1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Bridging semiconductor and magnetism
Rent:
Rent this article for
Access full text Article
    By H. Ohno1,2,3,a)
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
    2 Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
    3 WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
    a) Author to whom correspondence should be addressed. Electronic mail: ohno@riec.tohoku.ac.jp. Telephone/Fax: +81-22-217-5553.
    J. Appl. Phys. 113, 136509 (2013); http://dx.doi.org/10.1063/1.4795537
/content/aip/journal/jap/113/13/10.1063/1.4795537
1.
1. H. Ohno, H. Munekata, T. Penny, S. von Molnár, and L. L. Chang, Phys. Rev. Lett. 68, 2664 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.2664
2.
2. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).
http://dx.doi.org/10.1063/1.118061
3.
3. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature (London) 402, 790 (1999).
http://dx.doi.org/10.1038/45509
4.
4. T. Taniyama, E. Wada, M. Itoh, and M. Yamaguchi, NPG Asia Mater. 3, 65 (2011).
http://dx.doi.org/10.1038/asiamat.2011.84
5.
5. S. Koshihara. A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, H. Takagi, and H. Munekata, Phys. Rev. Lett. 78, 4617 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4617
6.
6. H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature (London) 408, 944 (2000).
http://dx.doi.org/10.1038/35050040
7.
7. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
8.
8. T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.195205
9.
9. Y. Nishitani, D. Chiba, M. Endo, M. Sawicki, F. Matsukura, T. Dietl, and H. Ohno, Phys. Rev. B 81, 045208 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.045208
10.
10. M. Sawicki, D. Chiba, A. Korbecka, Y. Nishitani, J. A. Majewski, F. Matsukura, T. Dietl, and H. Ohno, Nat. Phys. 6, 22 (2010).
http://dx.doi.org/10.1038/nphys1455
11.
11. K. Wagner, D. Neumaier, M. Reinwald, W. Wegsheider, and D. Weiss, Phys. Rev. Lett. 97, 056803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.056803
12.
12. L. Villa, R. Gilaud, L. Thevenard, A. Lemaître, F. Pierre, J. Dufouleur, D. Mailly, B. Barbara, and G. Faini, Phys. Rev. Lett. 98, 027204 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.027204
13.
13. H. Hasegawa, H. Ohno, and T. Sawada, Jpn. J. Appl. Phys., Part 2 25, L265 (1986).
http://dx.doi.org/10.1143/JJAP.25.L265
14.
14. J. Robertson and B. Farabretti, J. Appl. Phys. 100, 014111 (2006).
http://dx.doi.org/10.1063/1.2213170
15.
15. D. Chiba, A. Wepachowska, M. Endo, Y. Nishitani, F. Matsukura, T. Dietl, and H. Ohno, Phys. Rev. Lett. 104, 106601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.106601
16.
16. X.-J. Liu, X. Liu, and J. Sinova, Phys. Rev. B 84, 165304 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165304
17.
17. N. Nagaosa, J. Sinova, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1539
18.
18. T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.809
19.
19. D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, and H. Ohno, Nature 455, 515 (2008).
http://dx.doi.org/10.1038/nature07318
20.
20. T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki, Nat. Nanotechnol. 4, 158 (2009).
http://dx.doi.org/10.1038/nnano.2008.406
21.
21. D. Chiba, Y. Nakatani, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 96, 192506 (2010).
http://dx.doi.org/10.1063/1.3428959
22.
22. D. Chiba, M. Yamanouchi, F. Matsukura, and H. Ohno, Science 301, 943 (2003).
http://dx.doi.org/10.1126/science.1086608
23.
23. D. Chiba, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 89, 162505 (2006).
http://dx.doi.org/10.1063/1.2362971
24.
24. M. Birowska, C. Śliwa, J. A. Majewski, and T. Dietl, Phys. Rev. Lett. 108, 237203 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.237203
25.
25. M. Weisheit, S. Fähler, A. Marty, Y. Souche, C. Poinsignon, and D. Givord, Science 315, 349 (2007).
http://dx.doi.org/10.1126/science.1136629
26.
26. M. Endo, S. Kanai, S. Ikeda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 96, 212503 (2010).
http://dx.doi.org/10.1063/1.3429592
27.
27. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nat. Mater. 9, 721 (2010).
http://dx.doi.org/10.1038/nmat2804
28.
28. Y. Shiota, T. Nozaki, F. Bonell, S. Murakami, T. Shinjo, and Y. Suzuki, Nature Mater. 11, 39 (2012).
http://dx.doi.org/10.1038/nmat3172
29.
29. S. Kanai, M. Yamanouchi, S. Ikeda, Y. Nakatani, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 101, 122403 (2012).
http://dx.doi.org/10.1063/1.4753816
30.
30. H. Ohno, T. Endoh, T. Hanyu, N. Kasai, and S. Ikeda, in Technical Digest—International Electron Devices Meeting (IEEE Conference Publications, 2010), p. 218.
http://dx.doi.org/10.1109/IEDM.2010.5703329
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/13/10.1063/1.4795537
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Curie temperature T C as a function of carrier concentration defined by sheet carrier concentration p s divided by the layer thickness t. Circles are experimental data and stars are results of simulation, both showing that T Cp s γ. Dashed line is calculated by the p-d Zener model with uniform carrier distribution. (b) Exponent γ of twelve samples with different thicknesses and compositions. (c) Calculated carrier distribution of the sample in (a). N A is the acceptor density in (Ga,Mn)As and N i the interface donor density to simulate the Fermi level pinning. Low-temperature (LT-) grown GaAs is the buffer layer and Al2O3 the insulator used in experiment. (See Ref. 9 for details.) Reprinted with permission from Y. Nishitani et al., Phys. Rev. B 81, 945208 (2010). Copyright 2010 by the American Physical Society.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Exponent γ as a function of interface Fermi level position ε F − ε V for (Ga,Mn)As. Acceptor density N A is 2  × 1020 cm−3. Thickness is 4.5 nm. g is 0.2 when ε F is 0.5 eV above the valence band edge and rapidly increases as ε F goes into the valence band. (b) Experimental results of (Ga,Mn)As and (Ga,Mn)Sb.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Transverse resistance Ryx of (Ga,Mn)As (t = 4 nm, x = 0.125) as a function of temperature with the applied electric field as a parameter. (b)Temperature and electric-field dependence of longitudinal resistance Rxx . (c) Conductance σxx versus Hall conductance σxy . When the sample is resistive the data follow an empirical scaling of σxy σxx 1.6. Adapted from Ref. 15 . Reprinted with permissions from D. Chiba et al., Phys. Rev. Lett. 104, 106601 (2010). Copyright 2010 by the American Physical Society.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Normalized planar Hall resistance of a (Ga,Mn)As channel FET structure as a function of the direction of in-plane magnetic field (0.15 T) measured from the [100] orientation. Fit includes biaxial and uniaxial anisotropies and reproduce very well the experiment. (b) Magnetization angle calculated from the anisotropy fields obtained from experiments shown in (a), indicating that the angle depends on the applied electric field. See Ref. 19 . Reprinted with permissions from Nature Publishing Group: D. Chiba et al. Nature 455, 515 (2008). Copyright 2008.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Probability P of switching from parallel (P) to antiparallel (AP) magnetization configuration in a perpendicular CoFeB-MgO-CoFeB magnetic tunnel junction under constant magnetic field μ 0 H. Vertical axis shows the voltage pulse width. The electric field switches perpendicular magnetization to in-plane and induces precession of magnetization. (b) Probability at μ 0 H = 23 mT. (c) Switching events at t pulse = 1.83 ns under three different μ 0 H. See Ref. 29 for details. Reprinted with permissions from S. Kanai et al., Appl. Phys. Lett. 101, 122403 (2012). Copyright 2010 by the American Institute of Physics.

Loading

Article metrics loading...

/content/aip/journal/jap/113/13/10.1063/1.4795537
2013-03-29
2014-04-19

Abstract

Carrier-induced ferromagnetism and its manipulation in Mn-doped III-V semiconductors, such as (In,Mn)As and (Ga,Mn)As, offer a wide variety of phenomena that originate from the interplay between magnetism and semiconducting properties, forming a bridge between semiconductor and magnetism. A review is given on the electrical manipulation of magnetism, its understanding, and potential applications both from the physics point of view and from the technological point of view. The electric-field study on magnetism is now being extended to magnetic metals, leading to an energy efficient way of magnetization reversal important for future semiconductor integrated circuit technology, yet another route to bridge semiconductor and magnetism in a fruitful way.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/13/1.4795537.html;jsessionid=2j05sqxed013i.x-aip-live-03?itemId=/content/aip/journal/jap/113/13/10.1063/1.4795537&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Bridging semiconductor and magnetism
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/13/10.1063/1.4795537
10.1063/1.4795537
SEARCH_EXPAND_ITEM