Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/113/17/10.1063/1.4793501
1.
1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
2.
2. I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
3.
3. K. Takanashi, Jpn. J. Appl. Phys., Part 1 49, 110001 (2010).
http://dx.doi.org/10.1143/JJAP.49.110001
4.
4. T. Taniyama, E. Wada, M. Itoh, and M. Yamaguchi, NPG Asia Mater. 3, 65 (2011).
http://dx.doi.org/10.1038/asiamat.2011.84
5.
5. R. Jansen, Nature Mater. 11, 400 (2012);
http://dx.doi.org/10.1038/nmat3293
5. R. Jansen, S. P. Dash, S. Sharma, and B. C. Min, Semicond. Sci. Technol. 27, 083001 (2012).
http://dx.doi.org/10.1088/0268-1242/27/8/083001
6.
6. I. Appelbaum, B. Huang, and D. J. Monsma, Nature 447, 295 (2007).
http://dx.doi.org/10.1038/nature05803
7.
7. I. Appelbaum, Philos. Trans. R. Soc. London, Ser. A 369, 3554 (2011).
http://dx.doi.org/10.1098/rsta.2011.0137
8.
8. J. L. Cheng, M. W. Wu, and J. Fabian, Phys. Rev. Lett. 104, 016601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.016601
9.
9. Y. Song and H. Dery, Phys. Rev. B 86, 085201 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.085201
10.
10. S. P. Dash, S. Sharma, R. S. Patel, M. P. Jong, and R. Jansen, Nature (London) 462, 491 (2009).
http://dx.doi.org/10.1038/nature08570
11.
11. C. H. Li, O. M. J. van't Erve, and B. T. Jonker, Nat. Commun. 2, 245 (2011).
http://dx.doi.org/10.1038/ncomms1256
12.
12. T. Suzuki, T. Sasaki, T. Oikawa, M. Shiraishi, Y. Suzuki, and K. Noguchi, Appl. Phys. Express 4, 023003 (2011).
http://dx.doi.org/10.1143/APEX.4.023003
13.
13. S. Sugahara and M. Tanaka, Appl. Phys. Lett. 84, 2307 (2004).
http://dx.doi.org/10.1063/1.1689403
14.
14. H. Dery, P. Dalal, Ł. Cywiński, and L. J. Sham, Nature (London) 447, 573 (2007).
http://dx.doi.org/10.1038/nature05833
15.
15. O. M. J. van't Erve, A. T. Hanbicki, M. Holub, C. H. Li, C. Awo-Affouda, P. E. Thompson, and B. T. Jonker, Appl. Phys. Lett. 91, 212109 (2007).
http://dx.doi.org/10.1063/1.2817747
16.
16. R. Jansen, B. C. Min, S. P. Dash, S. Sharma, G. Kioseoglou, A. T. Hanbicki, O. M. J. vanft Erve, P. E. Thompson, and B. T. Jonker, Phys. Rev. B 82, 241305R (2010).
http://dx.doi.org/10.1103/PhysRevB.82.241305
17.
17. K. R. Jeon, B. C. Min, I. J. Shin, C. Y. Park, H. S. Lee, Y. H. Jo, and S. C. Shin, Appl. Phys. Lett. 98, 262102 (2011).
http://dx.doi.org/10.1063/1.3600787
18.
18. T. Sasaki, T. Oikawa, M. Shiraishi, Y. Suzuki, and K. Noguchi, Appl. Phys. Lett. 98, 012508 (2011).
http://dx.doi.org/10.1063/1.3536488
19.
19. M. Ishikawa, H. Sugiyama, T. Inokuchi, K. Hamaya, and Y. Saito, Appl. Phys. Lett. 100, 252404 (2012).
http://dx.doi.org/10.1063/1.4728117
20.
20. E. I. Rashba, Phys. Rev. B 62, R16267 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R16267
21.
21. A. Fert and H. Jaffrès, Phys. Rev. B 64, 184420 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.184420
22.
22. S. Takahashi and S. Maekawa, Phys. Rev. B 67, 052409 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.052409
23.
23. B. Huang, L. Zhao, D. J. Monsma, and I. Appelbaum, Appl. Phys. Lett. 91, 052501 (2007).
http://dx.doi.org/10.1063/1.2767198
24.
24. H. J. Jang, J. Xu, J. Li, B. Huang, and I. Appelbaum, Phys. Rev. B 78, 165329 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.165329
25.
25. H. J. Jang and I. Appelbaum, Phys. Rev. Lett. 103, 117202 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.117202
26.
26. J. Li and I. Appelbaum, Phys. Rev. B 84, 165318 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165318
27.
27. J. Li and I. Appelbaum, Appl. Phys. Lett. 100, 162408 (2012).
http://dx.doi.org/10.1063/1.4704802
28.
28. K. Hamaya, K. Ueda, Y. Kishi, Y. Ando, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 93, 132117 (2008).
http://dx.doi.org/10.1063/1.2996581
29.
29. S. Yamada, K. Hamaya, K. Yamamoto, T. Murakami, K. Mibu, and M. Miyao, Appl. Phys. Lett. 96, 082511 (2010).
http://dx.doi.org/10.1063/1.3330895
30.
30. Y. Maeda, K. Hamaya, S. Yamada, Y. Ando, K. Yamane, and M. Miyao, Appl. Phys. Lett. 97, 192501 (2010).
http://dx.doi.org/10.1063/1.3514580
31.
31. S. Oki, S. Yamada, T. Murakami, M. Miyao, and K. Hamaya, Thin Solid Films 520, 3419 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.10.080
32.
32. K. Tanikawa, S. Oki, S. Yamada, K. Mibu, M. Miyao, and K. Hamaya, arXiv:1301.2645.
33.
33. Y. Ando, K. Hamaya, K. Kasahara, Y. Kishi, K. Ueda, K. Sawano, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 94, 182105 (2009).
http://dx.doi.org/10.1063/1.3130211
34.
34. Y. Ando, K. Kasahara, K. Yamane, K. Hamaya, K. Sawano, T. Kimura, and M. Miyao, Appl. Phys. Express 3, 093001 (2010).
http://dx.doi.org/10.1143/APEX.3.093001
35.
35. K. Hamaya, Y. Ando, T. Sadoh, and M. Miyao, Jpn. J. Appl. Phys., Part 1 50, 010101 (2011).
http://dx.doi.org/10.1143/JJAP.50.010101
36.
36. Y. Ando, K. Kasahara, K. Yamane, Y. Baba, Y. Maeda, Y. Hoshi, K. Sawano, M. Miyao, and K. Hamaya, Appl. Phys. Lett. 99, 012113 (2011).
http://dx.doi.org/10.1063/1.3607480
37.
37. Y. Ando, Y. Maeda, K. Kasahara, S. Yamada, K. Masaki, Y. Hoshi, K. Sawano, K. Izunome, A. Sakai, M. Miyao, and K. Hamaya, Appl. Phys. Lett. 99, 132511 (2011).
http://dx.doi.org/10.1063/1.3643141
38.
38. Y. Ando, K. Kasahara, S. Yamada, Y. Maeda, K. Masaki, Y. Hoshi, K. Sawano, M. Miyao, and K. Hamaya, Phys. Rev. B 85, 035320 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.035320
39.
39. K. Ueda, K. Hamaya, K. Yamamoto, Y. Ando, T. Sadoh, Y. Maeda, and M. Miyao, Appl. Phys. Lett. 93, 112108 (2008).
http://dx.doi.org/10.1063/1.2977866
40.
40. Y. Ando, K. Hamaya, K. Kasahara, K. Ueda, Y. Nozaki, T. Sadoh, Y. Maeda, K. Matsuyama, and M. Miyao, J. Appl. Phys. 105, 07B102 (2009).
http://dx.doi.org/10.1063/1.3065985
41.
41. K. Hamaya, H. Itoh, O. Nakatsuka, K. Ueda, K. Yamamoto, M. Itakura, T. Taniyama, T. Ono, and M. Miyao, Phys. Rev. Lett. 102, 137204 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.137204
42.
42. K. Kasahara, K. Yamamoto, S. Yamada, T. Murakami, K. Hamaya, K. Mibu, and M. Miyao, J. Appl. Phys. 107, 09B105 (2010).
http://dx.doi.org/10.1063/1.3350915
43.
43. K. Hamaya, T. Murakami, S. Yamada, K. Mibu, and M. Miyao, Phys. Rev. B 83, 144411 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.144411
44.
44. S. Yamada, K. Hamaya, T. Murakami, B. Varaprasad, Y. K. Takahashi, A. Rajanikanth, K. Hono, and M. Miyao, J. Appl. Phys. 109, 07B113 (2011).
http://dx.doi.org/10.1063/1.3563039
45.
45. S. Yamada, J. Sagar, S. Honda, L. Lari, G. Takemoto, H. Itoh, A. Hirohata, K. Mibu, M. Miyao, and K. Hamaya, Phys. Rev. B 86, 174406 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.174406
46.
46. S. Yamada, K. Tanikawa, M. Miyao, and K. Hamaya, Cryst. Growth Des. 12, 4703 (2012).
http://dx.doi.org/10.1021/cg300791w
47.
47. K. Nakagawa, M. Miyao, and Y. Shiraki, Thin Solid Films 183, 315 (1989).
http://dx.doi.org/10.1016/0040-6090(89)90456-2
48.
48. M. Miyao and K. Nakagawa, Jpn. J. Appl. Phys., Part 1 33, 3791 (1994).
http://dx.doi.org/10.1143/JJAP.33.3791
49.
49. S. Oki, S. Yamada, N. Hashimoto, M. Miyao, T. Kimura, and K. Hamaya, Appl. Phys. Express 5, 063004 (2012).
http://dx.doi.org/10.1143/APEX.5.063004
50.
50. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), pp. 2730.
51.
51. T. Kimura, N. Hashimoto, S. Yamada, M. Miyao, and K. Hamaya, NPG Asia Mater. 4, e9 (2012).
http://dx.doi.org/10.1038/am.2012.16
52.
52. K. Hamaya, N. Hashimoto, S. Oki, S. Yamada, M. Miyao, and T. Kimura, Phys. Rev. B 85, 100404R (2012).
http://dx.doi.org/10.1103/PhysRevB.85.100404
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/17/10.1063/1.4793501
Loading
/content/aip/journal/jap/113/17/10.1063/1.4793501
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/17/10.1063/1.4793501
2013-02-26
2016-08-27

Abstract

Using a metal-oxide-semiconductor field effect transistor structure with a high-quality CoFe/ -Si contact, we systematically study spin injection and spin accumulation in a nondegenerated Si channel with a doping density of ∼4.5 × 10 cm at room temperature. By applying the gate voltage ( ) to the channel, we obtain sufficient bias currents ( ) for creating spin accumulation in the channel and observe clear spin-accumulation signals even at room temperature. Whereas the magnitude of the spin signals is enhanced by increasing , it is reduced by increasing interestingly. These features can be understood within the framework of the conventional spin diffusion model. As a result, a room-temperature spin injection technique for the nondegenerated Si channel without using insulating tunnel barriers is established, which indicates a technological progress for Si-based spintronic applications with gate electrodes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/17/1.4793501.html;jsessionid=wIdyHKRhG4mAJCtWbpp9OigA.x-aip-live-06?itemId=/content/aip/journal/jap/113/17/10.1063/1.4793501&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/113/17/10.1063/1.4793501&pageURL=http://scitation.aip.org/content/aip/journal/jap/113/17/10.1063/1.4793501'
Right1,Right2,Right3,