Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller, Phys. Rev. Lett. 68, 2394 (1992).
2. L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W.-K. Kwok, and U. Welp, Science 318, 1291 (2007).
3. For recent reviews, special issueT-ray imaging, sensing, and detectionProc. IEEE 95(8 ), 1505 (2007);
3. M. Tonouchi, Nat. Photonics 1, 97 (2007);
3. A. Redo-Sanchez and X.-C. Zhang, IEEE J. Sel. Top. Quantum Electron. 14, 260 (2008);
3. S. Kumar, IEEE J. Sel. Top. Quantum Electron. 17, 38 (2011).
4. C , Kurter, K. E. Gray, J. F. Zasadzinski, L. Ozyuzer, A. E. Koshelev, Q. Li, T. Yamamoto, K. Kadowaki, W.-K. Kwok, M. Tachiki, and U. Welp, IEEE Trans. Appl. Supercond. 19, 428 (2009);
4. C. Kurter, L. Ozyuzer, T. Proslier, J. F. Zasadzinski, D. G. Hinks, and K. E. Gray, Phys. Rev. B 81, 224518 (2010);
4. M. Suzuki, T. Watanabe, and A. Matsuda, Phys. Rev. Lett. 82, 5361 (1999);
4. H. B. Wang, T. Hatano, T. Yamashita, P. H. Wu, and P. Muller, Appl. Phys. Lett. 86, 023504 (2005);
4. J. C. Fenton and C. E. Gough, J. Appl. Phys. 94, 4665 (2003);
4. V. N. Zavaritsky, Phys. Rev. Lett. 92, 259701 (2004);
4. V. M. Krasnov, M. Sandberg, and I. Zogaj, Phys. Rev. Lett. 94, 077003 (2005).
5. A. Yurgens, Phys. Rev. B 83, 184501 (2011).
6. B. Gross, S. Guenon, J. Yuan, M. Y. Li, J. Li, A. Ishii, R. G. Mints, T. Hatano, P. H. Wu, D. Koelle, H. B. Wang, and R. Kleiner, Phys. Rev. B 86, 094524 (2012).
7. H. B. Wang, S. Guenon, J. Yuan, A. Iishi, S. Arisawa, T. Hatano, T. Yamashita, D. Koelle, and R. Kleiner, Phys. Rev. Lett. 102, 017006 (2009).
8. H. B. Wang, S. Guenon, B. Gross, J. Yuan, Z. G. Jiang, Y. Y. Zhong, M. Gruenzweig, A. Iishi, P. H. Wu, T. Hatano, D. Koelle, and R. Kleiner, Phys. Rev. Lett. 105, 057002 (2010).
9. S. Guenon, M. Gruenzweig, B. Gross, J. Yuan, Z. G. Jiang, Y. Y. Zhong, M. Y. Li, A. Iishi, P. H. Wu, T. Hatano, R. G. Mints, E. Goldobin, D. Koelle, H. B. Wang, and R. Kleiner, Phys. Rev. B 82, 214506 (2010).
10. H. Minami, C. Watanabe, K. Sato, S. Sekimoto, T. Yamamoto, T. Kashiwaki, R. A. Klemm, and K. Kadowaki, “ Inhomogeneous Temperature Distribution due to Local Heating in a THz-Emitting Bi2Sr2CaCu2O8 + Rectangular Mesa Structure” (to be published).
11. M. Li, J. Yuan, N. Kinev, J. Li, B. Gross, S. Guenon, A. Ishii, K. Hirata, T. Hatano, D. Koelle, R. Kleiner, V. P. Koshelets, H. B. Wang, and P. H. Wu, Phys. Rev. B 86, 060505 (2012).
12. A. Larkin and A. Varlamov, Theory of Fluctuations in Superconductors (Clarendon Press, Oxford, 2005), p. 304.
13. I. Kakeya, Y. Omukai, T. Yamamoto, K. Kadowaki, and M. Suzuki, Appl. Phys. Lett. 100, 242603 (2012).
14. P. Kolodner and J. A. Tyson, Appl. Phys. Lett. 40, 782 (1982);
14. P. Kolodner and J. A. Tyson, Appl. Phys. Lett. 42, 117 (1983).
15. G. B. Hadjichristov, S. S. Stanimirov, I. L. Stefanov, and I. K. Petkov, Spectrochim. Acta A 69, 443 (2008);
15. S. W. Allison and G. T. Gillies, Rev. Sci. Instrum. 68, 2615 (1997);
15. G. E. Khalil, K. Lau, G. D. Phelan, B. Carlson, M. Gouterman, J. B. Callis, and L. R. Dalton, Rev. Sci. Instrum. 75, 192 (2004);
15. K. Binnemans, Chem. Rev. 109, 4283 (2009).
16. G. Hampel, P. Kolodner, P. L. Gammel, P. A. Polakos, E. de Obaldia, P. M. Mankiewich, A. Anderson, R. Slattery, D. Zhang, G. C. Liang, and C. F. Shih, Appl. Phys. Lett. 69, 571 (1996).
17. O. Haugen, T. H. Johansen, H. Chen, V. Yurchenko, P. Vase, D. Winkler, B. A. Davidson, G. Testa, E. Sarnelli, and E. Altshuler, IEEE Trans. Appl. Supercond. 17, 3215 (2007);
17. S. Niratisairak, O. Haugen, T. H. Johansen, and T. Ishibashi, Physica C 468, 442 (2008).
18. T. M. Benseman, A. E. Koshelev, K. E. Gray, W.-K. Kwok, U. Welp, K. Kadowaki, M. Tachiki, and T. Yamamoto, Phys. Rev. B 84, 064523 (2011).
19. J. Takeya, S. Akita, J. Shimoyama, and K. Kishio, Physica C 261, 21 (1996);
19. A. Yurgens, D. Winkler, N. V. Zavaritsky, and T. Claeson, Phys. Rev. Lett. 79, 5122 (1997);
19. Yu. I. Latyshev, T. Yamashita, L. N. Bulaevskii, M. J. Graf, A. V. Balatsky, and M. P. Maley, Phys. Rev. Lett. 82, 5345 (1999).
20. H. G. Luo, Y. H. Su, and T. Xiang, Phys. Rev. B 77, 014529 (2008).
21. B. K. Ridley, Proc. Phys. Soc. 82, 954 (1963);
21. A. V. Gurevich and R. G. Mints, Rev. Mod. Phys. 59, 941 (1987).
22. H. Lueder and E. Spenke, Phys. Z. 36, 767 (1936);
22. E. Spenke, Veröff. Siemens-Werken 15, 92 (1936).
23. K. Tsendin, Phys. Status Solidi B 246, 1831 (2009);
23. N. A. Bogoslovskiy and K. D. Tsendin, Semiconductors 46, 559 (2012).

Data & Media loading...


Article metrics loading...



Stacks of intrinsic Josephson junctions (IJJs) made from high-temperature superconductors such as Bi2Sr2CaCu2O8+δ (Bi-2212) (BSCCO) are a promising source of coherent continuous-wave terahertz radiation. It is thought that at electrical bias conditions under which THz-emission occurs, hot spots may form due to resistive self-heating, and that these spots may be highly beneficial for the generation of high levels of THz power. Here, we perform an imaging study of the temperature distribution at the surface of BSCCO stacks utilizing the temperature-dependent 612 nm fluorescence line of Eu3+ in a europium chelate. The images directly reveal a highly non-uniform temperature distribution in which the temperature in the middle of the stack can exceed the superconducting transition temperature by tens of Kelvin under biasing conditions typical for THz-emission.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd