1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Intensity and wavelength dependence of bimolecular recombination in P3HT:PCBM solar cells: A white-light biased external quantum efficiency study
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/15/10.1063/1.4801920
1.
1. L. J. A. Koster, V. D. Mihailetchi, and P. W. M. Blom, Appl. Phys. Lett. 88, 052104 (2006).
http://dx.doi.org/10.1063/1.2170424
2.
2. S. R. Cowan, A. Roy, and A. J. Heeger, Phys. Rev. B 82, 245207 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.245207
3.
3. L. J. A. Koster, V. D. Mihailetchi, H. Xie, and P. W. M. Blom, Appl. Phys. Lett. 87, 203502 (2005).
http://dx.doi.org/10.1063/1.2130396
4.
4. W. Tress, K. Leo, and M. Riede, Phys. Rev. B 85, 155201 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.155201
5.
5. Z. M. Beiley, E. T. Hoke, R. Noriega, J. Dacuña, G. F. Burkhard, J. A. Bartelt, A. Salleo, M. F. Toney, and M. D. McGehee, Adv. Energy Mater. 1, 954 (2011).
http://dx.doi.org/10.1002/aenm.201100204
6.
6. J. C. Blakesley and D. Neher, Phys. Rev. B 84, 075210 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075210
7.
7. C. G. Shuttle, R. Hamilton, B. C. O'Regan, J. Nelson, and J. R. Durrant, Proc. Natl. Acad. Sci. U.S.A. 107, 16448 (2010).
http://dx.doi.org/10.1073/pnas.1004363107
8.
8. V. D. Mihailetchi, J. Wildeman, and P. W. M. Blom, Phys. Rev. Lett. 94, 126602 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.126602
9.
9. C. G. Shuttle, B. C. O'Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, and J. R. Durrant, Phys. Rev. B 78, 113201 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.113201
10.
10. A. J. Mozer, N. S. Sariciftci, L. Lutsen, D. Vanderzande, R. Osterbacka, M. Westerling, and G. Juška, Appl. Phys. Lett. 86, 112104 (2005).
http://dx.doi.org/10.1063/1.1882753
11.
11. C. Deibel, A. Baumann, A. Wagenpfahl, and V. Dyakonov, Synth. Met. 159, 2345 (2009).
http://dx.doi.org/10.1016/j.synthmet.2009.07.014
12.
12. A. Pivrikas, G. Juška, A. J. Mozer, M. C. Scharber, K. Arlauskas, N. S. Sariciftci, H. Stubb, and R. Osterbacka, Phys. Rev. Lett. 94, 176806 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.176806
13.
13. G. Sliauzys, G. Juška, K. Arlauskas, A. Pivrikas, R. Osterbacka, M. C. Scharber, A. J. Mozer, and N. S. Sariciftci, Thin Solid Films 511, 224 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.12.103
14.
14. P. Schilinsky, C. Waldauf, and C. J. Brabec, Appl. Phys. Lett. 81, 3885 (2002).
http://dx.doi.org/10.1063/1.1521244
15.
15. J. van Duren, X. Yang, J. Loos, C. Bulle-Lieuwma, A. B. Sieval, J. Hummelen, and R. A. J. Janssen, Adv. Funct. Mater. 14, 425 (2004).
http://dx.doi.org/10.1002/adfm.200305049
16.
16. I. Riedel, J. Parisi, V. Dyakonov, L. Lutsen, D. Vanderzande, and J. Hummelen, Adv. Funct. Mater. 14, 38 (2004).
http://dx.doi.org/10.1002/adfm.200304399
17.
17. D. Gebeyehu, M. Pfeiffer, B. Maennig, J. Drechsel, A. Werner, and K. Leo, Thin Solid Films 451, 29 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.10.087
18.
18. L. J. A. Koster, M. Kemerink, M. M. Wienk, K. Maturová, and R. A. J. Janssen, Adv. Mater. 23, 1670 (2011).
http://dx.doi.org/10.1002/adma.201004311
19.
19. L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
20.
20. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
21.
21.See supplementary material at http://dx.doi.org/10.1063/1.4801920 for absorption data, JV curves taken at all illumination intensities, illumination intensity dependence of short circuit current, correlation of recombination parameter with fill factor at 1 sun, differential analysis of intensity- and voltage-dependent JV data, and data for two different methods to obtain recombination parameter over the entire spectrum. [Supplementary Material]
22.
22. Y.-J. Lee, R. J. Davis, M. T. Lloyd, P. P. Provencio, R. P. Prasankumar, and J. Hsu, IEEE J. Sel. Top. Quantum Electron. 16, 1587 (2010).
http://dx.doi.org/10.1109/JSTQE.2010.2040586
23.
23.Standard International Electrotechnical Commission IEC 60904-9, Solar Simulator Performance Requirements, Geneva, Switzerland.
24.
24.See http://Rredc.Nrel.Gov/Solar/Spectra/am1.5/ (n.d.) for spectral irradiance of AM1.5G one-sun.
25.
25. G. F. Burkhard, E. T. Hoke, and M. D. McGehee, Adv. Mater. 22, 3293 (2010).
http://dx.doi.org/10.1002/adma.201000883
26.
26. M. D. McGehee, “Transfer matrix optical modeling,” can be found under http://www.stanford.edu/group/mcgehee/transfermatrix/ (n.d.).
27.
27. T. J. McMahon and K. Sadlon, Sol. Cells 13, 99 (1984).
http://dx.doi.org/10.1016/0379-6787(84)90001-2
28.
28. J. Metzdorf, Appl. Opt. 26, 1701 (1987).
http://dx.doi.org/10.1364/AO.26.001701
29.
29. D. J. Wehenkel, K. H. Hendriks, M. M. Wienk, and R. A. J. Janssen, Org. Electron. 13, 3284 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.09.040
30.
30. A. Maurano, R. Hamilton, C. G. Shuttle, A. M. Ballantyne, J. Nelson, B. O'Regan, W. Zhang, I. Mcculloch, H. Azimi, M. Morana, C. J. Brabec, and J. R. Durrant, Adv. Mater. 22, 4987 (2010).
http://dx.doi.org/10.1002/adma.201002360
31.
31. T. J. K. Brenner, H. Inchan, N. C. Greenham, and C. R. McNeill, J. Appl. Phys. 107, 114501 (2010).
http://dx.doi.org/10.1063/1.3371364
32.
32. T. J. K. Brenner, Y. Vaynzof, Z. Li, D. Kabra, R. H. Friend, and C. R. McNeill, J. Phys. D. Appl. Phys. 45, 415101 (2012).
http://dx.doi.org/10.1088/0022-3727/45/41/415101
33.
33. G. Garcia-Belmonte and J. Bisquert, Appl. Phys. Lett. 96, 113301 (2010).
http://dx.doi.org/10.1063/1.3358121
34.
34. R. A. Street, Phys. Rev. B 84, 075208 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075208
35.
35. T. Kirchartz, B. E. Pieters, J. Kirkpatrick, U. Rau, and J. Nelson, Phys. Rev. B 83, 115209 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115209
36.
36. M. R. Lilliedal, A. J. Medford, M. V. Madsen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 94, 2018 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.06.007
37.
37. B. T. de Villers, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, J. Phys. Chem. C 113, 18978 (2009).
http://dx.doi.org/10.1021/jp9082163
38.
38. A. Kumar, S. Sista, and Y. Yang, J. Appl. Phys. 105, 094512 (2009).
http://dx.doi.org/10.1063/1.3117513
39.
39. S. R. Cowan, R. A. Street, S. Cho, and A. J. Heeger, Phys. Rev. B 83, 035205 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.035205
40.
40. N. S. Christ, S. W. Kettlitz, S. Valouch, S. Züfle, C. Gärtner, M. Punke, and U. Lemmer, J. Appl. Phys. 105, 104513 (2009).
http://dx.doi.org/10.1063/1.3130399
41.
41. A. J. Morfa, A. M. Nardes, S. E. Shaheen, N. Kopidakis, and J. Van De Lagemaat, Adv. Funct. Mater. 21, 2580 (2011).
http://dx.doi.org/10.1002/adfm.201100432
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/15/10.1063/1.4801920
Loading
/content/aip/journal/jap/113/15/10.1063/1.4801920
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/15/10.1063/1.4801920
2013-04-17
2015-03-27

Abstract

Bimolecular recombination is often a major photogenerated charge carrier loss mechanism in organic photovoltaic (OPV) devices, resulting in lower fill factor (FF) compared to inorganic devices. The recombination parameter α can be obtained from the power law fitting of short-circuit current (Jsc ) on illumination intensity (I), , with α values less than unity taken as an indication of reduced photon-to-electron extraction efficiency and the presence of bimolecular recombination in OPV. Here, we show that this intensity-averaged measurement is inadequate. An external quantum efficiency (EQE) apparatus under constant white-light bias can be used to measure the recombination parameter (αEQE * ) as a function of wavelength and carrier density (white-light intensity). Examining the dependence of α on background white-light bias intensity and excitation wavelength provides further understanding of photon-to-electron conversion loss mechanisms in P3HT:PCBM bulk heterojunction devices in standard and inverted architectures. In order to compare EQE and current-voltage (JV) measurements, we discuss the special case of devices exhibiting sub-linear intensity response (α < 1). Furthermore, we demonstrate several important advantages of the white-light biased EQE method of measuring bimolecular recombination compared to existing methods, including sensitivity in probing intensity-dependent recombination compared to steady-state JV measurements, the correlation of αEQE * and FF in devices, elucidation of recombination mechanisms through spectral dependence of carrier loss, and the robustness of αEQE* obtained via integration over the entire absorption region. Furthermore, this technique for measuring recombination is immediately accessible to the vast majority of researchers as the EQE apparatus is ubiquitous in PV research laboratories.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/15/1.4801920.html;jsessionid=7fqv36qaq8qp.x-aip-live-03?itemId=/content/aip/journal/jap/113/15/10.1063/1.4801920&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Intensity and wavelength dependence of bimolecular recombination in P3HT:PCBM solar cells: A white-light biased external quantum efficiency study
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/15/10.1063/1.4801920
10.1063/1.4801920
SEARCH_EXPAND_ITEM