1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Test of the fluctuation theorem for single-electron transport
Rent:
Rent this article for
USD
10.1063/1.4795540
/content/aip/journal/jap/113/13/10.1063/1.4795540
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/13/10.1063/1.4795540
View: Figures

Figures

Image of FIG. 1.
FIG. 1.

(a) Configuration described by the FT. The essential part is a dissipative system (here, an electrical resistor) which is brought out of equilibrium by an external force (here a voltage) performing work. The dissipated heat flows into a thermal bath. (b) Atomic-force micrograph of the sample. Electrons can travel between the source and drain via the two quantum dots marked by disks. The conductance of the quantum point contact serves to read out the charge state of the quantum dots. Fig. 1(b) reprinted with permission from Küng et al., Phys. Rev. X 2, 011001 (2012). Copyright (2012) by the American Physical Society.

Image of FIG. 2.
FIG. 2.

(a) time trace recorded at a positive DQD source–drain voltage. The three discrete levels are assigned to the DQD charge states L, R, and 0. (b) Diagram of the DQD states and transitions. To count the number n of electrons that pass the center DQD barrier, we count the number of transitions minus . (c) Histogram of the electron number n obtained from the analysis of 3000 time segments of length . The histogram was measured at finite DQD source–drain voltage and has a nonzero mean value which converts into a nonzero DQD current . The variance of the histogram, , determines the zero-frequency current noise spectral density of the DQD. Fig. 2(a) reprinted with permission from Küng et al., Phys. Rev. X 2, 011001 (2012). Copyright (2012) by the American Physical Society.

Image of FIG. 3.
FIG. 3.

(a)–(c) Comparison of experimental data with theory for three different bath temperatures. The data points correspond to the left-hand side of Eq. (2) and describe the probability ratio of forward ( , entropy-producing) and backward ( , entropy-consuming) processes for a given n. The solid lines mark the expected exponential behavior for the two source–drain voltages (dark blue) and (red). If the finite bandwidth of the detector is taken into account 30,35 (dashed lines), experiment and theory agree within the statistical uncertainty of the data (error bars: estimated standard deviation). Reprinted with permission from Küng et al., Phys. Rev. X 2, 011001 (2012). Copyright (2012) by the American Physical Society.

Image of FIG. 4.
FIG. 4.

The red data points show the -depencence of the left-hand side of Eq. (4) , the ratio of entropy-consuming vs. entropy-producing cycles, with error bars indicating its estimated standard deviation. The blue circles show the right-hand side, the average of the Boltzmann factor among the entropy-consuming cycles. The FT (4) is satisfied if the finite detector bandwidth is taken into account in the form of a correction factor to the exponent in Eq. (4) (crosses). The uncertainty in the finite-bandwidth correction is comparable with the error on for all bias voltages. Reprinted with permission from Küng et al., Phys. Rev. X 2, 011001 (2012). Copyright (2012) by the American Physical Society.

Image of FIG. 5.
FIG. 5.

Measurement of fluctuation relation between DQD current and noise. The upper plot shows the bandwidth-corrected DQD current ( , 260 time bins per point) along with a fit to a second-order polynomial in . Using the linear and quadratic coefficients of the fit, the fluctuation relations (6) and (7) are used to calculate the expected (linear) dependence of on . This is plotted as a black line along with the data in the lower plot.

Loading

Article metrics loading...

/content/aip/journal/jap/113/13/10.1063/1.4795540
2013-03-29
2014-04-23
Loading

Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Test of the fluctuation theorem for single-electron transport
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/13/10.1063/1.4795540
10.1063/1.4795540
SEARCH_EXPAND_ITEM