1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Full field electron spectromicroscopy applied to ferroelectric materials
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/18/10.1063/1.4801968
1.
1. R. E. Cohen, Nature 358, 136 (1992).
http://dx.doi.org/10.1038/358136a0
2.
2. R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.1651
3.
3. S. Prosandeev, D. Wang, W. Ren, J. Íñiguez, and L. Bellaiche, Adv. Funct. Mater. 23, 234240 (2013).
http://dx.doi.org/10.1002/adfm.201201467
4.
4. S. V. Kalinin, A. N. Morozovska, L. Q. Chen, and B. J. Rodriguez, Rep. Prog. Phys. 73, 056502 (2010).
http://dx.doi.org/10.1088/0034-4885/73/5/056502
5.
5. I. Infante, S. Lisenkov, B. Dupé, M. Bibes, S. Fusil, E. Jacquet, G. Geneste, S. Petit, A. Courtial, J. Juraszek, L. Bellaiche, A. Barthélémy, and B. Dkhil, Phys. Rev. Lett. 105, 057601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.057601
6.
6. D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, Annu. Rev. Mater. Res. 37, 589 (2007).
http://dx.doi.org/10.1146/annurev.matsci.37.061206.113016
7.
7. K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, and C. B. Eom, Science 306, 1005 (2004).
http://dx.doi.org/10.1126/science.1103218
8.
8. M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.1083
9.
9. J. Junquera and P. Ghosez, Nature 422, 506 (2003).
http://dx.doi.org/10.1038/nature01501
10.
10. R. Ramesh and N. A. Spaldin, Nature Mater. 6, 21 (2007).
http://dx.doi.org/10.1038/nmat1805
11.
11. C. A. F. Vaz, J. Hoffman, Y. Segal, J. W. Reiner, R. D. Grober, Z. Zhang, C. H. Ahn, and F. J. Walker, Phys. Rev. Lett. 104, 127202 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.127202
12.
12. D. Li, M. H. Zhao, J. Garra, A. M. Kolpak, A. M. Rappe, D. A. Bonnell, and J. M. Vohs, Nature Mater. 7, 473 (2008).
http://dx.doi.org/10.1038/nmat2198
13.
13. J. L. Giocondi and G. S. Rohrer, J. Phys. Chem. B 105, 8275 (2001).
http://dx.doi.org/10.1021/jp011804j
14.
14. J. Seidel, D. Fu, S.-Y. Yang, E. Alarcon-Llado, J. Wu, R. Ramesh, and J. Ager, Phys. Rev. Lett. 107, 126805 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.126805
15.
15. W.-C. Yang, B. J. Rodriguez, A. Gruverman, and R. J. Nemanich, Appl. Phys. Lett. 85, 2316 (2004).
http://dx.doi.org/10.1063/1.1790604
16.
16. U. Lev, S. Heun, A. Locatelli, and E. Zolotoyabko, Ultramicroscopy 104, 169 (2005).
http://dx.doi.org/10.1016/j.ultramic.2005.03.008
17.
17. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Nature Mater. 5, 823 (2006).
http://dx.doi.org/10.1038/nmat1731
18.
18. J. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S. Yang, D. Nikonov, Y.-H. Chu, S. Salahuddin, and R. Ramesh, Phys. Rev. Lett. 107, 217202 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.217202
19.
19. M. Escher, K. Winkler, O. Renault, and N. Barrett, J. Electron Spectrosc. Relat. Phenom. 178–179, 303 (2010).
http://dx.doi.org/10.1016/j.elspec.2009.06.001
20.
20. C. Schneider, C. Wiemann, M. Patt, V. Feyer, L. Plucinski, I. Krug, M. Escher, N. Weber, M. Merkel, O. Renault, and N. Barrett, J. Electron Spectrosc. Relat. Phenom. 185, 330339 (2012).
http://dx.doi.org/10.1016/j.elspec.2012.08.003
21.
21. A. Locatelli and E. Bauer, J. Phys.: Condens. Matter 20, 093002 (2008).
http://dx.doi.org/10.1088/0953-8984/20/9/093002
22.
22. E. Brüche, Z. Phys. 86, 448 (1933).
23.
23. W. Telieps and E. Bauer, Ultramicroscopy 17, 57 (1985).
http://dx.doi.org/10.1016/0304-3991(85)90177-9
24.
24. M. Escher, N. Weber, M. Merkel, C. Ziethen, P. Bernhard, G. Schönhense, S. Schmidt, F. Forster, F. Reinert, B. Krömker, and D. Funnemann, J. Phys.: Condens. Matter 17, S1329 (2005).
http://dx.doi.org/10.1088/0953-8984/17/16/004
25.
25. S. Hüfner, S. Schmidt, and F. Reinert, Nucl. Instrum. Methods Phys. Res. A 547, 8 (2005).
http://dx.doi.org/10.1016/j.nima.2005.05.008
26.
26. C. Nordling, E. Sokolowski, and K. Siegbahn, Phys. Rev. 105, 1676 (1957).
http://dx.doi.org/10.1103/PhysRev.105.1676
27.
27. D. Briggs, Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, edited by D. Briggs and J. T. Grant (IM Publica, 2003).
28.
28. J. Walton and N. Fairley, J. Electron Spectrosc. Relat. Phenom. 148, 29 (2005).
http://dx.doi.org/10.1016/j.elspec.2005.02.003
29.
29. A. Bailly, O. Renault, N. Barrett, L. F. Zagonel, P. Gentile, N. Pauc, F. Dhalluin, T. Baron, A. Chabli, J. C. Cezar, and N. B. Brookes, Nano Lett. 8, 3709 (2008).
http://dx.doi.org/10.1021/nl801952a
30.
30. L. F. Zagonel, M. Bäurer, A. Bailly, O. Renault, M. Hoffmann, S.-J. Shih, D. Cockayne, and N. Barrett, J. Phys.: Condens. Matter 21, 314013 (2009).
http://dx.doi.org/10.1088/0953-8984/21/31/314013
31.
31. B. Krömker, M. Escher, D. Funnemann, D. Hartung, H. Engelhard, and J. Kirschner, Rev. Sci. Instrum. 79, 053702 (2008).
http://dx.doi.org/10.1063/1.2918133
32.
32. C. Mathieu, N. Barrett, J. Rault, Y. Y. Mi, B. Zhang, W. A. de Heer, C. Berger, E. H. Conrad, and O. Renault, Phys. Rev. B 83, 235436 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.235436
33.
33. T. O. Mente and A. Locatelli, J. Electron Spectrosc. Relat. Phenom. 185, 323 (2012).
http://dx.doi.org/10.1016/j.elspec.2012.07.007
34.
34. S. A. Nepijko, N. N. Sedov, G. Schönhense, and M. Escher, J. Microsc. 206, 132 (2002).
http://dx.doi.org/10.1046/j.1365-2818.2002.01012.x
35.
35. S. A. Nepijko, A. Gloskovskii, N. N. Sedov, and G. Schönhense, J. Microsc. 211, 89 (2003).
http://dx.doi.org/10.1046/j.1365-2818.2003.01199.x
36.
36. G. V. Spivak and S. Zheludev, Kristallografiya 4, 115 (1959).
37.
37. S. Cherifi, R. Hertel, S. Fusil, H. Béa, K. Bouzehouane, J. Allibe, M. Bibes, and A. Barthélémy, Phys. Status Solidi (RRL) 4, 22 (2010).
http://dx.doi.org/10.1002/pssr.200903297
38.
38. H. Hibino, H. Kageshima, F. Maeda, M. Nagase, Y. Kobayashi, and H. Yamaguchi, Phys. Rev. B 77, 75413 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075413
39.
39. M. S. Altman, J. Phys.: Condens. Matter 22, 084017 (2010).
http://dx.doi.org/10.1088/0953-8984/22/8/084017
40.
40. F. Chen, R. Schafranek, A. Wachau, S. Zhukov, J. Glaum, T. Granzow, H. von Seggern, and A. Klein, J. Appl. Phys. 108, 104106 (2010).
http://dx.doi.org/10.1063/1.3512969
41.
41. A. Höfer, M. Fechner, K. Duncker, M. Hölzer, I. Mertig, and W. Widdra, Phys. Rev. Lett. 108, 087602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.087602
42.
42. I. Krug, N. Barrett, A. Petraru, A. Locatelli, T. O. Mentes, M. A. Nino, K. Rahmanizadeh, G. Bihlmayer, and C. M. Schneider, Appl. Phys. Lett. 97, 222903 (2010).
http://dx.doi.org/10.1063/1.3523359
43.
43. D. D. Fong et al., Phys. Rev. Lett. 96, 127601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.127601
44.
44. J. Shin, V. B. Nascimento, G. Geneste, J. Rundgren, E. W. Plummer, B. Dkhil, S. V. Kalinin, and A. P. Baddorf, Nano Lett. 9, 3720 (2009).
http://dx.doi.org/10.1021/nl901824x
45.
45. A. Brugere, S. Gidon, and B. Gautier, J. Appl. Phys. 110, 052016 (2011).
http://dx.doi.org/10.1063/1.3623762
46.
46. J. Rodríguez Contreras, H. Kohlstedt, A. Petraru, A. Gerber, B. Hermanns, H. Haselier, N. Nagarajan, J. Schubert, U. Poppe, C. Buchal, and R. Waser, J. Cryst. Growth 277, 210 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2004.12.137
47.
47. J. L. Wang, B. Vilquin, and N. Barrett, Appl. Phys. Lett. 101, 092902 (2012).
http://dx.doi.org/10.1063/1.4748330
48.
48. R. Shao, M. P. Nikiforov, and D. A. Bonnell, Appl. Phys. Lett. 89, 112904 (2006).
http://dx.doi.org/10.1063/1.2348776
49.
49. A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton, Proc. Natl. Acad. Sci. U.S.A. 107, 2391 (2010).
http://dx.doi.org/10.1073/pnas.0911349107
50.
50. D. Kim, J. Jo, Y. Kim, Y. Chang, J. Lee, J.-G. Yoon, T. Song, and T. Noh, Phys. Rev. Lett. 95, 237602 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.237602
51.
51. A. Petraru, H. Kohlstedt, U. Poppe, R. Waser, A. Solbach, U. Klemradt, J. Schubert, W. Zander, and N. A. Pertsev, Appl. Phys. Lett. 93, 072902 (2008).
http://dx.doi.org/10.1063/1.2972135
52.
52. C. Lichtensteiger, J.-M. Triscone, J. Junquera, and P. Ghosez, Phys. Rev. Lett. 94, 047603 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.047603
53.
53. C. Lichtensteiger, M. Dawber, N. Stucki, J.-M. Triscone, J. Hoffman, J.-B. Yau, C. H. Ahn, L. Despont, and P. Aebi, Appl. Phys. Lett. 90, 052907 (2007).
http://dx.doi.org/10.1063/1.2433757
54.
54. V. Nagarajan, J. Junquera, J. Q. He, C. L. Jia, R. Waser, K. Lee, Y. K. Kim, S. Baik, T. Zhao, R. Ramesh, P. Ghosez, and K. M. Rabe, J. Appl. Phys. 100, 051609 (2006).
http://dx.doi.org/10.1063/1.2337363
55.
55. N. Pertsev and H. Kohlstedt, Phys. Rev. Lett. 98, 257603 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.257603
56.
56. H. Béa, S. Fusil, K. Bouzehouane, M. Bibes, M. Sirena, G. Herranz, E. Jacquet, J.-P. Contour, and A. Barthélémy, Jpn. J. Appl. Phys., Part 2 45, L187 (2006).
http://dx.doi.org/10.1143/JJAP.45.L187
57.
57. A. Bratkovsky and A. Levanyuk, Phys. Rev. Lett. 84, 3177 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3177
58.
58. P. Maksymovych, M. Huijben, M. Pan, S. Jesse, N. Balke, Y.-H. Chu, H. Chang, A. Borisevich, A. Baddorf, G. Rijnders, D. Blank, R. Ramesh, and S. Kalinin, Phys. Rev. B 85, 014119 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.014119
59.
59. J. Rault, W. Ren, S. Prosandeev, S. Lisenkov, D. Sando, S. Fusil, M. Bibes, A. Barthélémy, L. Bellaiche, and N. Barrett, Phys. Rev. Lett. 109, 267601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.267601
60.
60. M. Takizawa, K. Maekawa, H. Wadati, T. Yoshida, A. Fujimori, H. Kumigashira, and M. Oshima, Phys. Rev. B 79, 113103 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.113103
61.
61. W. Meevasana, P. D. C. King, R. H. He, S.-K. Mo, M. Hashimoto, A. Tamai, P. Songsiriritthigul, F. Baumberger, and Z.-X. Shen, Nature Mater. 10, 114 (2011).
http://dx.doi.org/10.1038/nmat2943
62.
62. A. F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhès, R. Weht, X. G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fèvre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy, and M. J. Rozenberg, Nature 469, 189 (2011).
http://dx.doi.org/10.1038/nature09720
63.
63. E. Arenholz, G. van der Laan, A. Fraile-Rodríguez, P. Yu, Q. He, and R. Ramesh, Phys. Rev. B 82, 140103 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.140103
64.
64. R. Schafranek, S. Payan, M. Maglione, and A. Klein, Phys. Rev. B 77, 195310 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.195310
65.
65. Y. Iwazaki, T. Suzuki, Y. Mizuno, and S. Tsuneyuki, Phys. Rev. B 86, 214103 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.214103
66.
66. A. Bailly, O. Renault, N. Barrett, T. Desrues, D. Mariolle, L. F. Zagonel, and M. Escher, J. Phys. Condens. Matter 21, 314002 (2009).
http://dx.doi.org/10.1088/0953-8984/21/31/314002
67.
67. A. Locatelli, T. O. Mente, M. A. Niño, and E. Bauer, Ultramicroscopy 111, 1447 (2011).
http://dx.doi.org/10.1016/j.ultramic.2010.12.020
68.
68. R. M. Tromp, J. B. Hannon, A. W. Ellis, W. Wan, A. Berghaus, and O. Schaff, Ultramicroscopy 110, 852 (2010).
http://dx.doi.org/10.1016/j.ultramic.2010.03.005
69.
69. C.-L. Wu, P.-W. Lee, Y.-C. Chen, L.-Y. Chang, C.-H. Chen, C.-W. Liang, P. Yu, Q. He, R. Ramesh, and Y.-H. Chu, Phys. Rev. B 83, 020103 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.020103
70.
70. N. M. Buckanie, J. Göhre, P. Zhou, D. von der Linde, M. Horn-von Hoegen, and F.-J. Meyer Zu Heringdorf, J. Phys. Condens. Matter 21, 314003 (2009).
http://dx.doi.org/10.1088/0953-8984/21/31/314003
71.
71. P. Ghosez, J. Michenaud, and X. Gonze, Phys. Rev. B 58, 6224 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.6224
72.
72. M. Niranjan, J. Velev, C.-G. Duan, S. Jaswal, and E. Tsymbal, Phys. Rev. B 78, 104405 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.104405
73.
73. M. Stengel, P. Aguado-Puente, N. Spaldin, and J. Junquera, Phys. Rev. B 83, 235112 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.235112
74.
74. J. Allibe, S. Fusil, K. Bouzehouane, C. Daumont, D. Sando, E. Jacquet, C. Deranlot, M. Bibes, and A. Barthélémy, Nano Lett. 12, 1141 (2012).
http://dx.doi.org/10.1021/nl202537y
75.
75. F. Kronast, J. Schlichting, F. Radu, S. Mishra, T. Noll, and H. Dürr, Surf. Interface Anal. 42, 1532 (2010).
http://dx.doi.org/10.1002/sia.3561
76.
76. M. Suzuki, M. Hashimoto, T. Yasue, T. Koshikawa, Y. Nakagawa, T. Konomi, A. Mano, N. Yamamoto, M. Kuwahara, M. Yamamoto, S. Okumi, T. Nakanishi, X. Jin, T. Ujihara, Y. Takeda, T. Kohashi, T. Ohshima, T. Saka, T. Kato, and H. Horinaka, Appl. Phys. Express 3, 026601 (2010).
http://dx.doi.org/10.1143/APEX.3.026601
77.
77. K. Man, R. Zdyb, S. Huang, T. Leung, C. Chan, E. Bauer, and M. Altman, Phys. Rev. B 67, 184402 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.184402
78.
78. C. Wiemann, M. Patt, S. Cramm, M. Escher, M. Merkel, A. Gloskovskii, S. Thiess, W. Drube, and C. M. Schneider, Appl. Phys. Lett. 100, 223106 (2012).
http://dx.doi.org/10.1063/1.4722940
79.
79. S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C.-H. Yang, M. D. Rossell, P. Yu, Y.-H. Chu, J. F. Scott, J. W. Ager, L. W. Martin, and R. Ramesh, Nat. Nanotechnol. 5, 143 (2010).
http://dx.doi.org/10.1038/nnano.2009.451
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/18/10.1063/1.4801968
Loading
/content/aip/journal/jap/113/18/10.1063/1.4801968
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/18/10.1063/1.4801968
2013-05-08
2014-11-26

Abstract

The application of PhotoEmission Electron Microscopy (PEEM) and Low Energy Electron Microscopy (LEEM) techniques to the study of the electronic and chemical structures of ferroelectric materials is reviewed. Electron optics in both techniques gives spatial resolution of a few tens of nanometres. PEEM images photoelectrons, whereas LEEM images reflected and elastically backscattered electrons. Both PEEM and LEEM can be used in direct and reciprocal space imaging. Together, they provide access to surface charge, work function, topography, chemical mapping, surface crystallinity, and band structure. Examples of applications for the study of ferroelectric thin films and single crystals are presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/18/1.4801968.html;jsessionid=63hl1c0jlb6rj.x-aip-live-02?itemId=/content/aip/journal/jap/113/18/10.1063/1.4801968&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Full field electron spectromicroscopy applied to ferroelectric materials
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/18/10.1063/1.4801968
10.1063/1.4801968
SEARCH_EXPAND_ITEM