1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/113/17/10.1063/1.4798391
1.
1. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectric and Related Materials (Clarendon Press, Oxford, 2001).
2.
2. B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in Crystals: Physical Foundations (Springer-Verlag, Berlin, 1998).
3.
3. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, New York, 1966).
4.
4. J. D. Freire and R. S. Katiyar, Phys. Rev. B 37, 2074 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.2074
5.
5. E. Pytte, Phys. Rev. B 5, 3758 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.3758
6.
6. J. Frantti, Y. Fujioka, J. Zhang, S. C. Vogel, Y. Wang, Y. Zhao, and R. M. Nieminen, J. Phys. Chem. B 113, 7967 (2009).
http://dx.doi.org/10.1021/jp9024987
7.
7. G. Burns and B. A. Scott, Phys. Rev. Lett. 25, 167 (1970);
http://dx.doi.org/10.1103/PhysRevLett.25.167
7. G. Burns and B. A. Scott, Phys. Rev. B 7, 3088 (1973).
http://dx.doi.org/10.1103/PhysRevB.7.3088
8.
8. L. Merten, Phys. Status Solidi 25, 125 (1968).
http://dx.doi.org/10.1002/pssb.19680250111
9.
9. M. Grimsditch, Physica B 150, 271 (1988).
http://dx.doi.org/10.1016/0378-4363(88)90132-5
10.
10. A. García and D. Vanderbilt, Phys. Rev. B 54, 3817 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.3817
11.
11. J. Feder and E. Pytte, Phys. Rev. B 1, 4803 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.4803
12.
12. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971).
13.
13. D. Wang, E. Buixaderas, J. Íniguez, J. Weerasinghe, H. Wang, and L. Bellaiche, Phys. Rev. Lett. 107, 175502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.175502
14.
14. J. Frantti, Y. Fujioka, and R. M. Nieminen, J. Phys. Chem. B 111, 4287 (2007).
http://dx.doi.org/10.1021/jp0713209
15.
15. B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross, and S.-E. Park, Appl. Phys. Lett. 74, 2059 (1999).
http://dx.doi.org/10.1063/1.123756
16.
16. H. Yokota, N. Zhang, A. E. Taylor, P. A. Thomas, and A. M. Glazer, Phys. Rev. B 80, 104109 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.104109
17.
17. J. Frantti, J. Lappalainen, S. Eriksson, V. Lantto, S. Nishio, M. Kakihana, S. Ivanov, and H. Rundlöf, Jpn. J. Appl. Phys., Part 1 39, 5697 (2000);
http://dx.doi.org/10.1143/JJAP.39.5697
17. J. Frantti, S. Eriksson, S. Hull, S. Ivanov, V. Lantto, J. Lappalainen, and M. Kakihana, J. Eur. Ceram. Soc. 24, 1141 (2004);
http://dx.doi.org/10.1016/S0955-2219(03)00582-X
17. J. Frantti, S. Eriksson, S. Hull, V. Lantto, H. Rundlöf, and M. Kakihana, J. Phys.: Condens. Matter 15, 6031 (2003);
http://dx.doi.org/10.1088/0953-8984/15/35/311
17. J. Frantti, Y. Fujioka, J. Zhang, S. Wang, S. C. Vogel, R. M. Nieminen, A. M. Asiri, Y. Zhao, A. Y. Obaid, and I. A. Mkhalid, J. Appl. Phys. 112, 014104 (2012).
http://dx.doi.org/10.1063/1.4733570
18.
18. D. Vanderbilt and M. H. Cohen, Phys. Rev. B 63, 094108 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.094108
19.
19. A. J. Bell and E. Furman, Jpn. J. Appl. Phys., Part 1 42, 7418 (2003).
http://dx.doi.org/10.1143/JJAP.42.7418
20.
20. D. Phelan, X. Long, Y. Xie, Z.-G. Ye, A. M. Glazer, H. Yokota, P. A. Thomas, and P. M. Gehring, Phys. Rev. Lett. 105, 207601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.207601
21.
21. S. Gorfman, D. S. Keeble, A. M. Glazer, X. Long, Y. Xie, Z.-G. Ye, S. Collins, and P. A. Thomas, Phys. Rev. B 84, 020102 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.020102
22.
22. D. L. Corker, A. M. Glazer, R. W. Whatmore, A. Stallard, and F. Fauth, J. Phys.: Condens. Matter 10, 6251 (1998).
http://dx.doi.org/10.1088/0953-8984/10/28/007
23.
23. J. Ricote, D. L. Corker, R. W. Whatmore, S. A. Impey, A. M. Glazer, J. Dec, and K. Roleder, J. Phys.: Condens. Matter 10, 1767 (1998).
http://dx.doi.org/10.1088/0953-8984/10/8/011
24.
24. A. M. Glazer, P. A. Thomas, K. Z. Baba-Kishi, G. K. H. Pang, and C. W. Tai, Phys. Rev. B 70, 184123 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.184123
25.
25. C. Muller, J.-L. Baudour, V. Madigou, F. Bouree, J.-M. Kiat, C. Favotto, and M. Roubin, Acta Crystallogr., Sect. B: Struct. Sci. 55, 8 (1999).
http://dx.doi.org/10.1107/S0108768198005758
26.
26. J. Frantti, S. Ivanov, S. Eriksson H. Rundöf, V. Lantto, J. Lappalainen, and M. Kakihana, Phys. Rev. B 66, 064108 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.064108
27.
27. M. Deluca, H. Fukumura, N. Tonari, C. Capiani, N. Hasuike, K. Kisoda, C. Galassi, and H. Harima, J. Raman Spectrosc. 42, 488 (2011).
http://dx.doi.org/10.1002/jrs.2714
28.
28. A. G. Souza Filho, K. C. V. Lima, A. P. Ayala, I. Guedes, P. T. C. Freire, F. E. A. Melo, J. Mendes Filho, E. B. Araújo, and J. A. Eiras, Phys. Rev. B 66, 132107 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.132107
29.
29. J. Frantti and V. Lantto, Phys. Rev. B 56, 221 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.221
30.
30. L. Kozielski, E. Buixaderas, F. Clemens, and R. Bujakiewicz-Korońska, J. Phys. D: Appl. Phys. 43, 415401 (2010).
http://dx.doi.org/10.1088/0022-3727/43/41/415401
31.
31. W. Hayes and R. Loudon, Scattering of Light by Crystals (Dover Publications, Inc., Mineola, NY, 2004).
32.
32. B. G. Burke, J. Chan, K. A. Williams, Z. Wu, A. A. Puretzky, and D. B. Geohegan, J. Raman Spectrosc. 41, 1759 (2010).
http://dx.doi.org/10.1002/jrs.2614
33.
33. J. Frantti and V. Lantto. Phys. Rev. B 54, 12139 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.12139
34.
34. S. M. Cho, H. M. Jang, and T.-Y. Kim, Phys. Rev. B 64, 014103 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.014103
35.
35. M. R. Joya and P. S. Pizani, Appl. Phys. Lett. 97, 031903 (2010).
http://dx.doi.org/10.1063/1.3464971
36.
36. J. Frantti, V. Lantto, S. Nishio, and M. Kakihana, Phys. Rev. B 59, 12 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.12
37.
37. J. Frantti, J. Lappalainen, V. Lantto, S. Nishio, and M. Kakihana, Jpn. J. Appl. Phys., Part 1 38, 5679 (1999).
http://dx.doi.org/10.1143/JJAP.38.5679
38.
38. S. B. Lang, W. M. Zhu, and Z.-G. Ye, J. Appl. Phys. 111, 094102 (2012).
http://dx.doi.org/10.1063/1.4712633
39.
39. G. A. Rossetti, Jr. and A. Navrotsky, J. Solid State Chem. 144, 188 (1999).
http://dx.doi.org/10.1006/jssc.1999.8146
40.
40. J. Y. Li, R. C. Rogan, E. Üstündag, and K. Bhattacharya, Nature Mater. 4, 776 (2005).
http://dx.doi.org/10.1038/nmat1485
41.
41. J. M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford Science Publications, Oxford University Press, Oxford, 2000).
42.
42. J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press, Cambridge, 1996).
43.
43. R. Phillips, Crystals, Defects and Microstructures: Modeling Across Scales (Cambridge University Press, Cambridge, 2001).
44.
44. A. Pramanick, D. Damjanovic, J. C. Nino, and J. L. Jones, J. Am. Ceram. Soc. 92, 2291 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.03218.x
45.
45. A. Pramanick, J. E. Daniels, and J. L. Jones, J. Am. Ceram. Soc. 92, 2300 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.03219.x
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/17/10.1063/1.4798391
Loading
/content/aip/journal/jap/113/17/10.1063/1.4798391
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/17/10.1063/1.4798391
2013-05-01
2015-04-25

Abstract

Lead titanate (PbTiO) is a classical example of a ferroelectric perovskite oxide illustrating a displacive phase transition accompanied by softening of a symmetry-breaking mode. The underlying assumption justifying the soft-mode theory is that the crystal is macroscopically sufficiently uniform that a meaningful free energy function can be formed. In contrast to PbTiO, experimental studies show that the phase transition behaviour of lead-zirconate-titanate solid solution (PZT) is far more subtle. Most of the studies on the PZT system have been dedicated to ceramic or powder samples, in which case an unambiguous soft-mode study is not possible, as modes with different symmetries appear together. Our Raman scattering study on titanium-rich PZT single crystal shows that the phase transitions in PZT cannot be described by a simple soft-mode theory. In strong contrast to PbTiO, splitting of transverse -symmetry modes reveals that there are different locally ordered regions. The role of crystal defects, random distribution of Ti and Zr at the -cation site and Pb ions shifted away from their ideal positions, dictates the phase transition mechanism. A statistical model explaining the observed peak splitting and phase transformation to a complex state with spatially varying local order in the vicinity of the morphotropic phase boundary is given.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/17/1.4798391.html;jsessionid=1p54scn63f8tf.x-aip-live-03?itemId=/content/aip/journal/jap/113/17/10.1063/1.4798391&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A statistical model approximation for perovskite solid-solutions: A Raman study of lead-zirconate-titanate single crystal
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/17/10.1063/1.4798391
10.1063/1.4798391
SEARCH_EXPAND_ITEM