1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Narrow-bandwidth solar upconversion: Case studies of existing systems and generalized fundamental limits
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/12/10.1063/1.4796092
1.
1. N. Lewis and D. Nocera, Proc. Natl. Acad. Sci. U.S.A. 103, 15729 (2006).
http://dx.doi.org/10.1073/pnas.0603395103
2.
2. M. Keevers and M. Green, J. Appl. Phys. 75, 4022 (1994).
http://dx.doi.org/10.1063/1.356025
3.
3. A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.5014
4.
4. G. Güttler and H. Queisser, Energy Convers. 10, 51 (1970).
http://dx.doi.org/10.1016/0013-7480(70)90068-9
5.
5. R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, and N. Karam, Appl. Phys. Lett. 90, 183516 (2007).
http://dx.doi.org/10.1063/1.2734507
6.
6. J. Geisz, D. Friedman, J. Ward, A. Duda, W. Olavarria, T. Moriarty, J. Kiehl, M. Romero, A. Norman, and K. Jones, Appl. Phys. Lett. 93, 123505 (2008).
http://dx.doi.org/10.1063/1.2988497
7.
7. W. Guter, J. Schöne, S. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. Bett, and F. Dimroth, Appl. Phys. Lett. 94, 223504 (2009).
http://dx.doi.org/10.1063/1.3148341
8.
8. M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, Phys. Rev. B 61, 3337 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.3337
9.
9. S. Heer, K. Kömpe, H. Güdel, and M. Haase, Adv. Mater. 16, 2102 (2004).
http://dx.doi.org/10.1002/adma.200400772
10.
10. J. Boyer, L. Cuccia, and J. Capobianco, Nano Lett. 7, 847 (2007).
http://dx.doi.org/10.1021/nl070235+
11.
11. F. Auzel, Chem. Rev. 104, 139 (2004).
http://dx.doi.org/10.1021/cr020357g
12.
12. X. Wang, W. Yu, J. Zhang, J. Aldana, X. Peng, and M. Xiao, Phys. Rev. B 68, 125318 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.125318
13.
13. E. Poles, D. Selmarten, O. Mićić, and A. Nozik, Appl. Phys. Lett. 75, 971 (1999).
http://dx.doi.org/10.1063/1.124570
14.
14. C. Bonati, A. Cannizzo, D. Tonti, A. Tortschanoff, F. van Mourik, and M. Chergui, Phys. Rev. B 76, 033304 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.033304
15.
15. S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda, and G. Wegner, Phys. Rev. Lett. 97, 143903 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.143903
16.
16. S. Baluschev, V. Yakutkin, G. Wegner, T. Miteva, G. Nelles, A. Yasuda, S. Chernov, S. Aleshchenkov, and A. Cheprakov, Appl. Phys. Lett. 90, 181103 (2007).
http://dx.doi.org/10.1063/1.2734475
17.
17. V. Yakutkin, S. Aleshchenkov, S. Chernov, T. Miteva, G. Nelles, A. Cheprakov, and S. Baluschev, Chem.-Eur. J. 14, 9846 (2008).
http://dx.doi.org/10.1002/chem.200801305
18.
18. T. Singh-Rachford and F. Castellano, Coord. Chem. Rev. 254, 2560 (2010).
http://dx.doi.org/10.1016/j.ccr.2010.01.003
19.
19. R. Islangulov, J. Lott, C. Weder, and F. Castellano, J. Am. Chem. Soc. 129, 12652 (2007).
http://dx.doi.org/10.1021/ja075014k
20.
20. J.-H. Kim, F. Deng, F. N. Castellano, and J.-H. Kim, Chem. Mater. 24, 2250 (2012).
http://dx.doi.org/10.1021/cm3012414
21.
21. A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, Appl. Phys. Lett. 86, 013505 (2005).
http://dx.doi.org/10.1063/1.1844592
22.
22. J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, Sol. Energy Mater. Sol. Cells 94, 2395 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.08.024
23.
23. G.-B. Shan and G. P. Demopoulos, Adv. Mater. 22, 4373 (2012).
24.
24. C. Yuan, G. Chen, P. N. Prasad, T. Y. Ohulchanskyy, Z. Ning, H. Tian, L. Sund, and H. Ȧgren, J. Mater. Chem. 22, 16709 (2012).
http://dx.doi.org/10.1039/c2jm16127c
25.
25. H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec, Adv. Mater. 23, 2675 (2011).
http://dx.doi.org/10.1002/adma.201100511
26.
26. T. Trupke, M. Green, and P. Würfel, J. Appl. Phys. 92, 4117 (2002).
http://dx.doi.org/10.1063/1.1505677
27.
27. T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, Sol. Energy Mater. Sol. Cells 90, 3327 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.09.021
28.
28. A. C. Atre and J. A. Dionne, J. Appl. Phys. 110, 034505 (2011).
http://dx.doi.org/10.1063/1.3610522
29.
29. C. M. Johnson and G. J. Conibeer, J. Appl. Phys. 112, 103108 (2012).
http://dx.doi.org/10.1063/1.4766386
30.
30. V. Badescu, A. Vos, A. Badescu, and A. Szymanska, J. Phys. D 40, 341 (2007).
http://dx.doi.org/10.1088/0022-3727/40/2/009
31.
31. P. Würfel, J. Phys. C 15, 3967 (1982).
http://dx.doi.org/10.1088/0022-3719/15/18/012
32.
32. W. Shockley and H. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
33.
33. V. Badescu, J. Appl. Phys. 104, 113120 (2008).
http://dx.doi.org/10.1063/1.3040692
34.
34. W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, Nature Photon. 6, 560 (2012).
http://dx.doi.org/10.1038/nphoton.2012.158
35.
35.National Renewable Energy Laboratory, see http://rredc.nrel.gov/solar/spectra/am1.5/ for the spectral data used in this work.
36.
36. A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, J. Opt. 14, 024008 (2012).
http://dx.doi.org/10.1088/2040-8978/14/2/024008
37.
37. M. Saboktakin, X. Ye, S. J. Oh, S.-H. Hong, A. T. Fafarman, U. K. Chettiar, N. Engheta, C. B. Murray, and C. R. Kagan, ACS Nano 6, 8758 (2012).
http://dx.doi.org/10.1021/nn302466r
38.
38. S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, Nano Lett. 10, 134 (2010).
http://dx.doi.org/10.1021/nl903046r
39.
39. E. Verhagen, L. Kuipers, and A. Polman, Opt. Express 17, 14586 (2009).
http://dx.doi.org/10.1364/OE.17.014586
40.
40. M. Grätzel, Nature 414, 338 (2001).
http://dx.doi.org/10.1038/35104607
41.
41. S. K. W. MacDougall, A. Ivaturi, J. Marques-Hueso, K. W. Krämer, and B. S. Richards, Opt. Exp. 20, A879 (2012).
http://dx.doi.org/10.1364/OE.20.00A879
42.
42. S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, J. Appl. Phys. 108, 044912 (2010).
http://dx.doi.org/10.1063/1.3478742
43.
43.See supplementary material at http://dx.doi.org/10.1063/1.4796092 for (1) a discussion of the energy levels and optimization routine used to model the upconversion process, (2) calculation of currents in each cell, (3) a discussion of the relationship between upconverter relaxation energy and upconverter bandwidth, (4) a table of the spectral parameters used to model upconversion in the bimolecular and lanthanide nanoparticle case studies, and (5) a brief note on solar cell non-idealities. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/12/10.1063/1.4796092
Loading
/content/aip/journal/jap/113/12/10.1063/1.4796092
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/12/10.1063/1.4796092
2013-03-29
2014-07-23

Abstract

Upconversion of sub-bandgap photons is a promising approach to exceed the Shockley-Queisser limit in solar technologies. Calculations have indicated that ideal, upconverter-enhanced cell efficiencies can exceed 44% for non-concentrated sunlight, but such improvements have yet to be observed experimentally. To explain this discrepancy, we develop a thermodynamic model of an upconverter-cell considering a highly realistic narrow-band, non-unity-quantum-yield upconverter. As expected, solar cell efficiencies increase with increasing upconverter bandwidth and quantum yield, with maximum efficiency enhancements found for near-infrared upconverter absorption bands. Our model indicates that existing bimolecular and lanthanide-based upconverters will not improve cell efficiencies more than 1%, consistent with recent experiments. However, our calculations show that these upconverters can significantly increase cell efficiencies from 28% to over 34% with improved quantum yield, despite their narrow bandwidths. Our results highlight the interplay of absorption and quantum yield in upconversion, and provide a platform for optimizing future solar upconverter designs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/12/1.4796092.html;jsessionid=74l71uj549pf6.x-aip-live-03?itemId=/content/aip/journal/jap/113/12/10.1063/1.4796092&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Narrow-bandwidth solar upconversion: Case studies of existing systems and generalized fundamental limits
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/12/10.1063/1.4796092
10.1063/1.4796092
SEARCH_EXPAND_ITEM