Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
2. J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, Appl. Phys. Lett. 93, 131905 (2008).
3. F. Bonnaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nature Photon. 4, 611 (2010).
4. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
5. V. Ryzhii, Jpn. J. Appl. Phys. 45, L923 (2006).
6. O. Vafek, Phys. Rev. Lett. 97, 266406 (2006).
7. V. Ryzhii, A. Satou, and T. Otsuji, J. Appl. Phys. 101, 024509 (2007).
8. L. A. Falkovsky and A. A. Varlamov, Eur. Phys. J. B 56, 281 (2007).
9. E. H. Hwang and S. Das Sarma. Phys. Rev. B 80, 205405 (2009).
10. D. Svintsov, V. Vyurkov, S. Yurchenko, T. Otsuji, and V. Ryzhii, J. Appl. Phys. 111, 083715 (2012).
11. G. W. Hanson, J. Appl. Phys. 103, 064302 (2008).
12. A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, J. Phys. Condens. Mater. 23, 145302 (2011).
13. M. Dyakonov and M. Shur, IEEE Trans. Electron Devices 43, 1640 (1996).
14. J. Lusakowski, W. Knap, N. Dyakonova, L. Varani, J. Mateos, T. Gonzales, Y. Roelens, S. Bullaert, A. Cappy, and K. Karpierz, J. Appl. Phys. 97, 064307 (2005).
15. F. Teppe, W. Knap, D. Veksler, M. S. Shur, A. P. Dmitriev, V. Yu. Kacharovskii, and S. Rumyantsev, Appl. Phys. Lett. 87, 052107 (2005).
16. V. Ryzhii, A. Satou, W. Knap, and M. S. Shur, J. Appl. Phys. 99, 084507 (2006).
17. A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valusis, A. Shcherepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, Appl. Phys. Lett. 89, 131926 (2006).
18. J. Torres, P. Nouvel, A. Akwaoue-Ondo, L. Chusseau, F. Teppe, A. Shcherepetov, and S. Bollaert, Appl. Phys. Lett. 89, 201101 (2006).
19. V. Ryzhii, I. Khmyrova, A. Satou, P. O. Vaccaro, T. Aida, and M. S. Shur, J. Appl. Phys. 92, 5756 (2002).
20. A. Satou, V. Ryzhii, I. Khmyrova, M. Ryzhii, and M. S. Shur, J. Appl. Phys. 95, 2084 (2004).
21. T. Otsuji, M. Hanabe and O. Ogawara, Appl. Phys. Lett. 85, 2119 (2004).
22. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, Nature 474, 64 (2011).
23. L. Britnel, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Shedin, A. Mishenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947 (2012).
24. M. Liu, X. Yin, and X. Zhang, Nano Lett. 12, 1482 (2012).
25. T. Georgiou, R. Jalil, B. D. Bellee, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Cholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponimarenko, A. K. Geim, K. S. Nonoselov, and A. Mishchenko, Nature Nanotechnol. 8, 100103 (2013).
26. V. Ryzhii, T. Otsuji, M. Ryzhii, and M. S. Shur, J. Phys. D: Appl. Phys. 45, 302001 (2012).
27. V. Ryzhii, T. Otsuji, M. Ryzhii, V. G. Leiman, S. O. Yurchenko, V. Mitin, and M. S. Shur, J. Appl. Phys. 112, 104507 (2012).
28. T. Stauber and G. Gomez-Santos, Phys. Rev. B 85, 075410 (2012).
29. J.-J. Zhu, S. M. Badalyan, and F. M. Peters, Phys. Rev. B 87, 085401 (2013).
30. D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji, J. Appl. Phys. 113, 053701 (2013).
31. S. M. Duffy, S. Verhese, K. A. McIntoshy, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech. 49, 1032 (2001).
32. A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. Jager, IEEE J. Lightwave Technol. 21, 3962 (2003).
33. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, IEEE Sel. Topics Quantum Electron. 10, 709 (2004).
34. H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, Semicond. Sci. Technol. 20, S191 (2005).
35. V. Ryzhii, I. Khmyrova, M. Ryzhii, A. Satou, T. Otsuji, V. Mitin, and M. S. Shur, Int. J. High Speed Electron. Syst. 17, 521 (2007).

Data & Media loading...


Article metrics loading...



We propose the concept of terahertz (THz) photomixing enabled by the interband electron transitions due to the absorption of modulated optical radiation in double-graphene layer (double-GL) structures and the resonant excitation of plasma oscillations. Using the developed double-GL photomixer (DG-PM) model, we describe its operation and calculate the device characteristics. The output power of the THz radiation exhibits sharp resonant peaks at the plasmonic resonant frequencies. The peak powers markedly exceed the output powers at relatively low frequencies. Due to relatively high quantum efficiency of optical absorption in GLs and short inter-GL transit time, the proposed DG-PM operating in the resonant plasma oscillation regime can surpass the photomixers based on the standard heterostructures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd