1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Alloying-related trends from first principles: An application to the Ti–Al–X–N system
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/11/10.1063/1.4795590
1.
1. W.-D. Münz, J. Vac. Sci. Technol. A 4, 2717 (1986).
http://dx.doi.org/10.1116/1.573713
2.
2. S. PalDey and S. C. Deevi, Mat. Sci. Eng. A 342, 58 (2003).
http://dx.doi.org/10.1016/S0921-5093(02)00259-9
3.
3. P. H. Mayrhofer, D. Music, and J. M. Schneider, Appl. Phys. Lett. 88, 071922 (2006).
http://dx.doi.org/10.1063/1.2177630
4.
4. B. Alling, A. Ruban, A. Karimi, O. Peil, S. Simak, L. Hultman, and I. A. Abrikosov, Phys. Rev. B 75, 045123 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045123
5.
5. B. Alling, A. Karimi, L. Hultman, and I. A. Abrikosov, Appl. Phys. Lett. 92, 071903 (2008).
http://dx.doi.org/10.1063/1.2838747
6.
6. B. Alling, A. Karimi, and I. A. Abrikosov, Surf. Coat. Technol. 203, 883 (2008).
http://dx.doi.org/10.1016/j.surfcoat.2008.08.027
7.
7. F. Tasnádi, I. A. Abrikosov, L. Rogström, J. Almer, M. P. Johansson, and M. Odén, Appl. Phys. Lett. 97, 231902 (2010).
http://dx.doi.org/10.1063/1.3524502
8.
8. D. Holec, R. Rachbauer, D. Kiener, P. D. Cherns, P. M. F. J. Costa, C. McAleese, P. H. Mayrhofer, and C. J. Humphreys, Phys. Rev. B 83, 165122 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.165122
9.
9. D. Holec, R. Rachbauer, L. Chen, L. Wang, D. Luef, and P. H. Mayrhofer, Surf. Coat. Technol. 206, 1698 (2011).
http://dx.doi.org/10.1016/j.surfcoat.2011.09.019
10.
10. I. A. Abrikosov, A. Knutsson, B. Alling, F. Tasnádi, H. Lind, L. Hultman, and M. Odén, Materials 4, 1599 (2011).
http://dx.doi.org/10.3390/ma4091599
11.
11. M. to Baben, L. Raumann, D. Music, and J. M. Schneider, J. Phys. Condens. Mater. 24, 155401 (2012).
http://dx.doi.org/10.1088/0953-8984/24/15/155401
12.
12. M. Moser and P. H. Mayrhofer, Scr. Mater. 57, 357 (2007).
http://dx.doi.org/10.1016/j.scriptamat.2007.04.019
13.
13. L. Chen, D. Holec, Y. Du, and P. H. Mayrhofer, Thin Solid Films 519, 5503 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.03.139
14.
14. R. Rachbauer, A. Blutmager, D. Holec, and P. H. Mayrhofer, Surf. Coat. Technol. 206, 2667 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2011.11.020
15.
15. F. Rovere, D. Music, J. Schneider, and P. H. Mayrhofer, Acta Mater. 58, 2708 (2010).
http://dx.doi.org/10.1016/j.actamat.2010.01.005
16.
16. M. Pfeiler, C. Scheu, H. Hutter, J. Schnöller, C. Michotte, C. Mitterer, and M. Kathrein, J. Vac. Sci. Technol. A 27, 554 (2009).
http://dx.doi.org/10.1116/1.3119671
17.
17. H. Lind, R. Forsén, B. Alling, N. Ghafoor, F. Tasnádi, M. P. Johansson, I. A. Abrikosov, and M. Odén, Appl. Phys. Lett. 99, 091903 (2011).
http://dx.doi.org/10.1063/1.3631672
18.
18. P. H. Mayrhofer, R. Rachbauer, and D. Holec, Scr. Mater. 63, 807 (2010).
http://dx.doi.org/10.1016/j.scriptamat.2010.06.020
19.
19. R. Rachbauer, D. Holec, and P. H. Mayrhofer, Surf. Coat. Technol. 211, 98 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2011.07.009
20.
20. R. Rachbauer, D. Holec, M. Lattemann, L. Hultman, and P. H. Mayrhofer, Int. J. Mater. Res. 102, 735 (2011).
http://dx.doi.org/10.3139/146.110520
21.
21. R. Rachbauer, D. Holec, and P. H. Mayrhofer, Appl. Phys. Lett. 97, 151901 (2010).
http://dx.doi.org/10.1063/1.3495783
22.
22. F. Rovere, D. Music, S. Ershov, M. to Baben, H.-G. Fuss, P. H. Mayrhofer, and J. M. Schneider, J. Phys. D: Appl. Phys. 43, 035302 (2010).
http://dx.doi.org/10.1088/0022-3727/43/3/035302
23.
23. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
24.
24. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
25.
25. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
26.
26. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
27.
27. Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.13298
28.
28. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
29.
29. S.-H. Wei, L. Ferreira, J. Bernard, and A. Zunger, Phys. Rev. B 42, 9622 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.9622
30.
30. F. Birch, Phys. Rev. 71, 809 (1947).
http://dx.doi.org/10.1103/PhysRev.71.809
31.
31. L. Vegard, Z. Phys. 5, 17 (1921).
http://dx.doi.org/10.1007/BF01349680
32.
32. D. Holec, M. Friák, J. Neugebauer, and P. H. Mayrhofer, Phys. Rev. B 85, 064101 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.064101
33.
33. J. Zhang, G. Liu, X. Zhang, G. Zhang, J. Sun, and E. Ma, Scr. Mater. 62, 333 (2010).
http://dx.doi.org/10.1016/j.scriptamat.2009.10.030
34.
34. L. J. Li, M. Lin, and F. Liu, Key Eng. Mater. 340–341, 325 (2007).
http://dx.doi.org/10.4028/www.scientific.net/KEM.340-341.325
35.
35. P. H. Mayrhofer, A. Hörling, L. Karlsson, J. Sjölén, T. Larsson, C. Mitterer, and L. Hultman, Appl. Phys. Lett. 83, 2049 (2003).
http://dx.doi.org/10.1063/1.1608464
36.
36. A. H. Cottrell, An Introduction to Metallurgy (Edward Arnold, London, 1967).
37.
37. G. M. Matenoglou, C. E. Lekka, L. E. Koutsokeras, G. Karras, C. Kosmidis, G. A. Evangelakis, and P. Patsalas, J. Appl. Phys. 105, 103714 (2009).
http://dx.doi.org/10.1063/1.3131824
38.
38. D. Sangiovanni, L. Hultman, and V. Chirita, Acta Mater. 59, 2121 (2011).
http://dx.doi.org/10.1016/j.actamat.2010.12.013
39.
39. R. Rachbauer, S. Massl, E. Stergar, D. Holec, D. Kiener, J. Keckes, J. Patscheider, M. Stiefel, H. Leitner, and P. H. Mayrhofer, J. Appl. Phys. 110, 023515 (2011).
http://dx.doi.org/10.1063/1.3610451
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/11/10.1063/1.4795590
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Lattice parameter, a, and (b) its deviation, , from the Vegard's estimate for the quasi-ternary TiN–AlN–HfN system.

Image of FIG. 2.

Click to view

FIG. 2.

Bulk modulus, B, as a function of the composition of quasi-ternary alloys: (a) Ti z Al x Y y N, (b) Ti z Al x Zr y N, (c) Ti z Al x Nb y N, (d) Ti z Al x Hf y N, and (e) Ti z Al x Ta y N. Countours are shown every for Ti z Al x Y y N (a), and every for the other four systems (b)–(e).

Image of FIG. 3.

Click to view

FIG. 3.

Energy of formation, Ef , as a function of the VEC for Ti0.5Al0.5N, Ti-excess (Ti0.5Al0.444X0.056N), and Al-excess (Ti0.444Al0.5X0.056N) alloys.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Chemical strengthening and (b) alloying-related elastic energy caused by the local distortions of Ti0.5Al0.5N, Ti-excess (Ti0.5Al0.444X0.056N), and Al-excess (Ti0.444Al0.5X0.056N) alloys.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Density of states for pure, Y-, Zr-, Hf-, Nb-, and Ta-containing Ti0.5Al0.5N for the Al-excess compositions ( ). The s-, p-, and d-projected density of states of Ti0.5Al0.5N are shown on the very top. EF denotes the Fermi energy. (b) Calculated corresponding centres of mass for metallic and convalent regions, and the band width of the hybridised region (−10 and ).

Image of FIG. 6.

Click to view

FIG. 6.

Mixing enthalpy, , as a function of the composition of quasi-quaternary alloys: (a) Ti1− x y Al x Y y N, (b) Ti1− x y Al x Zr y N, (c) Ti1− x y Al x Nb y N, (d) Ti1− x y Al x Nb y N, and (e) Ti1− x y Al x Ta y N. Contours are every .

Tables

Generic image for table

Click to view

Table I.

Calculated lattice parameter, a, bulk modulus, B, and mixing enthalpy, , of quasi-ternary TiN–AlN–XN systems for  Y, Zr, Nb, Hf, and Ta, as a function of TiN (z), AlN (x), and XN (y) mole fractions.

Loading

Article metrics loading...

/content/aip/journal/jap/113/11/10.1063/1.4795590
2013-03-21
2014-04-18

Abstract

Tailoring and improving material properties by alloying is a long-known and used concept. Recent research has demonstrated the potential of ab initio calculations in understanding the material properties at the nanoscale. Here, we present a systematic overview of alloying trends when early transition metals (Y, Zr, Nb, Hf, and Ta) are added in the Ti1− x Al x N system, routinely used as a protective hard coating. The alloy lattice parameters tend to be larger than the corresponding linearised Vegard's estimation, with the largest deviation more than 2.5% obtained for Y0.5 Al 0.5N. The chemical strengthening is most pronounced for Ta and Nb, although also causing smallest elastic distortions of the lattice due to their atomic radii being comparable with Ti and Al. This is further supported by the analysis of the electronic density of states. Finally, mixing enthalpy as a measure of the driving force for decomposition into the stable constituents is enhanced by adding Y, Zr, and Nb, suggesting that the onset of spinodal decomposition will appear in these cases for lower thermal loads than for Hf and Ta alloyed Ti1− x Al x N.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/11/1.4795590.html;jsessionid=3t27lel7lah4.x-aip-live-03?itemId=/content/aip/journal/jap/113/11/10.1063/1.4795590&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Alloying-related trends from first principles: An application to the Ti–Al–X–N system
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/11/10.1063/1.4795590
10.1063/1.4795590
SEARCH_EXPAND_ITEM