1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Measurement of the elastic modulus of spider mite silk fibers using atomic force microscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/15/10.1063/1.4800865
1.
1. Silk Polymers: Materials Science and Biotechnology, edited by D. Kaplan, W. W. Adams, B. Farmer, and C. Viney (American Chemical Society, 1994).
2.
2. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials 24, 401 (2003).
http://dx.doi.org/10.1016/S0142-9612(02)00353-8
3.
3. A. C. MacIntosh, V. R. Kearns, A. Crawford, and P. V. Hatton, J. Tissue Eng. Regener. Med. 2, 71 (2008).
http://dx.doi.org/10.1002/term.68
4.
4. S. Hofmann, S. Knecht, R. Langer, D. L. Kaplan, G. Vunjak-Novakovic, H. P. Merkle, and L. Meinel, Tissue Eng. 12, 2729 (2006).
http://dx.doi.org/10.1089/ten.2006.12.2729
5.
5. J. M. Gosline, M. E. DeMont, and M. W. Denny, Endeavour 10, 37 (1986).
http://dx.doi.org/10.1016/0160-9327(86)90049-9
6.
6. S.-H. Lee, C. Tekmen, and W. M. Sigmund, Mater. Sci. Eng., A 398, 77 (2005).
http://dx.doi.org/10.1016/j.msea.2005.03.014
7.
7. B. Wu, A. Heidelberg, and J. J. Boland, Nat. Mater. 4, 525 (2005).
http://dx.doi.org/10.1038/nmat1403
8.
8. A. Heidelberg, L. T. Ngo, B. Wu, M. A. Phillips, S. Sharma, T. I. Kamins, J. E. Sader, and J. J. Boland, Nano Lett. 6, 1101 (2006).
http://dx.doi.org/10.1021/nl060028u
9.
9. H. Ni, X. Li, and H. Gao, Appl. Phys. Lett. 88, 043108 (2006).
http://dx.doi.org/10.1063/1.2165275
10.
10. B. Wen, J. E. Sader, and J. J. Boland, Phys. Rev. Lett. 101, 175502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.175502
11.
11. J.-P. Salvetat, J.-M. Bonard, N. H. Thomson, A. J. Kulik, L. Forró, W. Benoit, and L. Zuppiroli, Appl. Phys. A 69, 255 (1999).
http://dx.doi.org/10.1007/s003390050999
12.
12. G.-T. Kim, G. Gu, U. Waizmann, and S. Roth, Appl. Phys. Lett. 80, 1815 (2002).
http://dx.doi.org/10.1063/1.1458533
13.
13. G. Guhados, W. Wan, X. Sun, and J. L. Hutter, J. Appl. Phys. 101, 033514 (2007).
http://dx.doi.org/10.1063/1.2433125
14.
14. E. P. S. Tan and C. T. Lim, Appl. Phys. Lett. 84, 1603 (2004).
http://dx.doi.org/10.1063/1.1651643
15.
15. G. Guhados, W. Wan, and J. L. Hutter, Langmuir 21, 6642 (2005).
http://dx.doi.org/10.1021/la0504311
16.
16. M. K. Shin, S. I. Kim, and S. J. Kim, Appl. Phys. Lett. 89, 231929 (2006).
http://dx.doi.org/10.1063/1.2402941
17.
17. S. Iwamoto, W. Kai, A. Isogai, and T. Iwata, Biomacromolecules 10, 2571 (2009).
http://dx.doi.org/10.1021/bm900520n
18.
18. C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, Phys. Rev. Lett. 96, 075505 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.075505
19.
19. M. Grbić, T. Van Leeuwen, R. M. Clark, S. Rombauts, P. Rouzé, V. Grbić, E. J. Osborne, W. Dermauw, P. C. T. Ngoc, F. Ortego, P. Hernández-Crespo, I. Diaz, M. Martinez, M. Navajas, É. Sucena, S. Magalhães, L. Nagy, R. Pace, S. Djuranović, G. Smagghe, M. Iga, O. Christiaens, J. A. Veenstra, J. Ewer, R. M. Villalobos, J. L. Hutter, S. D. Hudson, M. Velez, S. V. Yi, J. Zeng, A. Pires-daSilva, F. Roch, M. Cazaux, M. Navarro, V. Zhurov, G. Acevedo, A. Bjelica, J. A. Fawcett, E. Bonnet, C. Martens, G. Baele, L. Wissler, A. Sanchez-Rodriguez, L. Tirry, C. Blais, K. Demeestere, S. R. Henz, T. R. Gregory, J. Mathieu, L. Verdon, L. Farinelli, J. Schmutz, E. Lindquist, R. Feyereisen, and Y. Van de Peer, Nature (London) 479, 487 (2011).
http://dx.doi.org/10.1038/nature10640
20.
20. J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993).
http://dx.doi.org/10.1063/1.1143970
21.
21. H.-J. Butt and M. Jaschke, Nanotechnology 6, 1 (1995).
http://dx.doi.org/10.1088/0957-4484/6/1/001
22.
22. D. A. Walters, J. P. Cleveland, N. H. Thomson, P. K. Hansma, M. A. Wendman, G. Gurley, and V. Elings, Rev. Sci. Instrum. 67, 3583 (1996).
http://dx.doi.org/10.1063/1.1147177
23.
23. J. L. Hutter, Langmuir 21, 2630 (2005).
http://dx.doi.org/10.1021/la047670t
24.
24. S. P. Timoshenko, Philos. Mag. 41, 744 (1921).
http://dx.doi.org/10.1080/14786442108636264
25.
25. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 2nd ed. (Pergamon Press, 1970).
26.
26. M. Elices, J. Pérez-Rigueiro, G. R. Plaza, and G. V. Guinea, J. Mater. 57, 60 (2005).
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/15/10.1063/1.4800865
Loading
/content/aip/journal/jap/113/15/10.1063/1.4800865
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/15/10.1063/1.4800865
2013-04-16
2015-01-30

Abstract

Bio-nanomaterials are one of the fastest developing sectors of industry and technology. Spider silk, a highly attractive light-weight biomaterial, has high tensile strength and elasticity and is compatible with human tissues, allowing for many areas of application. In comparison to spider silk fibers with diameters of several micrometers, spider mite silk fibers have much smaller diameters of tens of nanometers, making conventional tensile testing methods impractical. To determine the mechanical properties of adult and larval Tetranychus urticae silk fibers, we have performed three-point bending tests with an atomic force microscope. We found that because of the small diameters of these fibers, axial tension—due to both the applied force and a pre-existing strain—has a significant effect on the fiber response, even in the small-deformation limit. As a result, the typical Euler-Bernoulli-Timoshenko theory cannot be applied. We therefore follow the approach of Heidelberg et al. to develop a mechanical model of the fiber response that accounts for bending, an initial tension in the fibers, and a tension due to elongation during testing. This model provides self-consistent results, allowing us to determine that adult and larval fibers have Young's moduli of and , respectively. Both adult and larval fibers have an estimated ultimate strength of 200–300 MPa and a toughness of order 9 MJ/m3. We note that with increasing interest in the mechanical properties of very high aspect ratio nanomaterials, the influence of pre-existing tension must be considered in any measurements involving a bending test.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/15/1.4800865.html;jsessionid=1shshlsvpnn2c.x-aip-live-06?itemId=/content/aip/journal/jap/113/15/10.1063/1.4800865&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Measurement of the elastic modulus of spider mite silk fibers using atomic force microscopy
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/15/10.1063/1.4800865
10.1063/1.4800865
SEARCH_EXPAND_ITEM