1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/113/17/10.1063/1.4804063
1.
1. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
2.
2. J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, Appl. Phys. Lett. 93, 131905 (2008).
http://dx.doi.org/10.1063/1.2990753
3.
3. F. Bonnaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nature Photon. 4, 611 (2010).
http://dx.doi.org/10.1038/nphoton.2010.186
4.
4. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
5.
5. V. Ryzhii, Jpn. J. Appl. Phys. 45, L923 (2006).
http://dx.doi.org/10.1143/JJAP.45.L923
6.
6. O. Vafek, Phys. Rev. Lett. 97, 266406 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.266406
7.
7. V. Ryzhii, A. Satou, and T. Otsuji, J. Appl. Phys. 101, 024509 (2007).
http://dx.doi.org/10.1063/1.2426904
8.
8. L. A. Falkovsky and A. A. Varlamov, Eur. Phys. J. B 56, 281 (2007).
http://dx.doi.org/10.1140/epjb/e2007-00142-3
9.
9. E. H. Hwang and S. Das Sarma. Phys. Rev. B 80, 205405 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.205405
10.
10. D. Svintsov, V. Vyurkov, S. Yurchenko, T. Otsuji, and V. Ryzhii, J. Appl. Phys. 111, 083715 (2012).
http://dx.doi.org/10.1063/1.4705382
11.
11. G. W. Hanson, J. Appl. Phys. 103, 064302 (2008).
http://dx.doi.org/10.1063/1.2891452
12.
12. A. A. Dubinov, V. Ya. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, J. Phys. Condens. Mater. 23, 145302 (2011).
http://dx.doi.org/10.1088/0953-8984/23/14/145302
13.
13. M. Dyakonov and M. Shur, IEEE Trans. Electron Devices 43, 1640 (1996).
http://dx.doi.org/10.1109/16.536809
14.
14. J. Lusakowski, W. Knap, N. Dyakonova, L. Varani, J. Mateos, T. Gonzales, Y. Roelens, S. Bullaert, A. Cappy, and K. Karpierz, J. Appl. Phys. 97, 064307 (2005).
http://dx.doi.org/10.1063/1.1861140
15.
15. F. Teppe, W. Knap, D. Veksler, M. S. Shur, A. P. Dmitriev, V. Yu. Kacharovskii, and S. Rumyantsev, Appl. Phys. Lett. 87, 052107 (2005).
http://dx.doi.org/10.1063/1.2005394
16.
16. V. Ryzhii, A. Satou, W. Knap, and M. S. Shur, J. Appl. Phys. 99, 084507 (2006).
http://dx.doi.org/10.1063/1.2191628
17.
17. A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valusis, A. Shcherepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, Appl. Phys. Lett. 89, 131926 (2006).
http://dx.doi.org/10.1063/1.2358816
18.
18. J. Torres, P. Nouvel, A. Akwaoue-Ondo, L. Chusseau, F. Teppe, A. Shcherepetov, and S. Bollaert, Appl. Phys. Lett. 89, 201101 (2006).
http://dx.doi.org/10.1063/1.2388142
19.
19. V. Ryzhii, I. Khmyrova, A. Satou, P. O. Vaccaro, T. Aida, and M. S. Shur, J. Appl. Phys. 92, 5756 (2002).
http://dx.doi.org/10.1063/1.1510596
20.
20. A. Satou, V. Ryzhii, I. Khmyrova, M. Ryzhii, and M. S. Shur, J. Appl. Phys. 95, 2084 (2004).
http://dx.doi.org/10.1063/1.1641953
21.
21. T. Otsuji, M. Hanabe and O. Ogawara, Appl. Phys. Lett. 85, 2119 (2004).
http://dx.doi.org/10.1063/1.1792377
22.
22. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, Nature 474, 64 (2011).
http://dx.doi.org/10.1038/nature10067
23.
23. L. Britnel, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Shedin, A. Mishenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947 (2012).
http://dx.doi.org/10.1126/science.1218461
24.
24. M. Liu, X. Yin, and X. Zhang, Nano Lett. 12, 1482 (2012).
http://dx.doi.org/10.1021/nl204202k
25.
25. T. Georgiou, R. Jalil, B. D. Bellee, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Cholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponimarenko, A. K. Geim, K. S. Nonoselov, and A. Mishchenko, Nature Nanotechnol. 8, 100103 (2013).
http://dx.doi.org/10.1038/nnano.2012.224
26.
26. V. Ryzhii, T. Otsuji, M. Ryzhii, and M. S. Shur, J. Phys. D: Appl. Phys. 45, 302001 (2012).
http://dx.doi.org/10.1088/0022-3727/45/30/302001
27.
27. V. Ryzhii, T. Otsuji, M. Ryzhii, V. G. Leiman, S. O. Yurchenko, V. Mitin, and M. S. Shur, J. Appl. Phys. 112, 104507 (2012).
http://dx.doi.org/10.1063/1.4766814
28.
28. T. Stauber and G. Gomez-Santos, Phys. Rev. B 85, 075410 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.075410
29.
29. J.-J. Zhu, S. M. Badalyan, and F. M. Peters, Phys. Rev. B 87, 085401 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.085401
30.
30. D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji, J. Appl. Phys. 113, 053701 (2013).
http://dx.doi.org/10.1063/1.4789818
31.
31. S. M. Duffy, S. Verhese, K. A. McIntoshy, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech. 49, 1032 (2001).
http://dx.doi.org/10.1109/22.925487
32.
32. A. Stohr, A. Malcoci, A. Sauerwald, I. C. Mayorga, R. Gusten, and D. Jager, IEEE J. Lightwave Technol. 21, 3962 (2003).
33.
33. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, IEEE Sel. Topics Quantum Electron. 10, 709 (2004).
http://dx.doi.org/10.1109/JSTQE.2004.833883
34.
34. H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, Semicond. Sci. Technol. 20, S191 (2005).
http://dx.doi.org/10.1088/0268-1242/20/7/008
35.
35. V. Ryzhii, I. Khmyrova, M. Ryzhii, A. Satou, T. Otsuji, V. Mitin, and M. S. Shur, Int. J. High Speed Electron. Syst. 17, 521 (2007).
http://dx.doi.org/10.1142/S0129156407004710
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/17/10.1063/1.4804063
Loading
/content/aip/journal/jap/113/17/10.1063/1.4804063
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/17/10.1063/1.4804063
2013-05-07
2015-03-30

Abstract

We propose the concept of terahertz (THz) photomixing enabled by the interband electron transitions due to the absorption of modulated optical radiation in double-graphene layer (double-GL) structures and the resonant excitation of plasma oscillations. Using the developed double-GL photomixer (DG-PM) model, we describe its operation and calculate the device characteristics. The output power of the THz radiation exhibits sharp resonant peaks at the plasmonic resonant frequencies. The peak powers markedly exceed the output powers at relatively low frequencies. Due to relatively high quantum efficiency of optical absorption in GLs and short inter-GL transit time, the proposed DG-PM operating in the resonant plasma oscillation regime can surpass the photomixers based on the standard heterostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/17/1.4804063.html;jsessionid=2kdncr9wfk09j.x-aip-live-06?itemId=/content/aip/journal/jap/113/17/10.1063/1.4804063&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Terahertz photomixing using plasma resonances in double-graphene layer structures
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/17/10.1063/1.4804063
10.1063/1.4804063
SEARCH_EXPAND_ITEM