1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Constructal law of design and evolution: Physics, biology, technology, and society
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/15/10.1063/1.4798429
1.
1. A. Bejan, “ Constructal-theory network of conducting paths for cooling a heat generating volume,” Int. J. Heat Mass Transfer 40, 799816 (1997).
http://dx.doi.org/10.1016/0017-9310(96)00175-5
2.
2. A. Bejan, Advanced Engineering Thermodynamics, 2nd ed. (Wiley, New York, 1997).
3.
3. T. Basak, “ The law of life: The bridge between Physics and Biology,” Phys Life Rev. 8, 249252 (2011).
http://dx.doi.org/10.1016/j.plrev.2011.07.003
4.
4. A. Bejan and S. Lorente, “ Constructal theory of generation of configuration in nature and engineering,” J. Appl. Phys. 100, 041301 (2006).
http://dx.doi.org/10.1063/1.2221896
5.
5. A. Kremer-Marietti and J. Dhombres, L’Épistemologie (Ellipses, Paris, 2006).
6.
6. Constructal Theory of Social Dynamics, edited by A. Bejan and G. W. Merkx (Springer, New York, 2007).
7.
7. P. Kalason, Le Grimoire des Rois: Théorie Constructale du Changement (L'Harmattan, Paris, 2007).
8.
8. P. Kalason, Épistémologie Constructale du Lien Cultuel (L'Harmattan, Paris, 2007).
9.
9. A. Bejan and S. Lorente, Design With Constructal Theory (Wiley, Hoboken, 2008).
10.
10. Constructal Theory and Multi-Scale Geometries: Theory and Applications in Energetics, Chemical Engineering and Materials, edited by D. Queiros-Conde and M. Feidt (Les Presses de L'ENSTA, Paris, 2009).
11.
11. L. Rocha, Convection in Channels and Porous Media: Analysis, Optimization, and Constructal Design (VDM Verlag, Saarbrücken, 2009).
12.
12. Constructal Human Dynamics, Security and Sustainability, edited by A. Bejan, S. Lorente, A. F. Miguel, and A. H. Reis (IOS Press, Amsterdam, 2009).
13.
13. G. Lorenzini, S. Moretti, and A. Conti, Fin Shape Optimization Using Bejan's Constructal Theory (Morgan & Claypool Publishers, San Francisco, 2011).
14.
14. A. Bachta, J. Dhombres, and A. Kremer-Marietti, Trois Ètudes sur la Loi Constructale d'Adrian Bejan (L'Harmattan, Paris, 2008).
15.
15. A. Bejan and J. P. Zane, Design in Nature: How the Constructal Law Governs Evolution in Biology, Physics, Technology, and Social Organization (Doubleday, New York, 2012).
16.
16. N. Acuña, Mindshare: Igniting Creativity and Innovation Through Design Intelligence (Motion, Henderson, NV, 2012).
17.
17. L. A. O. Rocha, S. Lorente, and A. Bejan, Constructal Law and the Unifying Principle of Design (Springer, New York, 2012).
18.
18. J. A. Tuhtan, A Modeling Approach for Alpine Rivers Impacted by Hydropeaking Including the Second Law Inequality (Institute for Water and Environment-System Modeling, University of Stuttgart, 2012), Vol. 210.
19.
19. A. Bejan, Entropy Generation Through Heat and Fluid Flow (Wiley, New York, 1982).
20.
20. A. Bejan, Entropy Generation Minimization (CRC Press, Boca Raton, 1996).
21.
21. A. Bejan and S. Lorente, “ The constructal law and the evolution of design in nature,” Phys. Life Rev. 8, 209240 (2011).
http://dx.doi.org/10.1016/j.plrev.2011.05.010
22.
22. A. H. Reis, “ Constructal theory: From engineering to physics, and how flow systems develop shape and structure,” Appl. Mech. Rev. 59, 269282 (2006).
http://dx.doi.org/10.1115/1.2204075
23.
23. A. Bejan and S. Lorente, “ The constructal law of design and evolution in nature,” Philos. Trans. R. Soc. London, Ser. B 365, 13351347 (2010).
http://dx.doi.org/10.1242/jeb.01974
24.
24. L. Chen, “ Progress in study on constructal theory and its applications,” Sci. China, Ser. E: Technol. Sci. 55(3 ), 802820 (2012).
http://dx.doi.org/10.1007/s11431-011-4701-9
25.
25. A. Bejan, Advanced Engineering Thermodynamics, 3rd ed. (Wiley, Hoboken, 2006).
26.
26. A. Bejan, S. Lorente, and J. Lee, “ Unifying constructal theory of tree roots, canopies and forests,” J. Theor. Biol. 254, 529540 (2008).
http://dx.doi.org/10.1016/j.jtbi.2008.06.026
27.
27. G. A. Ledezma, A. Bejan, and M. Errera, “ Constructal tree networks for heat transfer,” J. Appl. Phys. 82, 89100 (1997).
http://dx.doi.org/10.1063/1.365853
28.
28. M. R. Errera and A. Bejan, “ Deterministic tree networks for river drainage basins,” Fractals 6, 245261 (1998).
http://dx.doi.org/10.1142/S0218348X98000298
29.
29. A. Bejan, Shape and Structure From Engineering to Nature (Cambridge University Press, Cambridge, UK, 2000).
30.
30. H. Kobayashi, S. Lorente, R. Anderson, and A. Bejan, “ Trees and serpentines in a conducting body,” Int. J. Heat Mass Transfer 56, 488494 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.09.012
31.
31. R. Boichot, L. Luo, and Y. Fan, “ Tree-network structure generation for heat conduction by cellular automaton,” Energy Convers. Manage. 50, 376386 (2009).
http://dx.doi.org/10.1016/j.enconman.2008.09.003
32.
32. S. Wei, L. Chen, and F. Sun, “ The area-point constructal optimization for discrete variable cross-section conducting path,” Appl. Energy 86, 11111118 (2009).
http://dx.doi.org/10.1016/j.apenergy.2008.06.010
33.
33. X. Xianghua, L. Xingang, and R. Jianxun, “ Optimization of heat conduction using combinatorial optimization algorithms,” Int. J. Heat Mass Transfer 50, 16751682 (2007).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.10.037
34.
34. M. M. Fyrillas, “ Heat conduction in a solid slab embedded with a pipe of general cross-section: Shape factor and shape optimization,” Int. J. Eng. Sci. 46, 907916 (2008).
http://dx.doi.org/10.1016/j.ijengsci.2008.03.004
35.
35. M. Eslami and K. Jafarpur, “ Optimal distribution of imperfection in conductive constructal designs of arbitrary configurations,” J. Appl. Phys. 112, 104905 (2012).
http://dx.doi.org/10.1063/1.4766443
36.
36. L. Combelles, S. Lorente, and A. Bejan, “ Leaflike architecture for cooling a flat body,” J. Appl. Phys. 106, 044906 (2009).
http://dx.doi.org/10.1063/1.3176941
37.
37. B. V. K. Reddy, P. V. Ramana, and A. Narasimhan, “ Steady and transient thermo-hydraulic performance of disc with tree-shaped micro-channel networks with and without radial inclination,” Int. J. Therm. Sci. 47, 14821489 (2008).
http://dx.doi.org/10.1016/j.ijthermalsci.2007.11.003
38.
38. A. Sciacovelli and V. Verda, “ Entropy generation minimization for the optimal design of the fluid distribution system in a circular MCFC,” Int. J. Thermodyn. 14, 167177 (2011).
http://dx.doi.org/10.5541/ijot.320
39.
39. H. R. Williams, R. S. Trask, P. M. Weaver, and I. P. Bond, “ Minimum mass vascular networks in multifunctional materials,” J. R. Soc., Interface 5, 5565 (2008).
http://dx.doi.org/10.1046/j.1525-1594.2000.06586.x
40.
40. P. Bieupoude, Y. Azoumah, and P. Neveu, “ Optimization of drinking water distribution networks: Computer-based methods and constructal design,” Comput. Environ. Urban Syst. 36, 434444 (2012).
http://dx.doi.org/10.1016/j.compenvurbsys.2012.03.007
41.
41. A. F. Miguel, “ Dendritic structures for fluid flow: Laminar, turbulent and constructal design,” J. Fluids Struct. 26, 330335 (2010).
http://dx.doi.org/10.1016/j.jfluidstructs.2009.11.004
42.
42. C. Bai and L. Wang, “ Constructal structure of nanofluids,” J. Appl. Phys. 108, 074317 (2010).
http://dx.doi.org/10.1063/1.3486501
43.
43. J. Fan and L. Wang, “ Constructal design of nanofluids,” Int. J. Heat Mass Transfer 53, 42384247 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.05.050
44.
44. C. Bai and L. Wang, “ Constructal design of particle volume fraction in nanofluids,” J. Heat Transfer 131, 112402 (2009).
http://dx.doi.org/10.1115/1.3155002
45.
45. F. Wu, L. Chen, A. Shu, X. Kan, K. Wu, and Z. Yang, “ Constructal design of stack filled with parallel plates in standing-wave thermo-acoustic cooler,” Cryogenics 49, 107111 (2009).
http://dx.doi.org/10.1016/j.cryogenics.2008.09.009
46.
46. P. Xu, X. Q. Wang, A. S. Mujumdar, C. Yap, and B. M. Yu, “ Thermal characteristics of tree-shaped microchannel nets with/without loops,” Int. J. Therm. Sci. 48, 21392147 (2009).
http://dx.doi.org/10.1016/j.ijthermalsci.2009.03.018
47.
47. H. Ghaedamini, M. R. Salimpour, and A. Campo, “ Constructal design of reverging microchannels for convective cooling of circular disc,” Int. J. Therm. Sci. 50, 10511061 (2011).
http://dx.doi.org/10.1016/j.ijthermalsci.2011.01.014
48.
48. S. Tescari, N. Mazet, and P. Neveu, “ Constructal theory through thermodynamics of irreversible processes framework,” Energy Convers. Manage. 52, 31763188 (2011).
http://dx.doi.org/10.1016/j.enconman.2011.04.025
49.
49. A. Nakayama, F. Kuwahara, and W. Liu, “ A macroscopic model for countercurrent bioheat transfer in a circulatory system,” J. Porous Media 12, 289300 (2009).
http://dx.doi.org/10.1615/JPorMedia.v12.i4.10
50.
50. H. Kobayashi, S. Lorente, R. Anderson, and A. Bejan, “ Freely morphing tree structures in a conducting body,” Int. J. Heat Mass Transfer 55, 474447523 (2012).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.04.038
51.
51. S. Lorente, W. Wechsatol, and A. Bejan, “ Tree-shaped flow structures designed by minimizing path lengths,” Int. J. Heat Mass Transfer 45, 32993312 (2002).
http://dx.doi.org/10.1016/S0017-9310(02)00051-0
52.
52. H. Ghaedamini, M. R. Salimpour, and A. S. Mujumdar, “ The effect of svelteness on the bifurcation angles role in pressure drop and flow uniformity of tree-shaped microchannels,” Appl. Therm. Eng. 31, 708716 (2011).
http://dx.doi.org/10.1016/j.applthermaleng.2010.10.005
53.
53. A. Bejan, Convection Heat Transfer (Wiley, New York, 1984), Problem 4.11, p. 157.
54.
54. A. Bejan and E. Sciubba, “ The optimal spacing of parallel plates cooled by forced convection,” Int. J. Heat Mass Transfer 35, 32593264 (1992).
http://dx.doi.org/10.1016/0017-9310(92)90213-C
55.
55. A. Bejan, “ Dendritic constructal heat exchanger with small-scale crossflows and larger-scales counterflows,” Int. J. Heat Mass Transfer 45, 46074620 (2002).
http://dx.doi.org/10.1016/S0017-9310(02)00165-5
56.
56. G. Lorenzini, R. L. Corrêa, E. D. dos Santos, and L. A. O. Rocha, “ Constructal design of complex assembly of fins,” J. Heat Transfer 133, 081902 (2011).
http://dx.doi.org/10.1115/1.4003710
57.
57. D.-K. Kim, “ Thermal optimization of plate-fin heat sinks with fins of variable thickness under natural convection,” Int. J. Heat Mass Transfer 55, 752761 (2012).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.10.034
58.
58. S.-H. Yu, K.-S. Lee, and S.-J. Yook, “ Optimum design of a radial heat sink under natural convection,” Int. J. Heat Mass Transfer 54, 24992505 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.02.012
59.
59. D. Bhanja and B. Kundu, “ Thermal analysis of a constructal T-shaped porous fin with radiation effects,” Int. J. Refrigeration 34, 14831496 (2011).
http://dx.doi.org/10.1016/j.ijrefrig.2011.04.003
60.
60. G. Lorenzini and S. Moretti, “ A Bejan's constructal theory approach to the overall optimization of heat exchanging finned modules with air in forced convection and laminar flow condition,” J. Heat Transfer 131, 081801 (2009).
http://dx.doi.org/10.1115/1.3109996
61.
61. G. Lorenzini and L. A. O. Rocha, “ Constructal design of Y-shaped assembly of fins,” Int. J. Heat Mass Transfer 49, 45524557 (2006).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.05.019
62.
62. B. Kundu and D. Bhanja, “ Performance and optimization analysis of a constructal T-shaped fin subject to variable thermal conductivity and convective heat transfer coefficient,” Int. J. Heat Mass Transfer 53, 254267 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.09.034
63.
63. G. Lorenzini and L. A. O. Rocha, “ Constructal design of T–Y assembly of fins for an optimized heat removal,” Int. J. Heat Mass Transfer 52, 14581463 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.09.007
64.
64. G. Lorenzini and L. A. O. Rocha, “ Geometric optimization of T-Y-shaped cavity according to Constructal design,” Int. J. Heat Mass Transfer 52, 46834688 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.06.020
65.
65. G. Lorenzini and S. Moretti, “ Numerical performance analysis of constructal I and Y finned heat exchanging modules,” J. Electron. Packag. 131, 031012 (2009).
http://dx.doi.org/10.1115/1.3144152
66.
66. G. Lorenzini, C. Biserni, and L. A. O. Rocha, “ Geometric optimization of isothermal cavities according to Bejan's theory,” Int. J. Heat Mass Transfer 54, 38683873 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.04.042
67.
67. C. Biserni, L. A. O. Rocha, G. Stanescu, and E. Lorenzini, “ Constructal H-shaped cavities according to Bejan's theory,” Int. J. Heat Mass Transfer 50, 21322138 (2007).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.11.006
68.
68. T. Bello-Ochende, J. P. Meyer, and O. I. Ogunronbi, “ Constructal multiscale cylinders rotating in cross-flow,” Int. J. Heat Mass Transfer 54, 25682577 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.02.004
69.
69. T. Bello-Ochende, J. P. Meyer, and J. Dirker, “ Three-dimensional multi-scale plate assembly for maximum heat transfer rate density,” Int. J. Heat Mass Transfer 53, 586593 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.10.041
70.
70. O. T. Olakoyejo, T. Bello-Ochende, and J. P. Meyer, “ Constructal conjugate cooling channels with internal heat generation,” Int. J. Heat Mass Transfer 55, 43854396 (2012).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.04.007
71.
71. O. T. Olakoyejo, T. Bello-Ochende, and J. P. Meyer, “ Mathematical optimization of laminar forced convection heat transfer through vascularized solid with square channels,” Int. J. Heat Mass Transfer 55, 24022411 (2012).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.12.036
72.
72. P. Canhoto and A. H. Reis, “ Optimization of fluid flow and internal geometric structure of volume cooled by forced convection in an array of parallel tubes,” Int. J. Heat Mass Transfer 54, 42884299 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.05.016
73.
73. C. Villemure, L. Gosselin, and G. Gendron, “ Minimizing hot spot temperature of porous stacking in natural convection,” Int. J. Heat Mass Transfer 51, 40254037 (2008).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.11.052
74.
74. M. Tye-Gingras and L. Gosselin, “ Thermal resistance minimization of a fin-and-porous-medium heat sink with evolutionary algorithms,” Numer. Heat Transfer, Part A 54, 349366 (2008).
http://dx.doi.org/10.1080/10407780802148481
75.
75. A. Narasimhan and S. Karra, “ An inverse heat transfer method to provide near-isothermal surface for disc heaters used in microlithography,” Int. J. Heat Mass Transfer 49, 46244632 (2006).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.04.019
76.
76. P. Bhave, A. Narasimhan, and D. A. S. Rees, “ Natural convection heat transfer enhancement using adiabatic block: Optimal block size and Prandtl number effect,” Int. J. Heat Mass Transfer 49, 38073818 (2006).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.04.017
77.
77. C. Zamfirescu and I. Dincer, “ Thermodynamic performance analysis and optimization of a SOFC-H+ system,” Thermochim. Acta 486, 3240 (2009).
http://dx.doi.org/10.1016/j.tca.2008.12.014
78.
78. H. Sun, R. Li, E. Chénier, G. Lauriat, and J. Padet, “ Optimal place spacing for mixed convection from an array of vertical isothermal plates,” Int. J. Therm. Sci. 55, 1630 (2012).
http://dx.doi.org/10.1016/j.ijthermalsci.2011.12.013
79.
79. W.-J. Yang, T. Furukawa, and S. Torii, “ Optimal package design of stacks of convection-cooled printed circuit boards using entropy generation minimization method,” Int. J. Heat Mass Transfer 51, 40384046 (2008).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.11.041
80.
80. M. Yari, “ Entropy generation analysis for Couette–Poiseuille flow through parallel-plates microchannel,” Int. J. Exergy 6, 809825 (2009).
http://dx.doi.org/10.1504/IJEX.2009.028575
81.
81. Y.-T. Yang and H.-S. Peng, “ Numerical study of thermal and hydraulic performance of compound heat sink,” Numer. Heat Transfer, Part A 55, 432447 (2009).
http://dx.doi.org/10.1080/10407780902776405
82.
82. A. Andreozzi, B. Buonomo, and O. Manca, “ Transient natural convection in vertical channels symmetrically heated at uniform heat flux,” Numer. Heat Transfer, Part A 55, 409431 (2009).
http://dx.doi.org/10.1080/10407780902776512
83.
83. D.-K. Kim, S. J. Kim, and J.-K. Bae, “ Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow,” Int. J. Heat Mass Transfer 52, 35103517 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.02.041
84.
84. V. A. P. Raja, T. Basak, and S. K. Das, “ Thermal performance of a multi-block heat exchanger designed on the basis of Bejan's constructal theory,” Int. J. Heat Mass Transfer 51, 35823594 (2008).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.10.027
85.
85. A. P. Sasmito, J. C. Kurnia, and A. S. Mujumdar, “ Numerical evaluation of various gas and coolant channel designs for high performance liquid-cooled proton exchange membrane fuel cell stacks,” Energy 44, 278291 (2012).
http://dx.doi.org/10.1016/j.energy.2012.06.030
86.
86. B. Ramos-Alvarado, A. Hernandez-Guerrero, F. Elizalde-Blancas, and M. W. Ellis, “ Constructal flow distributor as a bipolar plate for proton exchange membrane fuel cells,” Int. J. Hydrogen Energy 356, 1296512976 (2011).
http://dx.doi.org/10.1016/j.ijhydene.2011.07.017
87.
87. H. Wen, J. C. Ordonez, and J. V. C. Vargas, “ Single solid oxide fuel cell modeling and optimization,” J. Power Sources 196, 75197532 (2011).
http://dx.doi.org/10.1016/j.jpowsour.2010.10.113
88.
88. M. Mehrgoo and M. Amidpour, “ Derivation of optimal geometry of a multi-effect humidification-dehumidification desalination unit: A constructal design,” Desalination 281, 234242 (2011).
http://dx.doi.org/10.1016/j.desal.2011.07.067
89.
89. M. Mehrgoo and M. Amidpour, “ Constructal design of humidification–dehumidification desalination unit architecture,” Desalination 271, 6271 (2011).
http://dx.doi.org/10.1016/j.desal.2010.12.011
90.
90. F. Mathieu-Potvin and L. Gosselin, “ Threshold length of maximal reaction rate in catalytic microchannels,” Chem. Eng. J. 188, 8697 (2012).
http://dx.doi.org/10.1016/j.cej.2012.01.100
91.
91. Y. Chen, C. Zhang, R. Wu, and M. Shi, “ Methanol steam reforming in microreactor with constructal tree-shaped network,” J. Power Sources 196, 63666373 (2011).
http://dx.doi.org/10.1016/j.jpowsour.2011.03.044
92.
92. R. A. Hart and A. K. da Silva, “ Experimental thermal-hydraulic evaluation of constructal microfluidic structures under fully constrained conditions,” Int. J. Heat Mass Transfer 54, 36613671 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.02.063
93.
93. R. A. Hart, M. J. V. Ponkala, and A. K. da Silva, “ Development and testing of a constructal microchannel flow system with dynamically controlled complexity,” Int. J. Heat Mass Transfer 54, 54705480 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.07.044
94.
94. A. V. Azad and M. Amidpour, “ Economic optimization of shell and tube heat exchanger based on constructal theory,” Fuel Energy Abstr. 36, 10871096 (2011).
95.
95. R. P. Chopade, S. C. Mishra, P. Mahanta, and S. Maruyama, “ Estimation of power heaters in a radiant furnace for uniform thermal conditions on 3–D irregular shaped objects,” Int. J. Heat Mass Transfer 55, 43404351 (2012).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.03.083
96.
96. S. B. Zhou, L. G. Chen, and F. R. Sun, “ Constructal optimization for a solid-gas reactor based on triangular element,” Sci. China, Ser. E: Technol. Sci. 51, 15541562 (2008).
http://dx.doi.org/10.1007/s11431-008-0098-5
97.
97. J.-F. Cornet, “ Calculation of optimal design and ideal productivities of volumetrically lightened photobioreactors using the constructal approach,” Chem. Eng. Sci. 65, 985998 (2010).
http://dx.doi.org/10.1016/j.ces.2009.09.052
98.
98. S. Tescari, N. Mazet, and P. Neveu, “ Constructal method to optimize solar thermochemical reactor design,” Sol. Energy 84, 15551566 (2010).
http://dx.doi.org/10.1016/j.solener.2010.06.015
99.
99. A. R. Kacimov, H. Klammler, N. Il'yinskii, and K. Hatfield, “ Constructal design of permeable reactive barriers: Groundwater-hydraulics criteria,” J. Eng. Math. 71, 319338 (2011).
http://dx.doi.org/10.1007/s10665-011-9457-5
100.
100. Z. Fan, X. Zhou, L. Luo, and W. Yuan, “ Experimental investigation of the flow distribution of a 2-dimensional constructal distributor,” Exp. Therm. Fluid Sci. 33, 7783 (2008).
http://dx.doi.org/10.1016/j.expthermflusci.2008.07.003
101.
101. D. Tondeur, Y. Fan, and L. Luo, “ Constructal optimization of arborescent structures with flow singularities,” Chem. Eng. Sci. 64, 39683982 (2009).
http://dx.doi.org/10.1016/j.ces.2009.05.052
102.
102. J. Yue, R. Boichot, L. Luo, Y. Gonthier, G. Chen, and Q. Yuan, “ Flow distribution and mass transfer in a parallel microchannel contactor integrated with constructal distributors,” AIChE J. 56, 298317 (2010).
http://dx.doi.org/10.1002/aic.11991
103.
103. A. Karakas, U. Camdali, and M. Tunc, “ Constructal optimisation of heat generating volumes,” Int. J. Exergy 6, 637654 (2009).
http://dx.doi.org/10.1504/IJEX.2009.027494
104.
104. C. Zhang, Y. Chen, R. Wu, and M. Shi, “ Flow boiling in constructal tree-shaped minichannel network,” Int. J. Heat Mass Transfer 54, 202209 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.09.051
105.
105. X. Daguenet-Frick, J. Bonjour, and R. Revellin, “ Constructal microchannel network for flow boiling in a disc-shaped body,” IEEE Trans. Compon. Packag. Technol. 33, 115126 (2010).
http://dx.doi.org/10.1109/TCAPT.2009.2027427
106.
106. R. Revellin, J. R. Thome, A. Bejan, and J. Bonjour, “ Constructal tree-shaped microchannel networks for maximizing the saturated critical heat flux,” Int. J. Therm. Sci. 48, 342352 (2009).
http://dx.doi.org/10.1016/j.ijthermalsci.2008.06.009
107.
107. W. X. Liu, W. X. Tian, Y. W. Wu, G. H. Su, S. Z. Qiu, X. Yan, Y. P. Huang, and D. X. Du, “ An improved mechanistic critical heat flux model and its application to motion conditions,” Prog. Nucl. Energy 61, 88101 (2012).
http://dx.doi.org/10.1016/j.pnucene.2012.07.002
108.
108. Y. Kim, S. Lorente, and A. Bejan, “ Steam generator structure: Continuous model and constructal design,” Int. J. Energy Res. 35, 336345 (2011).
http://dx.doi.org/10.1002/er.1694
109.
109. A. Norouzi and M. Amidpour, “ Optimal thermodynamic and economic volume of a heat recovery steam generator by constructal design,” Int. Commun. Heat Mass Transfer 39, 12861292 (2012).
http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.06.021
110.
110. Y. S. Kim, S. Lorente, and A. Bejan, “ Distribution of size in steam turbine power plants,” Int. J. Energy Res. 33, 989998 (2009).
http://dx.doi.org/10.1002/er.1528
111.
111. D.-H. Kang, S. Lorente, and A. Bejan, “ Constructal architecture for heating a stream by convection,” Int. J. Heat Mass Transfer 53, 22482255 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.12.006
112.
112. D.-H. Kang, S. Lorente, and A. Bejan, “ Constructal dendritic configuration for the radiation heating of a solid stream,” J. Appl. Phys. 107, 114910 (2010).
http://dx.doi.org/10.1063/1.3429195
113.
113. Y. Kim, S. Lorente, and A. Bejan, “ Constructal multi-tube configuration for natural and forced convection in cross-flow,” Int. J. Heat Mass Transfer 53, 51215128 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.07.053
114.
114. A. Koonsrisuk, S. Lorente, and A. Bejan, “ Constructal solar chimney configuration,” Int. J. Heat Mass Transfer 53, 327333 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.09.026
115.
115. S. Lorente, A. Koonsrisuk, and A. Bejan, “ Constructal distribution of solar chimney power plants: Few large and many small,” Int. J. Green Energy 7, 577592 (2010).
http://dx.doi.org/10.1080/15435075.2010.529402
116.
116. R. Sangi, M. Amidpour, and B. Hosseinizadeh, “ Modeling and numerical simulation of solar chimney power plants,” Sol. Energy 85, 829838 (2011).
http://dx.doi.org/10.1016/j.solener.2011.01.011
117.
117. Z. Zou, Z. Guan, H. Gurgenci, and Y. Lu, “ Solar enhanced natural draft dry cooling tower for geothermal power applications,” Sol. Energy 86, 26862694 (2012).
http://dx.doi.org/10.1016/j.solener.2012.06.003
118.
118. A. Bejan, S. Lorente, and K.-M. Wang, “ Networks of channels for self-healing composite materials,” J. Appl. Phys. 100, 033528 (2006).
http://dx.doi.org/10.1063/1.2218768
119.
119. K.-M. Wang, S. Lorente, and A. Bejan, “ Vascularized networks with two optimized channels sizes,” J. Phys. D: Appl. Phys. 39, 30863096 (2006).
http://dx.doi.org/10.1088/0022-3727/39/14/031
120.
120. S. Kim, S. Lorente, and A. Bejan, “ Vascularized materials: Tree-shaped flow architectures matched canopy to canopy,” J. Appl. Phys. 100, 063525 (2006).
http://dx.doi.org/10.1063/1.2349479
121.
121. J. Lee, S. Lorente, and A. Bejan, “ Vascular design for thermal management of heated structures,” Aeronaut. J. 113, 397407 (2009).
122.
122. A. Bejan and M. R. Errera, “ Convective trees of fluid channels for volumetric cooling,” Int. J. Heat Mass Transfer 43, 31053118 (2000).
http://dx.doi.org/10.1016/S0017-9310(99)00353-1
123.
123. S. Kim, S. Lorente, A. Bejan, W. Miller, and J. Morse, “ The emergence of vascular design in three dimensions,” J. Appl. Phys. 103, 123511 (2008).
http://dx.doi.org/10.1063/1.2936919
124.
124. E. Cetkin, S. Lorente, and A. Bejan, “ Natural constructal emergence of vascular design with turbulent flow,” J. Appl. Phys. 107, 114901 (2010).
http://dx.doi.org/10.1063/1.3430941
125.
125. A. M. Aragón, R. Saksena, B. D. Kozola, P. H. Geubelle, K. T. Christiansen, and S. R. White, “ Multi-physics optimization of three-dimensional microvascular polymeric components,” J. Comput. Phys. 233, 132 (2013).
http://dx.doi.org/10.1016/j.jcp.2012.07.036
126.
126. S. Soghrati, P. R. Thakre, S. R. White, N. R. Sottos, and P. H. Geubelle, “ Computational modeling and design of actively-cooled microvascular materials,” Int. J. Heat Mass Transfer 55, 53095321 (2012).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.05.041
127.
127. K.-H. Cho, W.-P. Chang, and M.-H. Kim, “ A numerical and experimental study to evaluate performance of vascularized cooling plates,” Int. J. Heat Fluid Flow 32, 11861198 (2011).
http://dx.doi.org/10.1016/j.ijheatfluidflow.2011.09.006
128.
128. K.-H. Cho and C.-W. Choi, “ Hydraulic-thermal performance of vascularized cooling plates with semi-circular cross-section,” Appl. Therm. Eng. 157, 157166 (2012).
http://dx.doi.org/10.1016/j.applthermaleng.2011.09.029
129.
129. W. Wechsatol, J. C. Ordonez, and S. Kosaraju, “ Constructal dendritic geometry and the existence of asymmetric bifurcation,” J. Appl. Phys. 100, 113514 (2006).
http://dx.doi.org/10.1063/1.2388732
130.
130. M. S. Sayeed, I. A. Ahmed, A. A. Syed, P. H. Raju, and M. S. Salman, “ Experimental study of tree networks for minimal pumping power,” Int. J. Des. Nat. Ecodyn. 3, 135149 (2008).
http://dx.doi.org/10.2495/D&NE-V3-N2-135-149
131.
131. R. Godde and H. Kurz, “ Structural and biophysical simulation of angiogenesis and vascular remodeling,” Dev. Dyn. 220, 387401 (2001).
http://dx.doi.org/10.1002/dvdy.1118
132.
132. L. Gosselin, “ Optimization of tree-shaped fluid networks with size limitations,” Int. J. Therm. Sci. 46, 434443 (2007).
http://dx.doi.org/10.1016/j.ijthermalsci.2006.06.006
133.
133. Y. Kwak, D. Pence, J. Liburdy, and V. Narayanan, “ Gas-liquid flows in a microscale fractal-like branching flow networks,” Int. J. Heat Fluid Flow 30, 868876 (2009).
http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.03.014
134.
134. K.-H. Cho and M.-H. Kim, “ Transient thermal-fluid flow characteristics of vascular networks,” Int. J. Heat Mass Transfer 55, 35333540 (2012).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.02.075
135.
135. A. M. Aragón, J. K. Wayer, P. H. Geubelle, D. E. Goldberg, and S. R. White, “ Design of microvascular flow networks using multi-objective genetic algorithms,” Comput. Methods Appl. Mech. Eng. 197, 43994410 (2008).
http://dx.doi.org/10.1016/j.cma.2008.05.025
136.
136. K.-H. Cho and M.-H. Kim, “ Fluid flow characteristics of vascularized channel networks,” Chem. Eng. Sci. 65, 62706281 (2010).
http://dx.doi.org/10.1016/j.ces.2010.09.020
137.
137. R. Boichot and L. Luo, “ A simple cellular automaton algorithm to optimise heat transfer in complex configurations,” Int. J. Exergy 7, 5164 (2010).
http://dx.doi.org/10.1504/IJEX.2010.029614
138.
138. X.-Q. Wang, P. Xu, A. S. Mujumdar, and C. Yap, “ Flow and thermal characteristics of offset branching network,” Int. J. Therm. Sci. 49, 272280 (2010).
http://dx.doi.org/10.1016/j.ijthermalsci.2009.07.019
139.
139. T. Bello-Ochende, J. P. Meyer, and F. U. Ighalo, “ Combined numerical optimization and constructal theory for the design of microchannel heat sinks,” Numer. Heat Transfer, Part A 58, 882899 (2010).
http://dx.doi.org/10.1080/10407782.2010.529036
140.
140. Y. Chen, C. Zhang, M. Shi, and Y. Yang, “ Thermal and hydrodynamic characteristics of constructal tree-shaped minichannel heat sink,” AIChE J. 56, 20182029 (2009).
http://dx.doi.org/10.1002/aic.12116
141.
141. Y. S. Muzychka, “ Constructal multi-scale design of compact micro-tube heat sinks and heat exchangers,” Int. J. Therm. Sci. 46, 245252 (2007).
http://dx.doi.org/10.1016/j.ijthermalsci.2006.05.002
142.
142. Y. S. Muzychka, “ Constructal design of forced convection cooled microchannel heat sinks and heat exchangers,” Int. J. Heat Mass Transfer 48, 31193127 (2005).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.02.014
143.
143. M. R. Salimpour, M. Sharifhasan, and E. Shirani, “ Constructal optimization of the geometry of an array of micro-channels,” Int. Commun. Heat Mass Transfer 38, 9399 (2010).
http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.10.008
144.
144. D. Haller, P. Woias, and N. Kockmann, “ Simulation and experimental investigation of pressure loss and heat transfer in microchannel networks containing bends and T-junctions,” Int. J. Heat Mass Transfer 52, 26782689 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.09.042
145.
145. S. Lorente and A. Bejan, “ Constructal design of vascular porous materials and electrokinetic mass transfer,” Transp. Porous Media 77, 305322 (2009).
http://dx.doi.org/10.1007/s11242-008-9283-z
146.
146. X. Zeng, W. Dai, and A. Bejan, “ Vascular countercurrent network for 3-D triple-layered skin structure with radiation heating,” Numer. Heat Transfer, Part A 57, 369391 (2010).
http://dx.doi.org/10.1080/10407781003659599
147.
147. X. Tang, W. Dai, R. Nassar, and A. Bejan, “ Optimal temperature distribution in a three-dimensional triple-layered skin structure embedded with artery and vein vasculature,” Numer. Heat Transfer, Part A 50, 809834 (2006).
http://dx.doi.org/10.1080/10407780600669175
148.
148. K.-C. Liu, Y.-N. Wang, and Y.-S. Chen, “ Investigation on the bio-heat transfer with dual-phase-lag effect,” Int. J. Therm. Sci. 58, 2935 (2012).
http://dx.doi.org/10.1016/j.ijthermalsci.2012.02.026
149.
149. P. Yuan, S.-B. Wang, and H.-M. Lee, “ Estimation of the equivalent perfusion rate of Pennes model in an experimental bionic tissue without blood flow,” Int. Commun. Heat Mass Transfer 39, 236241 (2012).
http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.10.005
150.
150. E. Cetkin, S. Lorente, and A. Bejan, “ Vascularization for cooling a plate heated by a randomly moving source,” J. Appl. Phys. 112, 084906 (2012).
http://dx.doi.org/10.1063/1.4759290
151.
151. A. Bejan, “ The constructal-law origin of the wheel, size, and skeleton in animal design,” Am. J. Phys. 78, 692699 (2010).
http://dx.doi.org/10.1119/1.3431988
152.
152. S. Lorente and A. Bejan, “ Few large and many small: hierarchy in movement on earth,” Int. Des. Nat. Ecodyn. 5, 254267 (2010).
http://dx.doi.org/10.2495/DNE-V5-N3-254-267
153.
153. S. Lorente, J. Lee, and A. Bejan, “ The ‘flow of stresses' concept: The analogy between mechanical strength and heat convection,” Int. J. Heat Mass Transfer 53, 29632968 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.03.038
154.
154. E. Cetkin, S. Lorente, and A. Bejan, “ Vascularization for cooling and mechanical strength,” Int. J. Heat Mass Transfer 54, 27742781 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.02.061
155.
155. E. Cetkin, S. Lorente, and A. Bejan, “ Hybrid grid and tree structures for cooling and mechanical strength,” J. Appl. Phys. 110, 064910 (2011).
http://dx.doi.org/10.1063/1.3626062
156.
156. L. Chen, Z. Xie, and F. Sun, “ Multiobjective constructal optimization of an insulating wall combining heat flow, strength and weight,” Int. J. Therm. Sci. 50, 17821789 (2011).
http://dx.doi.org/10.1016/j.ijthermalsci.2011.03.022
157.
157. K. Schmidt-Nielsen, Scaling: Why Is Animal Size So Important (Cambridge University Press, Cambridge, UK, 1984).
158.
158. E. R. Weibel, Symmorphosis: On Form and Function in Shaping Life (Harvard University Press, Cambridge, MA, 2000).
159.
159. S. Vogel, Life's Devices (Princeton University Press, Princeton, NJ, 1988).
160.
160. E. R. Weibel, C. R. Taylor, and L. Bolis, Principles of Animal Design. The Optimization and Symmorphosis Debate (Cambridge University Press, Cambridge, UK, 1998).
161.
161. H. Hoppeler and E. R. Weibel, “ Scaling functions to body size: Theories and facts, special issue,” J. Exp. Biol. 208, 15731769 (2005).
http://dx.doi.org/10.1242/jeb.01630
162.
162. A. Bejan, A. Morega, G. B. West, and J. H. Brown, “ Constructing a theory for scaling and more,” Phys. Today 58(7) , 20 (2005).
http://dx.doi.org/10.1063/1.2012444
163.
163. A. Bejan, “ The constructal law of organization in nature: Tree-shaped flows and body size,” J. Exp. Biol. 208, 16771686 (2005).
http://dx.doi.org/10.1242/jeb.01487
164.
164. A. Bejan and J. H. Marden, “ Unifying constructal theory for scale effects in running, swimming and flying,” J. Exp. Biol. 209, 238248 (2006).
165.
165. A. Bejan and J. H. Marden, “ Constructing animal locomotion from new thermodynamics theory,” Am. Sci. 94, 342349 (2006).
http://dx.doi.org/10.1511/2006.60.342
166.
166. D. L. Altshuler, R. Dudley, S. M. Heredia, and J. A. McGuire, “ Allometry of hummingbird lifting performance,” J. Exp. Biol. 213(5 ), 725734 (2010).
http://dx.doi.org/10.1242/jeb.037002
167.
167. A. S. Perelson and F. W. Wiegel, “ Scaling aspects of lymphocyte trafficking,” J. Theor. Biol. 257(1 ), 916 (2009).
http://dx.doi.org/10.1016/j.jtbi.2008.11.007
168.
168. K. Sato, Y. Watanuki, A. Takahashi, P. J. Miller, H. Tanaka, R. Kawabe, P. J. Ponganis, Y. Handrich, T. Akamatsu, Y. Watanabe, Y. Mitani, D. P. Costa, C. A. Bost, K. Aoki, M. Amano, P. Trathan, A. Shapiro, and Y. Naito, “ Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans,” Proc. R. Soc. London, Ser. B 274, 471477 (2007).
http://dx.doi.org/10.1006/jmsc.2001.1159
169.
169. R. G. Kasimova, Yu. V. Obnosov, F. B. Baksht, and A. R. Kacimov, “ Optimal shape of anthill dome: Bejan's constructal law revisited,” Ecol. Modell. 250, 384390 (2013).
http://dx.doi.org/10.1016/j.ecolmodel.2012.11.021
170.
170. J. A. Tuhtan, “ Go with the flow: Connecting energy demand, hydropower, and fish using constructal theory,” Phys. Life Rev. 8, 253254 (2011).
http://dx.doi.org/10.1016/j.plrev.2011.07.002
171.
171. J. D. Charles and A. Bejan, “ The evolution of speed, size and shape in modern athletics,” J. Exp. Biol. 212, 24192425 (2009).
http://dx.doi.org/10.1242/jeb.031161
172.
172. A. Bejan, E. C. Jones, and J. D. Charles, “ The evolution of speed in athletics: Why the fastest runners are black and swimmers white,” Int. J. Des. Nat. Ecodyn. 5(3 ), 199211 (2010).
http://dx.doi.org/10.2495/DNE-V5-N3-199-211
173.
173. S. Lorente, E. Cetkin, T. Bello-Ochende, J. P. Meyer, and A. Bejan, “ The constructal-law physics of why swimmers must spread their fingers and toes,” J. Theor. Biol. 308, 141146 (2012).
http://dx.doi.org/10.1016/j.jtbi.2012.05.033
174.
174. A. Bejan, “ Why the bigger live longer and travel farther: Animals, vehicles, rivers and the winds,” Sci. Rep. 2, 594 (2012).
http://dx.doi.org/10.1038/srep00594
175.
175. A. F. Miguel, “ The physics principle of the generation of flow configuration,” Phys. Life Rev. 8, 243244 (2011).
http://dx.doi.org/10.1016/j.plrev.2011.07.006
176.
176. G. Resconi, “ Morphotronics and constructal theory, LINDI 2011,” in 3rd IEEE International Symposium on Logistics and Industrial Informatics, Budapest, Hungary, 25–27 August 2011.
177.
177. A. H. Reis, “ Design in nature, and the laws of physics,” Phys. Life Rev. 8, 255256 (2011).
http://dx.doi.org/10.1016/j.plrev.2011.07.001
178.
178. A. Bejan and J. H. Marden, “ The constructal unification of biological and geophysical design,” Phys. Life Rev. 6, 85102 (2009).
http://dx.doi.org/10.1016/j.plrev.2008.12.002
179.
179. L. Wang, “ Universality of design and its evolution,” Phys. Life Rev. 8, 257258 (2011).
http://dx.doi.org/10.1016/j.plrev.2011.08.003
180.
180. L. A. O. Rocha, “ Constructal law: From the law of physics to applications and conferences,” Phys. Life Rev. 8, 245246 (2011).
http://dx.doi.org/10.1016/j.plrev.2011.07.005
181.
181. Y. Ventikos, “ The importance of the constructal framework in understanding and eventually replicating structure in tissue,” Phys. Life Rev. 8, 241242 (2011).
http://dx.doi.org/10.1016/j.plrev.2011.07.007
182.
182. S. Quéré, “ Constructal theory of plate tectonics,” Int. J. Des. Nat. Ecodyn. 5, 242253 (2010).
http://dx.doi.org/10.2495/DNE-V5-N3-242-253
183.
183. A. H. Reis and C. Gama, “ Sand size versus beachface slope –An explanation based on the Constructal law,” Geomorphology 114, 276283 (2010).
http://dx.doi.org/10.1016/j.geomorph.2009.07.008
184.
184. A. H. Reis, “ Constructal view of scaling laws of river basins,” Geomorphology 78, 201206 (2006).
http://dx.doi.org/10.1016/j.geomorph.2006.01.015
185.
185. A. Bejan, S. Lorente, A. F. Miguel, and A. H. Reis, “ Constructal theory of distribution of river sizes,” in Advanced Engineering Thermodynamics, 3rd ed., edited by A. Bejan (Wiley, Hoboken, 2006), Sec. 13.5.
186.
186. B. J. Chung and A. Vaidya, “ Non-equilibrium pattern selection in particle sedimentation,” Appl. Math. Comput. 218, 34513465 (2011).
http://dx.doi.org/10.1016/j.amc.2011.08.090
187.
187. H.-H. Liu, “ A conductivity relationship for steady-state unsaturated flow processes under optimal flow conditions,” Vadose Zone J. 10, 736 (2011).
http://dx.doi.org/10.2136/vzj2010.0118
188.
188. H.-H. Liu, “ A note on equations for steady-state optimal landscapes,” Geophys. Res. Lett. 38, L10402, doi:10.1029/2011GL047619 (2011).
http://dx.doi.org/10.1029/2011GL047619
189.
189. A. F. Miguel, “ Natural flow systems: Acquiring their constructal morphology,” Int. J. Des. Nat. Ecodyn. 5, 230241 (2010).
http://dx.doi.org/10.2495/DNE-V5-N3-230-241
190.
190. A. G. Konings, X. Feng, A. Molini, S. Manzoni, G. Vico, and A. Porporato, “ Thermodynamics of an idealized hydrologic cycle,” Water Resour. Res. 48, W05527 (2010).
http://dx.doi.org/10.1029/2011WR011264
191.
191. J. D. Phillips, “ Emergence and pseudo-equilibrium in geomorphology,” Geomorphology 132, 319326 (2011).
http://dx.doi.org/10.1016/j.geomorph.2011.05.017
192.
192. A. H. Reis and A. Bejan, “ Constructal theory of global circulation and climate,” Int. J. Heat Mass Transfer 49, 18571875 (2006).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.10.037
193.
193. M. Clausse, F. Meunier, A. H. Reis, and A. Bejan, “ Climate change, in the framework of the constructal law,” Int. J. Global Warming 4, 242260 (2012).
http://dx.doi.org/10.1504/IJGW.2012.049449
194.
194. A. W. Kosner, “ Big data not required: The benefits of a less complex model of climate change,” Forbes, 12 October 2012.
195.
195. S. Lorente, A. Bejan, K. Al-Hinai, A. Z. Sahin, and B. S. Yilbas, “ Constructal design of distributed energy systems: Solar power and water desalination,” Int. J. Heat Mass Transfer 55, 22132218 (2012).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.01.020
196.
196. G. Lorenzini and C. Biserni, “ The Constructal law: From design in nature to social dynamics and wealth as physics,” Phys. Life Rev. 8, 259260 (2011).
http://dx.doi.org/10.1016/j.plrev.2011.08.002
197.
197. A. W. Kosner, “ There's a new law in physics and it changes everything,” Forbes, 29 February 2012.
198.
198. A. W. Kosner, “ ‘Freedom is good for design,’ How to use Constructal Theory to liberate any flow system,” Forbes, 18 March 2012.
199.
199. A. Bejan and S. Lorente, “ The constructal law makes biology and economics be like physics,” Phys. Life Rev. 8, 261263 (2011).
http://dx.doi.org/10.1016/j.plrev.2011.08.001
200.
200. A. Bejan, S. Lorente, B. S. Yilbas, and A. S. Sahin, “ The effect of size on efficiency: Power plants and vascular designs,” Int. J. Heat Mass Transfer 54, 14751481 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.11.045
201.
201. S. Lorente and A. Bejan, “ Global distributed energy systems,” in Management of Natural Resources, Sustainable Development and Ecological Hazards II, edited by C. A. Brebbia, N. Jovanovic, and E. Tiezzi (WIT Press, Southampton, 2010), pp. 251269.
202.
202. A. M. Morega, J. C. Ordonez, and M. Morega, “ A constructal approach to power distribution networks design,” in International Conference on Renewable Energy and Power Quality, Santander, 12-14 March (2008), pp. 441442.
203.
203. L. Xia, S. Lorente, and A. Bejan, “ Constructal design of distributed cooling on the landscape,” Int. J. Energy Res. 35, 805812 (2011).
http://dx.doi.org/10.1002/er.1743
204.
204. L. A. O. Rocha, S. Lorente, and A. Bejan, “ Distributed energy tapestry for heating the landscape,” J. Appl. Phys. 108, 124904 (2010).
http://dx.doi.org/10.1063/1.3516155
205.
205. J. P. Meyer, “ Constructal law in technology, thermofluid and energy systems, and in design education,” Phys. Life Rev. 8, 247248 (2011).
http://dx.doi.org/10.1016/j.plrev.2011.07.004
206.
206. A. Bejan, “ Two hierarchies in science: The free flow of ideas and the academy,” Int. J. Des. Nat. Ecodyn. 4, 386394 (2009).
http://dx.doi.org/10.2495/DNE-V4-N4-386-394
207.
207. A. Bejan, “ Science and technology as evolving flow architectures,” Int. J. Energy Res. 33, 112125 (2009).
http://dx.doi.org/10.1002/er.1427
208.
208. P. Vadasz, See http://DrVadasz.com for personal communication.
209.
209. R. Sweo and S. Pate, “ Understanding currency market dynamics through constructal theory: A managerial perspective,” J. Int. Manage. Stud. 5(1 ), 7581 (2010), see http://www.jimsjournal.org/10%20Robert%20Sweo.pdf.
210.
210. C. Viniegra, “ The digital governance challenge: The role of government in the digital age,” in Business Technologies Strategies Executive Update (2012), Vol. 15, No. 14.
211.
211. G. Weinerth, “ The constructal analysis of warfare,” Int. J. Des. Nat. Ecodyn. 5, 268276 (2010).
http://dx.doi.org/10.2495/DNE-V5-N3-268-276
212.
212. A. Bejan and S. Lorente, “ The constructal law origin of the logistics S curve,” J. Appl. Phys. 110, 024901 (2011).
http://dx.doi.org/10.1063/1.3606555
213.
213. L. Combelles, S. Lorente, R. Anderson, and A. Bejan, “ Tree-shaped fluid flow and heat storage in a conducting solid,” J. Appl. Phys. 111, 014902 (2012).
http://dx.doi.org/10.1063/1.3671672
214.
214. H. Kobayashi, S. Lorente, R. Anderson, and A. Bejan, “ Serpentine thermal coupling between a stream and a conducting body,” J. Appl. Phys. 111, 044911 (2012).
http://dx.doi.org/10.1063/1.3689152
215.
215. E. Cetkin, S. Lorente, and A. Bejan, “ The steepest S curve of spreading and collecting: Discovering the invading tree, not assuming it,” J. Appl. Phys. 111, 114903 (2012).
http://dx.doi.org/10.1063/1.4721657
216.
216. A. Bejan and S. Lorente, “ The physics of spreading ideas,” Int. J. Heat Mass Transfer 55, 802807 (2012).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.10.029
217.
217. O. Ozturkoglu, K. R. Gue, and R. D. Meller, “ Optimal unit-load warehouse designs for single-command operations,” IIE Trans. 44, 459475 (2012).
http://dx.doi.org/10.1080/0740817X.2011.636793
218.
218. C. H. Lui, N. K. Fong, S. Lorente, A. Bejan, and W. K. Chow, “ Constructal design for pedestrian movement in living spaces: Evacuation configurations,” J. Appl. Phys. 111, 054903 (2012).
http://dx.doi.org/10.1063/1.3689771
219.
219. L. C. Kelley and K. Behan, “ Empathy & evolution: How dogs convert stress into flow,” Psychology Today, 6 August 2012.
220.
220. L. C. Kelley and K. Behan, “ The canine mind bows to the Constructal law,” Psychology Today, 16 October 2012.
221.
221. A. Bejan and S. Lorente, “ The constructal law and the thermodynamics of flow systems with configuration,” Int. J. Heat Mass Transfer 47, 32033214 (2004).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.02.007
222.
222. M. Birla, FedEx Delivers: How the World's Leading Shipping Company Keeps Innovating and Outperforming the Competition (Wiley, Hoboken, 2005).
223.
223. G. R. McGhee, Convergent Evolution: Limited Forms Most Beautiful (The MIT Press, Cambridge, MA, 2011).
224.
224. J. Burstein, Spark: How Creativity Works (Harper, New York, 2011).
225.
225. V. W. Hwang and G. Horowitt, The Rainforest: The Secret to Building the Next Silicon Valley (Regenwald, Los Altos Hills, CA, 2012).
226.
226. E. Dellian, See http://www.neutonus-reformatus.com for “The language of nature is not algebra,” Neutonus Reformatus, Paper no. 40 (2012).
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/15/10.1063/1.4798429
Loading
/content/aip/journal/jap/113/15/10.1063/1.4798429
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/15/10.1063/1.4798429
2013-04-15
2014-12-19

Abstract

This is a review of the theoretical and applied progress made based on the Constructal law of design and evolution in nature, with emphasis on the last decade. The Constructal law is the law of physics that accounts for the natural tendency of all flow systems (animate and inanimate) to change into configurations that offer progressively greater flow access over time. The progress made with the Constructal law covers the broadest range of science, from heat and fluid flow and geophysics, to animal design, technology evolution, and social organization (economics, government). This review presents the state of this fast growing field, and draws attention to newly opened directions for original research. The Constructal law places the concepts of life, design, and evolution in physics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/15/1.4798429.html;jsessionid=36tgnauj250ff.x-aip-live-03?itemId=/content/aip/journal/jap/113/15/10.1063/1.4798429&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Constructal law of design and evolution: Physics, biology, technology, and society
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/15/10.1063/1.4798429
10.1063/1.4798429
SEARCH_EXPAND_ITEM