1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Characterization of plasma chemistry and ion energy in cathodic arc plasma from Ti-Si cathodes of different compositions
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/16/10.1063/1.4802433
1.
1. A. Anders, Cathodic Arcs, 1st ed. (Springer, New York, 2008).
2.
2. P. H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens, Prog. Mater. Sci. 51, 10321114 (2006).
http://dx.doi.org/10.1016/j.pmatsci.2006.02.002
3.
3. S. PalDey and S. C. Deevi, Mater. Sci. Eng., A 342, 5879 (2003).
http://dx.doi.org/10.1016/S0921-5093(02)00259-9
4.
4. H. Willmann, P. H. Mayrhofer, P. O. Å. Persson, A. E. Reiter, L. Hultman, and C. Mitterer, Scr. Mater. 54, 18471851 (2006).
http://dx.doi.org/10.1016/j.scriptamat.2006.02.023
5.
5. A. Flink, M. Beckers, J. Sjölen, T. Larsson, S. Braun, L. Karlsson, and L. Hultman, J. Mater. Res. 24, 2483 (2009).
http://dx.doi.org/10.1557/jmr.2009.0299
6.
6. J. Sasaki and I. G. Brown, J. Appl. Phys. 66, 51985203 (1989).
http://dx.doi.org/10.1063/1.343756
7.
7. J. Sasaki, K. Sugiyama, X. Yao, and I. Brown, J. Appl. Phys. 73, 71847187 (1993).
http://dx.doi.org/10.1063/1.352390
8.
8. T. Schülke and A. Anders, IEEE Trans. Plasma Sci. 27, 911914 (1999).
http://dx.doi.org/10.1109/27.782259
9.
9. M. M. M. Bilek, P. J. Martin, and D. R. McKenzie, J. Appl. Phys. 83, 29652970 (1998).
http://dx.doi.org/10.1063/1.367052
10.
10. K. P. Savkin, G. Y. Yushkov, A. G. Nikolaev, E. M. Oks, and G. Y. Yushkov, Rev. Sci. Instrum. 81, 02A501 (2010).
http://dx.doi.org/10.1063/1.3257703
11.
11. L. J. S. Johnson, L. Rogström, M. P. Johansson, M. Odén, and L. Hultman, Thin Solid Films 519, 13971403 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.08.150
12.
12. P. Wilhartitz, S. Schönauer, and P. Polcik, “ Method for producing an evaporation source,” EP Patent 1335995, 29 September 2004.
13.
13. G. Korb, “ Process for the manufacture of a target for cathodic sputtering,” U.S. Patent 4,752,335, 29 June, 1988.
14.
14. CRC Handbook of Chemistry and Physics, 92nd ed., edited by D. R. Lide (CRC Press, Boca Raton, FL, 2012), Internet Version 2012.
15.
15. H. J. Whitlow, G. Possnert, and C. S. Petersson, Nucl. Instrum. Methods Phys. Res. B 27, 448457 (1987).
http://dx.doi.org/10.1016/0168-583X(87)90527-1
16.
16. M. S. Jansson, “ CONTES, Conversion of time-energy spectra—a program for ERDA data analysis,” Internal Report, Uppsala University, 2004.
17.
17. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
18.
18. P. E. Blöchl, Phys. Rev. B 50, 1795317979 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
19.
19. G. Kresse and J. Hafner, Phys. Rev. B 48, 1311513118 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.13115
20.
20. G. Kresse and J. Hafner, Phys. Rev. B 49, 1425114269 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
21.
21. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 51885192 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
22.
22. A. G. Nikolaev, G. Y. Yushkov, K. P. Savkin, and E. M. Oks, “ Angular Distribution of Ions in a Vacuum Arc Plasma With Single-Element and Composite CathodesIEEE Trans. Plasma Sci. (in press).
http://dx.doi.org/10.1109/TPS.2012.2236363
23.
23. A. G. Nikolaev, G. Y. Yushkov, K. P. Savkin, and E. M. Oks, Rev. Sci. Instrum. 83, 02A5033 (2012).
http://dx.doi.org/10.1063/1.3663213
24.
24. A. Anders and G. Y. Yushkov, Appl. Phys. Lett. 80, 24572459 (2002).
http://dx.doi.org/10.1063/1.1468271
25.
25. A. O. Eriksson, J. Q. Zhu, N. Ghafoor, M. P. Johansson, J. Sjölén, J. Jensen, M. Odén, L. Hultman, and J. Rosén, Surf. Coat. Technol. 205, 39233930 (2011).
http://dx.doi.org/10.1016/j.surfcoat.2011.02.007
26.
26. I. Petrov, P. Losbichler, D. Bergstrom, J. E. Greene, W. D. Münz, T. Hurkmans, and T. Trinh, Thin Solid Films 302, 179192 (1997).
http://dx.doi.org/10.1016/S0040-6090(96)09524-7
27.
27. M. Pohler, R. Franz, J. Ramm, P. Polcik, and C. Mitterer, Surf. Coat. Technol. 206, 14541460 (2011).
http://dx.doi.org/10.1016/j.surfcoat.2011.09.028
28.
28. J. Q. Zhu, A. Eriksson, N. Ghafoor, M. P. Johansson, J. Sjölén, L. Hultman, J. Rosén, and M. Odén, J. Vac. Sci. Technol. A 28, 347353 (2010).
http://dx.doi.org/10.1116/1.3330767
29.
29. J. E. Daalder, J. Phys. D: Appl. Phys. 9, 2379 (1976).
http://dx.doi.org/10.1088/0022-3727/9/16/009
30.
30. S. Anders, A. Anders, Y. Kin Man, X. Y. Yao, and I. G. Brown, IEEE Trans. Plasma Sci. 21, 440446 (1993).
http://dx.doi.org/10.1109/27.249623
31.
31. ASM Alloy Phase Diagram Database, edited by P. Villars (ASM International, 2002).
32.
32. A. Anders, Phys. Rev. E 55, 969 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.969
33.
33. A. Anders, Appl. Phys. Lett. 85, 61376139 (2004).
http://dx.doi.org/10.1063/1.1840115
34.
34. A. Anders, E. M. Oks, and G. Y. Yushkov, J. Appl. Phys. 102, 043303 (2007).
http://dx.doi.org/10.1063/1.2769789
35.
35. G. Lins, IEEE Trans. Plasma Sci. 15, 552556 (1987).
http://dx.doi.org/10.1109/TPS.1987.4316752
36.
36. J. Prock, J. Phys. D: Appl. Phys. 19, 1917 (1986).
http://dx.doi.org/10.1088/0022-3727/19/10/016
37.
37. R. E. Honig and D. A. Kramer, RCA Rev. 30, 285 (1969).
38.
38. A. Anders, Plasma Sources Sci. Technol. 21, 035014 (2012).
http://dx.doi.org/10.1088/0963-0252/21/3/035014
39.
39. M. Körling and J. Häglund, Phys. Rev. B 45, 1329313297 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13293
40.
40. G. I. Csonka, J. P. Perdew, A. Ruzsinszky, P. H. T. Philipsen, S. Lebègue, J. Paier, O. A. Vydrov, and J. G. Ángyán, Phys. Rev. B 79, 155107 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.155107
41.
41. M. Fuchs, M. Bockstedte, E. Pehlke, and M. Scheffler, Phys. Rev. B 57, 21342145 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.2134
42.
42. A. T. Paxton, M. Methfessel, and H. M. Polatoglou, Phys. Rev. B 41, 81278138 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.8127
43.
43. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, 2004).
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/16/10.1063/1.4802433
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Ion energy distributions of the plasma from a Ti75Si25 cathode.

Image of FIG. 2.

Click to view

FIG. 2.

Plasma composition (ionic part) as a function of the nominal cathode composition. The dashed lines indicate 1:1 correspondence between cathode and plasma composition.

Image of FIG. 3.

Click to view

FIG. 3.

SEM micrographs, and corresponding binary pictures of films deposited from (a) and (b) Ti90Si10 cathodes, and (c) and (d) Ti75Si25 cathodes, respectively.

Image of FIG. 4.

Click to view

FIG. 4.

Schematic of volume and projected area of a sphere buried to different depth h in a film. The projected area shows the maximum value until buried to half the height, while the volume contribution is symmetric around half the sphere volume.

Image of FIG. 5.

Click to view

FIG. 5.

(a) XRD pattern from the as-received Ti-Si cathodes, where the numbers on the left side correspond to at. % Si in the cathodes. EDS-mapping of (b) Ti and (c) Si on the surface of a Ti75Si25 cathode.

Image of FIG. 6.

Click to view

FIG. 6.

Average charge state (filled symbols), average ion energy (open symbols) as function of cathode Si content. The lines on the vertical axis represent literature values of charge state and energy, from Ref. 1 .

Image of FIG. 7.

Click to view

FIG. 7.

Calculated cohesive energies of Ti-Si phases (circles). Filled circles represent phases identified in the cathodes of the present investigation. Values from theoretical work and Kittel are given for reference. 39–43

Tables

Generic image for table

Click to view

Table I.

Comparison of distribution between Ti and Si, measured for cathode, plasma, and films. All values are in at. %.

Loading

Article metrics loading...

/content/aip/journal/jap/113/16/10.1063/1.4802433
2013-04-29
2014-04-16

Abstract

Arc plasma from Ti-Si compound cathodes with up to 25 at. % Si was characterized in a DC arc system with respect to chemistry and charge-state-resolved ion energy. The plasma ion composition showed a lower Si content, diverging up to 12 at. % compared to the cathode composition, yet concurrently deposited films were in accordance with the cathode stoichiometry. Significant contribution to film growth from neutrals is inferred besides ions, since the contribution from macroparticles, estimated by scanning electron microscopy, cannot alone account for the compositional difference between cathode, plasma, and film. The average ion charge states for Ti and Si were higher than reference data for elemental cathodes. This result is likely related to TiSix phases of higher cohesive energies in the compound cathodes and higher effective electron temperature in plasma formation. The ion energy distributions extended up to ∼200 and ∼130 eV for Ti and Si, respectively, with corresponding average energies of ∼60 and ∼30 eV. These averages were, however, not dependent on Si content in the cathode, except for 25 at. % Si where the average energies were increased up to 72 eV for Ti and 47 eV for Si.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/16/1.4802433.html;jsessionid=1bwv0oprix0nb.x-aip-live-06?itemId=/content/aip/journal/jap/113/16/10.1063/1.4802433&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Characterization of plasma chemistry and ion energy in cathodic arc plasma from Ti-Si cathodes of different compositions
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/16/10.1063/1.4802433
10.1063/1.4802433
SEARCH_EXPAND_ITEM