
122.
122. S. K. Das, S. U. S. Choi, and H. E. Patel, “Heat transfer in nanofluids—A review,” Heat Transfer Eng. 27, 319 (2006).
http://dx.doi.org/10.1080/01457630600904593
123.
123. G. Schmid, Clusters and Colloids: From Theory to Applications (John Wiley and Sons, 2008), p. 570.
124.
124. M. J. Kao, C. H. Lo, T. T. Tsung, Y. Y. Wu, C. S. Jwo, and H. M. Lin, “Copper-oxide brake nanofluid manufactured using arc-submerged nanoparticle synthesis system,” J. Alloys Compd. 434–435, 672674 (2007).
http://dx.doi.org/10.1016/j.jallcom.2006.08.305
125.
125. N. Hordy, Direct Growth of Carbon Nanotubes From Stainless Steel Grids and Plasma Functionalization for Polyvinyl Alcohol Composite Production (McGill University, 2011).
126.
126. K. Kaneda, T. Mitsudome, T. Mizugaki, and K. Jitsukawa, “Development of heterogeneous Olympic medal metal nanoparticle catalysts for environmentally benign molecular transformations based on the surface properties of hydrotalcite,” Molecules 15(12), 89889007 (2010).
http://dx.doi.org/10.3390/molecules15128988
127.
127. N. Zheng and G. D. Stucky, “A general synthetic strategy for oxide-supported metal nanoparticle catalysts,” J. Am. Chem. Soc. 128(44), 1427814280 (2006).
http://dx.doi.org/10.1021/ja0659929
128.
128. M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37(9), 17831791 (2008).
http://dx.doi.org/10.1039/b711490g
129.
129. T. C. Wang, M. F. Rubner, and R. E. Cohen, “Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: Controlling metal concentration and nanoparticle size,” Langmuir 18(8), 33703375 (2002).
http://dx.doi.org/10.1021/la015725a
130.
130. K.-S. Kim, D. Demberelnyamba, and H. Lee, “Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids,” Langmuir 20(3), 556560 (2004).
http://dx.doi.org/10.1021/la0355848
131.
131. K. R. Gopidas, J. K. Whitesell, and M. A. Fox, “Synthesis, characterization, and catalytic applications of a palladium-nanoparticle-cored dendrimer,” Nano Lett. 3(12), 17571760 (2003).
http://dx.doi.org/10.1021/nl0348490
132.
132. B. Zhao and Z. Nan, “Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route,” Nanoscale Res. Lett. 6(1), 230 (2011).
http://dx.doi.org/10.1186/1556-276X-6-230
133.
133. M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, “‘Smart’ diblock copolymers as templates for magnetic-core gold-shell nanoparticle synthesis,” Nano Lett. 10(1), 8591 (2010).
http://dx.doi.org/10.1021/nl902865v
134.
134. H. Y. Koo, S. T. Chang, W. S. Choi, J.-H. Park, D.-Y. Kim, and O. D. Velev, “Emulsion-based synthesis of reversibly swellable, magnetic nanoparticle-embedded polymer microcapsules,” Chem. Mater. 18(14), 33083313 (2006).
http://dx.doi.org/10.1021/cm0608286
135.
135. C. Pascal, J. L. Pascal, F. Favier, M. L. Elidrissi Moubtassim, and C. Payen, “Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior,” Chem. Mater. 11(1), 141147 (1999).
http://dx.doi.org/10.1021/cm980742f
136.
136. H. Nakamura, Y. Yamaguchi, M. Miyazaki, H. Maeda, M. Uehara, and P. Mulvaney, “Preparation of CdSe nanocrystals in a micro-flow-reactor,” Chem. Commun. 23, 28442845 (2002).
137.
137. J. Li and J. Z. Zhang, “Optical properties and applications of hybrid semiconductor nanomaterials,” Coord. Chem. Rev. 253(23–24), 30153041 (2009).
http://dx.doi.org/10.1016/j.ccr.2009.07.017
138.
138. Z. Liang, A. Susha, and F. Caruso, “Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof,” Chem. Mater. 15(16), 31763183 (2003).
http://dx.doi.org/10.1021/cm031014h
139.
139. M. Zhang, M. Drechsler, and A. H. E. Müller, “Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core-shell cylindrical polymer brushes,” Chem. Mater. 16(3), 537543 (2004).
http://dx.doi.org/10.1021/cm034760v
140.
140. L. Lu et al., “Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate,” J. Mater. Chem. 14(6), 1005 (2004).
http://dx.doi.org/10.1039/b314868h
141.
141. A. Abou-Hassan, R. Bazzi, and V. Cabuil, “Multistep continuous-flow microsynthesis of magnetic and fluorescent gamma-Fe2O3@SiO2 core/shell nanoparticles,” Angew. Chem., Int. Ed. Engl. 48(39), 71807183 (2009).
http://dx.doi.org/10.1002/anie.200902181
142.
142. J. M. Pringle, O. Winther-Jensen, C. Lynam, G. G. Wallace, M. Forsyth, and D. R. MacFarlane, “One step synthesis of conducting polymer–noble metal nanoparticle composites using an ionic liquid,” Adv. Funct. Mater. 18(14), 20312040 (2008).
http://dx.doi.org/10.1002/adfm.200701147
143.
143. H.-t. Zhu, Y.-s. Lin, and Y.-s. Yin, “A novel one-step chemical method for preparation of copper nanofluids,” J. Colloid Interface Sci. 277(1), 100103 (2004).
http://dx.doi.org/10.1016/j.jcis.2004.04.026
144.
144. M. Sanchez-Dominguez, M. Boutonnet, and C. Solans, “A novel approach to metal and metal oxide nanoparticle synthesis: The oil-in-water microemulsion reaction method,” J. Nanoparticle Res. 11(7), 18231829 (2009).
http://dx.doi.org/10.1007/s11051-009-9660-8
145.
145. I. Djerdj, D. Arčon, Z. Jagličić, and M. Niederberger, “Nonaqueous synthesis of metal oxide nanoparticles: Short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles,” J. Solid State Chem. 181(7), 15711581 (2008).
http://dx.doi.org/10.1016/j.jssc.2008.04.016
146.
146. V. Polshettiwar, B. Baruwati, and R. S. Varma, “Self-assembly of metal oxides into synthesis and application in catalysis,” ACS Nano 3(3), 728736 (2009).
http://dx.doi.org/10.1021/nn800903p
147.
147. M. Niederberger, “Nonaqueous sol-gel routes to metal oxide nanoparticles,” Acc. Chem. Res. 40(9), 793800 (2007).
http://dx.doi.org/10.1021/ar600035e
148.
148. E. Rondeau and J. J. Cooper-White, “Biopolymer microparticle and nanoparticle formation within a microfluidic device,” Langmuir 24(13), 69376945 (2008).
http://dx.doi.org/10.1021/la703339u
149.
149. T. He, D. J. Adams, M. F. Butler, A. I. Cooper, and S. P. Rannard, “Polymer nanoparticles: Shape-directed monomer-to-particle synthesis,” J. Am. Chem. Soc. 131(17), 14951501 (2009).
http://dx.doi.org/10.1021/ja807462e
150.
150. R. Karnik et al., “Microfluidic platform for controlled synthesis of polymeric nanoparticles,” Nano Lett. 8(9), 29062912 (2008).
http://dx.doi.org/10.1021/nl801736q
151.
151. V. Trisaksri and S. Wongwises, “Critical review of heat transfer characteristics of nanofluids,” Renewable Sustainable Energy Rev. 11(3), 512523 (2007).
http://dx.doi.org/10.1016/j.rser.2005.01.010
152.
152. S. Murshed, K. Leong, and C. Yang, “Thermophysical and electrokinetic properties of nanofluids—A critical review,” Appl. Therm. Eng. 28(17–18), 21092125 (2008).
http://dx.doi.org/10.1016/j.applthermaleng.2008.01.005
153.
153. S. Thomas and C. B. P. Sobhan, “A review of experimental investigations on thermal phenomena in nanofluids,” Nanoscale Res. Lett. 6(1), 377 (2011).
http://dx.doi.org/10.1186/1556-276X-6-377
154.
154. K. Y. Leong, R. Saidur, S. N. Kazi, and A. H. Mamun, “Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator),” Appl. Therm. Eng. 30(17–18), 26852692 (2010).
http://dx.doi.org/10.1016/j.applthermaleng.2010.07.019
155.
155. S.-Q. Zhou and R. Ni, “Measurement of the specific heat capacity of water-based Al2O3 nanofluid,” Appl. Phys. Lett. 92(9), 093123 (2008).
http://dx.doi.org/10.1063/1.2890431
156.
156. R. S. Vajjha and D. K. Das, “Specific heat measurement of three nanofluids and development of new correlations,” J. Heat Transfer 131(7), 071601 (2009).
http://dx.doi.org/10.1115/1.3090813
157.
157. D. Shin and D. Banerjee, “Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications,” Int. J. Heat Mass Transfer 54(5–6), 10641070 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.11.017
158.
158. H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of y-A12O3, SiO2, and TiO2 ultra-fine particles),” Netsu Bussei (Japan) 7(4), 227233 (1993).
http://dx.doi.org/10.2963/jjtp.7.227
159.
159. P. K. Senapati, B. K. Mishra, and A. Parida, “Modeling of viscosity for power plant ash slurry at higher concentrations: Effect of solids volume fraction, particle size, and hydrodynamic interactions,” Powder Technol. 197(1–2), 18 (2010).
http://dx.doi.org/10.1016/j.powtec.2009.07.005
160.
160. R. Prasher, D. Song, J. Wang, and P. Phelan, “Measurements of nanofluid viscosity and its implications for thermal applications,” Appl. Phys. Lett. 89(13), 133108 (2006).
http://dx.doi.org/10.1063/1.2356113
161.
161. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, Weinheim, 1998), p. 544.
162.
162. H. C. van de Hulst, Light Scattering by Small Particles (Structure of Matter Series) (Dover, 1981), p. 470.
163.
163. M. F. Modest, Radiative Heat Transfer, 2nd ed. (Academic, 2003), p. 860.
164.
164. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science (Springer, 2010), p. 552.
165.
165. M. Abdelrahman, P. Fumeaux, and P. Suter, “Study of solid-gas-suspensions used for direct absorption of concentrated solar radiation,” Sol. Energy 22(1), 4548 (1979).
http://dx.doi.org/10.1016/0038-092X(79)90058-6
166.
166. A. J. Hunt, “Small particle heat exchangers,” Lawrence Berkeley Laboratory Paper LBL-7841 (1978).
167.
167. J. Karni, A. Kribus, R. Rubin, and P. Doron, “The ‘Porcupine’: A novel high-flux absorber for volumetric solar receivers,” J. Sol. Energy Eng. 120(2), 85 (1998).
http://dx.doi.org/10.1115/1.2888060
168.
168. S. Kumar and C. L. Tien, “Dependent absorption and extinction of radiation by small particles,” Trans. ASME J. Heat Transfer 112(1), 178 (1990).
http://dx.doi.org/10.1115/1.2910342
169.
169. C. L. Tien, “Thermal radiation in packed and fluidized beds,” Trans. ASME 110, 12301242 (1988).
http://dx.doi.org/10.1115/1.3250623
170.
170. R. S. Prasher and P. E. Phelan, “Modeling of radiative and optical behavior of nanofluids based on multiple and dependent scattering theories,” in Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition (ASME, 2005), pp. 739743.
171.
171. Z. Liu, J. Xiong, and R. Bao, “Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface,” Int. J. Multiphase Flow 33(12), 12841295 (2007).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2007.06.009
172.
172. M. Q. Shuai, Z. Q. Chen, Q. Li, Y. Xuan, and M. H. Shi, “Study on pool boiling heat transfer of nano-particle suspensions on plate surface,” J. Enhanced Heat Transfer 14(3), 223231 (2007).
http://dx.doi.org/10.1615/JEnhHeatTransf.v14.i3.40
173.
173. J. Tu, N. Dinh, and T. Theofanous, “An experimental study of nanofluid boiling heat transfer,” in Proceedings of 6th International Symposium on Heat Transfer (ASME, 2004), pp. 441446.
174.
174. D. Wen and Y. Ding, “Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids,” J. Nanopart. Res. 7(2–3), 265274 (2005).
http://dx.doi.org/10.1007/s11051-005-3478-9
175.
175. D. Wen, “Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF),” Int. J. Heat Mass Transfer 51(19–20), 49584965 (2008).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.01.034
176.
176. D. Wen, Y. Ding, and R. A. Williams, “Pool boiling heat transfer of aqueous TiO2-based nanofluids,” J. Enhanced Heat Transfer 13(3), 231244 (2006).
http://dx.doi.org/10.1615/JEnhHeatTransf.v13.i3.30
177.
177. S. Witharana, “Boiling of refrigerants on enhanced surfaces and boiling of nanofluids,” Ph.D. dissertation (KTH Royal Institute of Technology, 2003).
178.
178. I. C. Bang and S. H. Chang, “Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool,” Int. J. Heat Mass Transfer 48, 24072419 (2005).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.12.047
179.
179. S. K. Das, N. Putra, and W. Roetzel, “Pool boiling of nano-fluids on horizontal narrow tubes,” Int. J. Multiphase Flow 29, 12371247 (2003).
http://dx.doi.org/10.1016/S0301-9322(03)00105-8
180.
180. J. E. Jackson, “Investigation into the pool-boiling characteristics of gold nanofluids,” M.S. thesis (University of Missouri - Columbia, 2007).
181.
181. L. W. Kim, S. J. Bang, I. C. Buongiorno, and J. Hu, “Study of pool boiling an critical heat flux enhancement in nanofluids,” Bull. Pol. Acad. Sci. Tech. Sci. 55(2), 211216 (2007).
182.
182. D. Milanova and R. Kumar, “Role of ions in pool boiling heat transfer of pure and silica nanofluids,” Appl. Phys. Lett. 87(23), 233107 (2005).
http://dx.doi.org/10.1063/1.2138805
183.
183. D. Zhou, “Heat transfer enhancement of copper nanofluid with acoustic cavitation,” Int. J. Heat Mass Transfer 47(14–16), 31093117 (2004).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.02.018
184.
184. M. Chopkar, A. K. Das, I. Manna, and P. K. Das, “Pool boiling heat transfer characteristics of ZrO2–water nanofluids from a flat surface in a pool,” Heat Mass Transfer 44(8), 9991004 (2008).
http://dx.doi.org/10.1007/s00231-007-0345-5
185.
185. G. P. Narayan, K. B. Anoop, and S. K. Das, “Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes,” J. Appl. Phys. 102(7), 074317 (2007).
http://dx.doi.org/10.1063/1.2794731
186.
186. P. Vassallo, “Pool boiling heat transfer experiments in silica–water nano-fluids,” Int. J. Heat Mass Transfer 47(2), 407411 (2004).
http://dx.doi.org/10.1016/S0017-9310(03)00361-2
187.
187. S. M. You, J. H. Kim, and K. H. Kim, “Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer,” Appl. Phys. Lett. 83(16), 33743376 (2003).
http://dx.doi.org/10.1063/1.1619206
188.
188. H. S. Ahn, V. Sathyamurthi, and D. Banerjee, “Pool boiling experiments on a nano-structured surface,” IEEE Trans. Compon. Packag. Technol. 32(1), 156165 (2009).
http://dx.doi.org/10.1109/TCAPT.2009.2013980
189.
189. J. S. Coursey and J. Kim, “Nanofluid boiling: The effect of surface wettability,” Int. J. Heat Fluid Flow 29(6), 15771585 (2008).
http://dx.doi.org/10.1016/j.ijheatfluidflow.2008.07.004
190.
190. K. H. Krishna, H. Ganapathy, G. Sateesh, and S. K. Das, “Pool boiling characteristics of metallic nanofluids,” J. Heat Transfer 133(11), 111501 (2011).
http://dx.doi.org/10.1115/1.4002597
191.
191. S. Soltani, S. G. Etemad, and J. Thibault, “Pool boiling heat transfer of non-Newtonian nanofluids,” Int. Commun. Heat Mass Transfer 37(1), 2933 (2010).
http://dx.doi.org/10.1016/j.icheatmasstransfer.2009.08.005
192.
192. H. Kim and M. Kim, “Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids,” Heat Mass Transfer 45(7), 991998 (2009).
http://dx.doi.org/10.1007/s00231-007-0318-8
193.
193. D. Milanova and R. Kumar, “Heat Transfer behavoir of oxide nanoparticles in pool boiling experiment,” J. Heat Transfer 130, 042401 (2008).
http://dx.doi.org/10.1115/1.2787020
194.
194. V. Sajith, M. R. Madhusoodanan, and C. B. Sobhan, “An experimental investigation of the boiling performance of water-based nanofluids,” in Proceedings of the ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B (ASME, 2008), pp. 555561.
195.
195. V. Trisaksri and S. Wongwises, “Nucleate pool boiling heat transfer of TiO2–R141b nanofluids,” Int. J. Heat Mass Transfer 52(5–6), 15821588 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.07.041
196.
196. R. Hegde, S. S. Rao, and R. P. Reddy, “Critical heat flux enhancement in pool boiling using alumina nanofluids,” Heat Transfer Asian Res. 39(5), 323331 (2010).
http://dx.doi.org/10.1002/htj.20301
197.
197. C. Gerardi, J. Buongiorno, L.-W. Hu, and T. McKrell, “Infrared thermometry study of nanofluid pool boiling phenomena,” Nanoscale Res. Lett. 6(1), 232 (2011).
http://dx.doi.org/10.1186/1556-276X-6-232
198.
198. M. Sheikhbahai, M. Nasr Esfahany, and N. Etesami, “Experimental investigation of pool boiling of Fe3O4/ethylene glycol–water nanofluid in electric field,” Int. J. Therm. Sci. (to be published).
199.
199. J. H. H. Kim, K. H. H. Kim, and S. M. You, “Pool boiling heat transfer in saturated nanofluids,” in Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition (ASME, 2004), pp. 621628.
200.
200. S. Vemuri and K. J. Kim, “Pool boiling of saturated FC-72 on nano-porous surface B,” Int. J. Heat Mass Transfer 32, 2731 (2005).
http://dx.doi.org/10.1016/j.icheatmasstransfer.2004.03.020
201.
201. V. P. Carey, Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, 2nd ed. (Taylor & Francis, 2007), p. 600.
202.
202. R. I. Vachon, G. H. Nix, and G. E. Tanger, “Evaluation of constants for the Rohsenow pool-boiling correlation,” J. Heat Transfer 90(2), 239246 (1968).
http://dx.doi.org/10.1115/1.3597489
203.
203. W. M. Singh, A. Mikic, and B. B. Rohsenow, “Active sites in boiling,” Trans. ASME, Ser. C: J. Heat Transfer 98, 401406 (1976).
http://dx.doi.org/10.1115/1.3450567
204.
204. B. Olle, S. Bucak, T. C. Holmes, L. Bromberg, T. A. Hatton, and D. I. C. Wang, “Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles,” Ind. Eng. Chem. Res. 45(12), 43554363 (2006).
http://dx.doi.org/10.1021/ie051348b
205.
205. F. A. E. and A. E. Commission, Nanofluids for Heat Transfer Applications (Marketing Study Unit, France, 2007).
206.
206. R. Saidur, K. Y. Leong, and H. A. Mohammad, “A review on applications and challenges of nanofluids,” Renewable Sustainable Energy Rev. 15(3), 16461668 (2011).
http://dx.doi.org/10.1016/j.rser.2010.11.035
207.
207. W. Yu, D. M. France, S. U. S. Choi, and J. L. Routbort, Review and Assessment of Nanofluid Technology for Transportation and Other Applications, Argonne National Laboratory Technical Report ANL/ESD/07-0 (2007).
208.
208. D. Kulkarni, R. Vajjha, D. Das, and D. Oliva, “Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant,” Appl. Therm. Eng. 28(14–15), 17741781 (2008).
http://dx.doi.org/10.1016/j.applthermaleng.2007.11.017
209.
209. J. Buongiorno and L.-W. Hu, “Innovative technologies: Two-phase heat transfer in water-based nanofluids for nuclear applications,” Final Report for Nuclear Engineering Education Research (NEER) Program Award No. DE-FG07-07ID14765, Massachusetts Institute of Technology, 2009.
210.
210. S. J. Kim, T. McKrell, J. Buongiorno, and L.-W. Hu, “Experimental study of flow critical heat flux in alumina-water, zinc-oxide-water, and diamond-water nanofluids,” J. Heat Transfer 131(4), 043204 (2009).
http://dx.doi.org/10.1115/1.3072924
211.
211. S. D. Park et al., “Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux,” Appl. Phys. Lett. 97(2),023103 (2010).
http://dx.doi.org/10.1063/1.3459971
212.
212. D. Zhu, S. Wu, and N. Wang, “Thermal physics and critical heat flux characteristics of Al2O3-H2O nanofluids,” Heat Transfer Eng. 31(14), 12131219 (2010).
http://dx.doi.org/10.1080/01457631003733019
213.
213. W.-G. Kim, H. U. Kang, K.-M. Jung, and S. H. Kim, “Synthesis of silica nanofluid and application to CO2 absorption,” Sep. Sci. Technol. 43(11–12), 30363055 (2008).
http://dx.doi.org/10.1080/01496390802063804
214.
214. E. L. Cussler, Diffusion: Mass Transfer in Fluid Systems, Cambridge Series in Chemical Engineering (Cambridge University Press, 2009), p. 654.
215.
215. F. Kreuzer, “Facilitated diffusion of oxygen and its possible significance: A review,” Respir. Physiol. 9(1), 130 (1970).
http://dx.doi.org/10.1016/0034-5687(70)90002-2
216.
216. D. Shin and D. Banerjee, “Enhanced specific heat of silica nanofluid,” J. Heat Transfer 133(2), 024501 (2011).
http://dx.doi.org/10.1115/1.4002600
217.
217. S. Wu, D. Zhu, X. Zhang, and J. Huang, “Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM),” Energy Fuels 24(3), 18941898 (2010).
http://dx.doi.org/10.1021/ef9013967
218.
218. N. Palombo and K. Park, “Investigation of dynamic near-field radiation between quantum dots and plasmonic nanoparticles for effective tailoring of the solar spectrum,” in Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition (ASME, 2011), pp. 15.
219.
219. W. Lv, T. P. Otanicar, P. E. Phelan, L. Dai, R. A. Taylor, and R. Swaminathan, “Surface plasmon resonance shifts of a dispersion of core-shell nanoparticles for efficient solar absorption,” in Micro/Nanoscale Heat & Mass Transfer International Conference, 2012.
220.
220. L. M. Liz-Marzán, “Tailoring surface plasmons through the morphology and assembly of metal nanoparticles,” Langmuir 22(1), 3241 (2006).
221.
221. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” Chem. Phys. 116(15), 6755 (2002).
http://dx.doi.org/10.1063/1.1462610
222.
222. J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping Surface Plasmons on a Single Metallic Nanoparticle,” Nature Physics 3(5), 348353 (2007).
223.
223. L. Vekas, “Magnetic nanofluids properties and some applications,” Nanostruct. Mater. 49, 707721 (2004).
224.
224. L. Vékás, D. Bica, and M. V. Avdeev, “Magnetic nanoparticles and concentrated magnetic nanofluids: Synthesis, properties and some applications,” China Particuol. 5(1–2), 4349 (2007).
http://dx.doi.org/10.1016/j.cpart.2007.01.015
225.
225. B. J. Park, K. H. Song, and H. J. Choi, “Magnetic carbonyl iron nanoparticle based magnetorheological suspension and its characteristics,” Mater. Lett. 63(15), 13501352 (2009).
http://dx.doi.org/10.1016/j.matlet.2009.03.013
226.
226. K. H. Song, B. J. Park, and H. J. Choi, “Effect of magnetic nanoparticle additive on characteristics of magnetorheological fluid,” IEEE Trans. Magn. 45(10), 40454048 (2009).
http://dx.doi.org/10.1109/TMAG.2009.2025390
227.
227. I. G. Kim, K. H. Song, B. O. Park, B. I. Choi, and H. J. Choi, “Nano-sized Fe soft-magnetic particle and its magnetorheology,” Colloid Polym. Sci. 289(1), 7983 (2011).
http://dx.doi.org/10.1007/s00396-010-2322-7
228.
228. K. T. Wu, P. C. Kuo, Y. D. Yao, and E. H. Tsai, “Magnetic and optical properties of Fe3O4 nanoparticle ferrofluids prepared by coprecipitation technique,” IEEE Trans. Magn. 37(4), 26512653 (2001).
http://dx.doi.org/10.1109/20.951263
229.
229. C. Alexiou et al., “Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting,” J. Magn. Magn. Mater. 225, 187193 (2001).
http://dx.doi.org/10.1016/S0304-8853(00)01256-7
230.
230. J. Li, D. Dai, B. Zhao, Y. Lin, and C. Liu, “Properties of ferrofluid nanoparticles prepared by coprecipitation and acid treatment,” J. Nanopart. Res. 4, 261264 (2002).
http://dx.doi.org/10.1023/A:1019920629506
231.
231. Y. Gao, J. P. Huang, Y. M. Liu, L. Gao, K. W. Yu, and X. Zhang, “Optical negative refraction in ferrofluids with magnetocontrollability,” Phys. Rev. Lett. 104(3), 034501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.034501
232.
232. W. D. Drotning, “Optical properties of solar-absorbing oxide particles suspended in a molten salt heat transfer fluid,” Sol. Energy 20(4), 313319 (1978).
http://dx.doi.org/10.1016/0038-092X(78)90123-8
233.
233. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett. 11(3), 11111116 (2011).
http://dx.doi.org/10.1021/nl104005n
234.
234. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 1087110875 (2004).
http://dx.doi.org/10.1063/1.1760740
235.
235. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 39133961 (2011).
http://dx.doi.org/10.1021/cr200061k
236.
236. R. A. Taylor, T. P. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Nature Light Sci. Appl. 1, e35 (2012).
http://dx.doi.org/10.1038/lsa.2012.34
237.
237. M. E. Flatté, A. A. Kornyshev, and M. Urbakh, “Giant stark effect in quantum dots at liquid/liquid interfaces: A new option for tunable optical filters,” Proc. Natl. Acad. Sci. U.S.A. 105(47), 182124 (2008).
http://dx.doi.org/10.1073/pnas.0807427105
238.
238. R. Kitsomboonloha, C. Ngambenjawong, W. S. Mohammed, M. B. Chaudhari, G. L. Hornyak, and J. Dutta, “Plasmon resonance tuning of gold and silver nanoparticle-insulator multilayered composite structures for optical filters,” Micro Nano Lett. 6(6), 342 (2011).
http://dx.doi.org/10.1049/mnl.2011.0160
239.
239. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B 6(4), 787 (1989).
http://dx.doi.org/10.1364/JOSAB.6.000787
240.
240. W. M. Winslow, “Induced fibration of suspensions,” J. Appl. Phys. 20(12), 1137 (1949).
http://dx.doi.org/10.1063/1.1698285
241.
241. J. Rainbow, “The magnetic fluid clutch,” Trans. Am. Inst. Electr. Eng. 67, 1308 (1948).
http://dx.doi.org/10.1109/T-AIEE.1948.5059821
242.
242. J. L. Neuringer and R. E. Rosensweig, “Ferrohydrodynamics,” Phys. Fluids 7(12), 1927 (1964).
http://dx.doi.org/10.1063/1.1711103
243.
243. K. Raj, B. Moskowitz, and R. Casciari, “Advances in ferrofluid technology,” J. Magn. Magn. Mater. 149, 174180 (1995).
http://dx.doi.org/10.1016/0304-8853(95)00365-7
244.
244. J. de Vicente, D. J. Klingenberg, and R. Hidalgo-Alvarez, “Magnetorheological fluids: A review,” Soft Matter 7(8), 3701 (2011).
http://dx.doi.org/10.1039/c0sm01221a
245.
245. R. W. Chantrell, A. Bradbury, J. Popplewell, and S. W. Charles, “Agglomerate formation in a magnetic fluid,” J. Appl. Phys. 53(3), 2742 (1982).
http://dx.doi.org/10.1063/1.330953
246.
246. D. K. Singh, D. K. Pandey, and R. R. Yadav, “An ultrasonic characterization of ferrofluid,” Ultrasonics 49(8), 634637 (2009).
http://dx.doi.org/10.1016/j.ultras.2009.03.005
247.
247. S. A. Patil, H. P. Suryawanshi, S. R. Bakliwal, and S. P. Pawar, “Ferro fluids: A promising drug carrier—a review,” Int. J. Pharm. Res. Dev. 2(10), 2529 (2010).
248.
248. K. Büscher, C. A. Helm, C. Gross, G. Glöckl, E. Romanus, and W. Weitschies, “Nanoparticle composition of a ferrofluid and its effects on the magnetic properties,” Langmuir 20(6), 24352444 (2004).
http://dx.doi.org/10.1021/la030261x
249.
249. S. Ummartyotin, J. Juntaro, M. Sain, and H. Manuspiya, “The role of ferrofluid on surface smoothness of bacterial cellulose nanocomposite flexible display,” Chem. Eng. J. 193–194, 1620 (2012).
http://dx.doi.org/10.1016/j.cej.2012.03.074
250.
250. R. E. Rosenweig, “Buoyancy and stable levitation of a magnetic body immersed in a magnetizable fluid,” Nature 210(5036), 613614 (1966).
http://dx.doi.org/10.1038/210613a0
251.
251. R. Moskowitz and R. E. Rosenweig, “Nonmechanical torque-driven flow of a ferromagnetic fluid by an electromagnetic field,” Appl. Phys. Lett. 11(10), 301 (1967).
http://dx.doi.org/10.1063/1.1754952
252.
252. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381386 (2006).
http://dx.doi.org/10.1038/nature05060
253.
253. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photon. 1, 106114 (2007).
http://dx.doi.org/10.1038/nphoton.2006.96
254.
254. I. Sharifi, H. Shokrollahi, and S. Amiri, “Ferrite-based magnetic nanofluids used in hyperthermia applications,” J. Magn. Magn. Mater. 324(6), 903915 (2012).
http://dx.doi.org/10.1016/j.jmmm.2011.10.017
255.
255. A. Labarta, O. Iglesias, L. Balcells, and F. Badia, “Magnetic relaxation in small-particle systems: T 1n(t/tau_o) scaling,” Phys. Rev. B 48(14), 1024010246 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.10240
256.
256. J. J. Lai, K. E. Nelson, M. A. Nash, A. S. Hoffman, P. Yager, and P. S. Stayton, “Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices,” Lab Chip 9(14), 19972002 (2009).
http://dx.doi.org/10.1039/b817754f
257.
257. P. D. Shima, J. Philip, and B. Raj, “Magnetically controllable nanofluid with tunable thermal conductivity and viscosity,” Appl. Phys. Lett. 95(13), 133112 (2009).
http://dx.doi.org/10.1063/1.3238551
258.
258. E. Andablo-Reyes, R. Hidalgo-Álvarez, and J. de Vicente, “Controlling friction using magnetic nanofluids,” Soft Matter 7(3), 880 (2011).
http://dx.doi.org/10.1039/c0sm00251h
259.
259. V. Segal, A. Hjortsberg, A. Rabinovich, D. Nattrass, and F. Dreparation, “AC (60 Hz) impulse breakdown strength of a colloidal fluid based on transformer oil and magnetite nanoparticles,” in Conference Record of the 1998 IEEE International Symposium on Electrical Insulation (IEEE, 1998), pp. 619622.
260.
260. D. U. Yue-Fan, L. V. Yu-Zhen, Z. Jian-Quan, L. I. Xiao-Xin, and L. I. Cheng-Rong, “Breakdown Properties of Transformer Oil-based TiO2 Nanofluid,” in Proceedings of the 2010 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE, 2010), pp. 36.
261.
261. Y.-Z. Lv, L.-F. Wang, X.-X. Li, Y.-F. Du, J.-Q. Zhou, and C.-R. Li, “Experimental investigation of breakdown strength of mineral oil-based nanofluids,” in Proceedings of the 2011 IEEE International Conference on Dielectric Liquids (IEEE, 2011), pp. 1113.
262.
262. P. Andresen, A. Bath, W. Groger, G. Meijer, and J. J. Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: Checks with an atmospheric flame,” Appl. Opt. 27(2), 365378 (1988).
http://dx.doi.org/10.1364/AO.27.000365
263.
263. A. Steinfeld and M. Schubnell, “Optimum aperture size and operating temperature of a solar cavity-receiver,” Sol. Energy 50(1), 1925 (1993).
http://dx.doi.org/10.1016/0038-092X(93)90004-8
264.
264. F. J. Miller and R. W. Koenigsdorff, “Thermal modeling of a small-particle solar central,” J. Sol. Energy Eng. 122(1), 2329 (2000).
http://dx.doi.org/10.1115/1.556277
265.
265. R. Bertocchi, A. Kribus, and J. Karni, “Experimentally determined optical properties of a polydisperse carbon black cloud for a solar particle receiver,” J. Sol. Energy Eng. 126,(3), 833 (2004).
http://dx.doi.org/10.1115/1.1756924
266.
266. S. Haussener, D. Hirsch, C. Perkins, A. Weimer, A. Lewandowski, and A. Steinfeld, “Modeling of a multitube high-temperature solar thermochemical reactor for hydrogen production,” J. Sol. Energy Eng. 131(2), 024503 (2009).
http://dx.doi.org/10.1115/1.3097280
267.
267. S. Merabia, P. Keblinski, L. Joly, L. J. Lewis, and J.-l. Barrat, “Critical heat flux around strongly heated nanoparticles,” Phys. Rev. E 79(2), 021404 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.021404
268.
268. H. Tyagi, “Radiative and combustion properties of nanoparticle-laden liquids,” Ph.D. dissertation (Arizona State University, 2008).
269.
269. A. Lenert, Y. S. P. Zuniga, and E. N. Wang, “Nanofluid-based absorbers for high temperature direct solar collectors,” in Proceedings of the 2010 14th International Heat Transfer Conference (ASME, 2010), pp. 499508.
270.
270. E. Natarajan and R. Sathish, “Role of nanofluids in solar water heater,” Int. J. Adv. Manuf. Technol. (2009).
http://dx.doi.org/10.1007/s00170-008-1876-8
271.
271. R. A. Taylor, P. E. Phelan, T. P. Otanicar, and S. Trimble, “Applicability of nanofluids in concentrated solar energy harvesting,” in Proceedings of the ASME 2010 4th International Conference on Energy Sustainability (ASME, 2010), pp. 825832.
272.
272. T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2(3), 033102 (2010).
http://dx.doi.org/10.1063/1.3429737
273.
273. E. Sani et al., “Potential of carbon nanohorn-based suspensions for solar thermal collectors,” Sol. Energy Mater. Sol. Cells 95(11), 29943000 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.06.011
274.
274. R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser beam,” Appl. Phys. Lett. 95, 161907 (2009).
http://dx.doi.org/10.1063/1.3250174
275.
275. H. Tyagi, P. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” J. Sol. Energy Eng. 131(4), 041004 (2009).
http://dx.doi.org/10.1115/1.3197562
276.
276. D. Han, Z. Meng, D. Wu, C. Zhang, and H. Zhu, “Thermal properties of carbon black aqueous nanofluids for solar absorption,” Nanoscale Res. Lett. 6(1), 457 (2011).
http://dx.doi.org/10.1186/1556-276X-6-457
277.
277. T. P. Otanicar and J. S. Golden, “Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies,” Environ. Sci. Technol. 43(15), 60826087 (2009).
http://dx.doi.org/10.1021/es900031j
278.
278. L. Lu, Z.-H. Liu, and H.-S. Xiao, “Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors,” Sol. Energy 85(2), 379387 (2011).
http://dx.doi.org/10.1016/j.solener.2010.11.008
279.
279. A. Veeraragavan, A. Lenert, B. Yilbas, S. Al-Dini, and E. N. Wang, “Analytical model for the design of volumetric solar flow receivers,” Int. J. Heat Mass Transfer 55(4), 556564 (2012).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.11.001
280.
280. T. Yousefi, F. Veysi, E. Shojaeizadeh, and S. Zinadini, “An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors,” Renewable Energy 39(1), 293298 (2012).
http://dx.doi.org/10.1016/j.renene.2011.08.056
281.
281. A. Lenert and E. N. Wang, “Optimizaton of nanofluid volumetric receivers for solar thermal energy conversion,” Sol. Energy 86, 253265 (2012).
http://dx.doi.org/10.1016/j.solener.2011.09.029
282.
282. M. Ferrari, “Cancer nanotechnology: Opportunities and challenges,” Nat. Rev. Cancer 5(3), 16171 (2005).
http://dx.doi.org/10.1038/nrc1566
283.
283. T. M. Allen, “Ligand-targeted therapeutics in anticancer therapy,” Nat. Rev. Cancer 2(10), 750763 (2002).
http://dx.doi.org/10.1038/nrc903
284.
284. S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, “Nanotechnology applications in cancer,” Annu. Rev. Biomed. Eng. 9, 25788 (2007).
http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025
285.
285. L. K. Kelly, E. Coranado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668677 (2003).
http://dx.doi.org/10.1021/jp026731y
286.
286. A. J. Schmidt, J. D. Alper, M. Chiesa, G. Chen, S. K. Das, and K. Hamad-Schifferli, “Probing the gold nanorod-ligand-solvent interface by plasmonic absorption and thermal decay,” J. Phys. Chem. C 112(35), 1332013323 (2008).
http://dx.doi.org/10.1021/jp8051888
287.
287. L. R. Hirsch et al., “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 1354913554 (2003).
http://dx.doi.org/10.1073/pnas.2232479100
288.
288. J. W. Park, “Liposome-based drug delivery in breast cancer treatment,” Breast Cancer Res.: BCR 4(3), 9599 (2002).
http://dx.doi.org/10.1186/bcr432
289.
289. E. R. Gillies and J. M. J. Fréchet, “Designing macromolecules for therapeutic applications: Polyester dendrimer-poly(ethylene oxide) ‘bow-tie’ hybrids with tunable molecular weight and architecture,” J Am. Chem. Soc. 124(47), 1413714146 (2002).
http://dx.doi.org/10.1021/ja028100n
290.
290. L. Levy, Y. Sahoo, K.-S. Kim, E. J. Bergey, and P. N. Prasad, “Nanochemistry: Synthesis and characterization of multifunctional nanoclinics for biological applications,” Chem. Mater. 14(9) 37153721 (2002).
http://dx.doi.org/10.1021/cm0203013
291.
291. E. J. Bergey et al., “DC magnetic field induced magnetocytolysis of cancer cells targeted by LH-RH magnetic nanoparticles in vitro,” Biomed. Microdevices 4(4), 293299 (2002).
http://dx.doi.org/10.1023/A:1020906307053
292.
292. S. H. Bloch, M. Wan, P. A. Dayton, and K. W. Ferrara, “Optical observation of lipid- and polymer-shelled ultrasound microbubble contrast agents,” Appl. Phys. Lett. 84(4), 631633 (2004).
http://dx.doi.org/10.1063/1.1643544
293.
293. G. Kong, R. D. Braun, and M. W. Dewhirst, “Hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size,” Cancer Res. 60, 44404445 (2000). Available at: http://cancerres.aacrjournals.org/content/60/16/4440.
294.
294. M. Johannsen, B. Thiesen, P. Wust, and A. Jordan, “Magnetic nanoparticle hyperthermia for prostate cancer,” Int. J. Hyperthermia 26(8), 790795 (2010).
http://dx.doi.org/10.3109/02656731003745740
295.
295. R. Hergt, S. Dutz, R. Müller, and M. Zeisberger, “Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy,” J. Phys.: Condens. Matter 18(38), S2919S2934 (2006).
http://dx.doi.org/10.1088/0953-8984/18/38/S26
296.
296. M. Salloum, R. H. Ma, D. Weeks, and L. Zhu, “Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: Experimental study in agarose gel,” Int. J. Hyperthermia 24(4), 337345 (2008).
http://dx.doi.org/10.1080/02656730801907937
297.
297. T. Kikumori, T. Kobayashi, M. Sawaki, and T. Imai, “Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes,” Breast Cancer Res. Treat. 113(3), 435441 (2009).
http://dx.doi.org/10.1007/s10549-008-9948-x
298.
298. P. Grodzinski, M. Silver, and L. K. Molnar, “Nanotechnology for cancer diagnostics: Promises and challenges,” Expert Rev. Mol. Diagn. 6(3), 307318 (2006).
http://dx.doi.org/10.1586/14737159.6.3.307
299.
299. L. LaConte, N. Nitin, and G. Bao, “Magnetic nanoparticle probes,” Mater. Today 8(5), 3238 (2005).
http://dx.doi.org/10.1016/S1369-7021(05)00893-X
300.
300. Y. Gu, W. Sun, G. Wang, and N. Fang, “Understanding nanoparticle drug delivery from rotational dynamics and behaviors of functionalized gold nanorods on live cell membranes,” Biophys. J. 100(3), 473a473a (2011).
http://dx.doi.org/10.1016/j.bpj.2010.12.2771
301.
301. P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys. 100(5), 054305 (2006).
http://dx.doi.org/10.1063/1.2335783
302.
302. L. A. Dombrovsky, V. Timchenko, M. Jackson, and G. H. Yeoh, “A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells,” Int. J. Heat Mass Transfer 54(25–26), 54595469 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.07.045
303.
303. S. Parveen and S. K. Sahoo, “Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery,” Eur. J. Pharmacol. 670(2–3), 372383 (2011).
http://dx.doi.org/10.1016/j.ejphar.2011.09.023
304.
304. S. Aryal, C.-M. Jack Hu, V. Fu, and L. Zhang, “Nanoparticle drug delivery enhances the cytotoxicity of hydrophobic–hydrophilic drug conjugates,” J. Mater. Chem. 22(3), 994999 (2012).
http://dx.doi.org/10.1039/c1jm13834k
305.
305. S. C. Roy, O. K. Varghese, M. Paulose, and C. A. Grimes, “Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons,” ACS Nano 4(3), 12591278 (2010).
http://dx.doi.org/10.1021/nn9015423
306.
306. A. Sınağ, T. Yumak, V. Balci, and A. Kruse, “Catalytic hydrothermal conversion of cellulose over SnO2 and ZnO nanoparticle catalysts,” J. Supercrit. Fluids 56(2), 179185 (2011).
http://dx.doi.org/10.1016/j.supflu.2011.01.002
307.
307. Y. Li and G. A. Somorjai, “Nanoscale advances in catalysis and energy applications,” Nano Lett. 10(7), 22892295 (2010).
http://dx.doi.org/10.1021/nl101807g
308.
308. E. Serrano, G. Rus, and J. García-Martínez, “Nanotechnology for sustainable energy,” Renewable Sustainable Energy Rev. 13(9), 23732384 (2009).
http://dx.doi.org/10.1016/j.rser.2009.06.003
309.
309. M. Trépanier, A. K. Dalai, and N. Abatzoglou, “Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: Role of nanoparticle size on reducibility, activity and selectivity in Fischer–Tropsch reactions,” Appl. Catal. A 374(1–2), 7986 (2010).
http://dx.doi.org/10.1016/j.apcata.2009.11.029
310.
310. E. W. Ping, J. Pierson, R. Wallace, J. T. Miller, T. F. Fuller, and C. W. Jones, “On the nature of the deactivation of supported palladium nanoparticle catalysts in the decarboxylation of fatty acids,” Appl. Catal., A 396(1–2), 8590 (2011).
http://dx.doi.org/10.1016/j.apcata.2011.01.042
311.
311. J. S. Basha and R. B. Anand, “An experimental study in a CI engine using nanoadditive blended water–diesel emulsion fuel,” Int. J. Green Energy 8(3), 332348 (2011).
http://dx.doi.org/10.1080/15435075.2011.557844
312.
312. M. Jones, “Ignition and combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol) and hydrocarbons,” M.S. thesis (The University of Toledo, 2011).
313.
313. Y. Gan, Y. S. Lim, and L. Qiao, “Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations,” Combust. Flame 159(4), 17321740 (2012).
http://dx.doi.org/10.1016/j.combustflame.2011.12.008
314.
314. C. H. Li, “Experimental study of nanoadditives for biofuel combustion improvement,” in Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition (ASME, 2011), 18.
315.
315. H. Tyagi et al., “Increased hot-plate ignition probability for nanoparticle-laden diesel fuel,” Nano Lett. 8(5), 14101416 (2008).
http://dx.doi.org/10.1021/nl080277d
316.
316. M. O. Nutt, J. B. Hughes, and S. W. Michael, “Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination,” Environ. Sci. Technol. 39(5), 13461353 (2005).
http://dx.doi.org/10.1021/es048560b
317.
317. M. Turner et al., “Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters,” Nature 454(7207), 981983 (2008).
http://dx.doi.org/10.1038/nature07194
318.
318. W. Hou, N. Dehm, and R. Scott, “Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic AuPd nanoparticle catalysts,” J. Catal. 253(1), 2227 (2008).
http://dx.doi.org/10.1016/j.jcat.2007.10.025
319.
319. F. Tao et al., “Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles,” Science 322(5903), 932934 (2008).
http://dx.doi.org/10.1126/science.1164170
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/1/10.1063/1.4754271
Loading
/content/aip/journal/jap/113/1/10.1063/1.4754271
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/1/10.1063/1.4754271
2013-01-02
2014-10-25

Abstract

Nanofluids—a simple product of the emerging world of nanotechnology—are suspensions of nanoparticles (nominally 1–100 nm in size) in conventional base fluids such as water, oils, or glycols. Nanofluids have seen enormous growth in popularity since they were proposed by Choi in 1995. In the year 2011 alone, there were nearly 700 research articles where the term nanofluid was used in the title, showing rapid growth from 2006 (175) and 2001 (10). The first decade of nanofluid research was primarily focused on measuring and modeling fundamental thermophysical properties of nanofluids (thermal conductivity, density, viscosity, heat transfer coefficient). Recent research, however, explores the performance of nanofluids in a wide variety of other applications. Analyzing the available body of research to date, this article presents recent trends and future possibilities for nanofluids research and suggests which applications will see the most significant improvement from employing nanofluids.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/1/1.4754271.html;jsessionid=1teps06f6g2sq.x-aip-live-03?itemId=/content/aip/journal/jap/113/1/10.1063/1.4754271&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Small particles, big impacts: A review of the diverse applications of nanofluids
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/1/10.1063/1.4754271
10.1063/1.4754271
SEARCH_EXPAND_ITEM