Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/113/13/10.1063/1.4798597
1.
1. S. Takamura, N. Ohno, D. Nishijima, and S. Kajita, Plasma Fusion Res. 1, 051 (2006).
http://dx.doi.org/10.1585/pfr.1.051
2.
2. S. Kajita, W. Sakaguchi, N. Ohno, N. Yoshida, and T. Saeki, Nucl. Fusion 49, 095005 (2009).
http://dx.doi.org/10.1088/0029-5515/49/9/095005
3.
3. M. Baldwin and R. Doerner, Nucl. Fusion 48, 035001 (2008).
http://dx.doi.org/10.1088/0029-5515/48/3/035001
4.
4. S. Kajita, N. Yoshida, R. Yoshihara, N. Ohno, and M. Yamagiwa, J. Nucl. Mater. 418, 152 (2011).
http://dx.doi.org/10.1016/j.jnucmat.2011.06.026
5.
5. S. I. Krasheninnikov, Phys. Scr. T145, 014040 (2011).
http://dx.doi.org/10.1088/0031-8949/2011/T145/014040
6.
6. S. Kajita, S. Takamura, N. Ohno, D. Nishijima, H. Iwakiri, and N. Yoshida, Nucl. Fusion 47, 1358 (2007).
http://dx.doi.org/10.1088/0029-5515/47/9/038
7.
7. S. Kajita, T. Saeki, N. Yoshida, N. Ohno, and A. Iwamae, Appl. Phys. Express 3, 085204 (2010).
http://dx.doi.org/10.1143/APEX.3.085204
8.
8. S. Kajita, T. Saeki, Y. Hirahata, and N. Ohno, Jpn. J. Appl. Phys., Part 1 50, 01AH02 (2011).
http://dx.doi.org/10.1143/JJAP.50.01AH02
9.
9. S. Kajita, S. Takamura, and N. Ohno, Nucl. Fusion 49, 032002 (2009).
http://dx.doi.org/10.1088/0029-5515/49/3/032002
10.
10. G. D. Temmerman, K. Bystrov, J. J. Zielinski, M. Balden, G. Matern, C. Arnas, and L. Marot, J. Vac. Sci. Technol. A 30, 041306 (2012).
http://dx.doi.org/10.1116/1.4731196
11.
11. S. Seal, Functional Nanostructures: Processing, Characterization, and Applications (Springer, New York, 2008).
12.
12. G. Wilde, Nanostructured Materials (Elsevier, Oxford, 2009).
13.
13. D. R. Rolison, Science 299, 1698 (2003).
http://dx.doi.org/10.1126/science.1082332
14.
14. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Nature 410, 450 (2001).
http://dx.doi.org/10.1038/35068529
15.
15. Y. Ding, A. Mathur, M. Chen, and J. Erlebacher, Angew. Chem., Int. Ed. 44, 4002 (2005).
http://dx.doi.org/10.1002/anie.200463106
16.
16. T. Kijima, T. Yoshimura, M. Uota, T. Ikeda, D. Fujikawa, S. Mouri, and S. Uoyama, Angew. Chem., Int. Ed. 43, 228 (2004).
http://dx.doi.org/10.1002/anie.200352630
17.
17. S. Kajita, N. Yoshida, R. Yoshihara, N. Ohno, T. Yokochi, M. Tokitani, and S. Takamura, J. Nucl. Mater. 421, 22 (2012).
http://dx.doi.org/10.1016/j.jnucmat.2011.11.044
18.
18. D. Nishijima, M. Baldwin, R. Doerner, and J. Yu, J. Nucl. Mater. 415, S96 (2011).
http://dx.doi.org/10.1016/j.jnucmat.2010.12.017
19.
19. N. Ohno, D. Nishijima, S. Takamura, Y. Uesugi, M. Motoyama, N. Hattori, H. Arakawa, N. Ezumia, S. Krasheninnikov, A. Pigarov, and U. Wenzel, Nucl. Fusion 41, 1055 (2001).
http://dx.doi.org/10.1088/0029-5515/41/8/309
20.
20. S. Kajita, D. Nishijima, N. Ohno, and S. Takamura, J. Appl. Phys. 100, 103304 (2006).
http://dx.doi.org/10.1063/1.2387151
21.
21. E. Rephaeli and S. Fan, Appl. Phys. Lett. 92, 211107 (2008).
http://dx.doi.org/10.1063/1.2936997
22.
22. J. F. Figueira and S. J. Thomas, IEEE J. Quantum Electron. 18, 1381 (1982).
http://dx.doi.org/10.1109/JQE.1982.1071704
23.
23. A. D. G. Stewart and M. W. Thompson, J. Mater. Sci. 4, 56 (1969).
http://dx.doi.org/10.1007/BF00555048
24.
24. G. K. Wehner and D. J. Hajicek, J. Appl. Phys. 42, 1145 (1971).
http://dx.doi.org/10.1063/1.1660158
25.
25. G. K. Wehner, J. Vac. Sci. Technol. A 3, 1821 (1985).
http://dx.doi.org/10.1116/1.573386
26.
26. L. Begrambekov, V. Telkovsky, and A. Zakharov, Nucl. Instrum. Methods Phys. Res. B 115, 456 (1996).
http://dx.doi.org/10.1016/0168-583X(95)01514-0
27.
27. D. Rosenberg and G. K. Wehner, J. Appl. Phys. 33, 1842 (1962).
http://dx.doi.org/10.1063/1.1728843
28.
28. S. Kajita, T. Saeki, N. Ohno, M. Tokitani, T. Hatae, and W. Sakaguchi, J. Nucl. Mater. 417, 838 (2011).
http://dx.doi.org/10.1016/j.jnucmat.2010.12.205
29.
29. J. H. Evans, J. Nucl. Mater. 334, 40 (2004).
http://dx.doi.org/10.1016/j.jnucmat.2004.04.349
30.
30. W. Sakaguchi, S. Kajita, N. Ohno, and M. Takagi, J. Nucl. Mater. 390–391, 1149 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2009.01.276
31.
31. R. Abe, H. Takami, N. Murakami, and B. Ohtani, J. Am. Chem. Soc. 130, 7780 (2008).
http://dx.doi.org/10.1021/ja800835q
32.
32. T. Arai, M. Horiguchi, M. Yanagida, T. Gunji, H. Sugihara, and K. Sayama, Chem. Commun. 2008, 5565.
33.
33. T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, and K. Sayama, Catal. Commun. 9, 1254 (2008).
http://dx.doi.org/10.1016/j.catcom.2007.11.012
34.
34. M. Haruta, Catal. Today 36, 153 (1997).
http://dx.doi.org/10.1016/S0920-5861(96)00208-8
35.
35. E. Kowalska, O. O. P. Mahaney, R. Abe, and B. Ohtani, Phys. Chem. Chem. Phys. 12, 2344 (2010).
http://dx.doi.org/10.1039/b917399d
36.
36. K. Ostrikov, Rev. Mod. Phys. 77, 489 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.489
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/13/10.1063/1.4798597
Loading
/content/aip/journal/jap/113/13/10.1063/1.4798597
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/13/10.1063/1.4798597
2013-04-01
2016-07-27

Abstract

It has been found recently that low-energy helium (He) plasma irradiation to tungsten (W) leads to the growth of W nanostructures on the surface. The process to grow the nanostructure is identified as a self-growth process of He bubbles and has a potential to open up a new plasma processing method. Here, we show that the metallic nanostructure formation process by the exposure to He plasma can occur in various metals such as, titanium, nickel, iron, and so on. When the irradiation conditions alter, the metallic cone arrays including nanobubbles inside are formed on the surface. Different from W cases, other processes than growth of fiberform structure, i.e., physical sputtering and the growth of large He bubbles, can be dominant on other metals during irradiation; various surface morphology changes can occur. The nanostructured W, part of which was oxidized, has revealed a significant photocatalytic activity under visible light (wavelength >700 nm) in decolorization of methylene blue without any co-catalyst.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/13/1.4798597.html;jsessionid=_Q-GWGa1OgTGT80MznzpO9uK.x-aip-live-06?itemId=/content/aip/journal/jap/113/13/10.1063/1.4798597&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/113/13/10.1063/1.4798597&pageURL=http://scitation.aip.org/content/aip/journal/jap/113/13/10.1063/1.4798597'
Right1,Right2,Right3,