1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Resolving ferroelectric nanostructures via piezoresponse force microscopy—A numerical investigation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/18/10.1063/1.4801970
1.
1. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford, New York, 1977).
2.
2. J. F. Scott, Ferroelectric Memories (Springer, Berlin, 2000).
3.
3. J. F. Scott and P. de Araujo, Science 246, 1400 (1989).
http://dx.doi.org/10.1126/science.246.4936.1400
4.
4. P. Muralt, J. Micromech. Microeng. 10, 136 (2000).
http://dx.doi.org/10.1088/0960-1317/10/2/307
5.
5. A. M. Flynn, L. S. Tavrow, S. F. Bart, R. A. Brooks, D. J. Ehrlich, K. R. Udayakumar, and L. E. Cross, J. Microelectromech. Syst. 1, 44 (1992).
http://dx.doi.org/10.1109/84.128055
6.
6. S. L. Miller, R. D. Nasby, J. R. Schwank, M. S. Rodgers, and P. V. Dressendorfer, J. Appl. Phys. 68, 6463 (1990).
http://dx.doi.org/10.1063/1.346845
7.
7. R. Watton, Ferroelectrics 91, 87 (1989).
http://dx.doi.org/10.1080/00150198908015731
8.
8. F. D. Morrison, Y. Luo, I. Szafraniak, V. Nagarajan, R. B. Wehrspoh, M. Steinhart, J. H. Wendroff, N. D. Zakharov, E. D. Mishina, K. A. Vorotilov, A. S. Sigov, S. Nakabayashi, M. Alexe, R. Ramesh, and J. F. Scott, Rev. Adv. Mater. Sci. 4, 114 (2003).
9.
9. A. Gruverman and A. Kholkin, Rep. Prog. Phys. 69, 2443 (2006).
http://dx.doi.org/10.1088/0034-4885/69/8/R04
10.
10. R. Nath, Y. H. Chu, N. A. Polomoff, R. Ramesh, and B. D. Huey, Appl. Phys. Lett. 93, 072905 (2008).
http://dx.doi.org/10.1063/1.2969045
11.
11. Y. M. Liu, Y. H. Zhang, M. J. Chow, Q. N. Chen, and J. Y. Li, Phys. Rev. Lett. 108, 078103 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.078103
12.
12. S. V. Kalinin, A. N. Morozovska, L. Q. Chen, and B. J. Rodriguez, Rep. Prog. Phys. 73, 056502 (2010).
http://dx.doi.org/10.1088/0034-4885/73/5/056502
13.
13. Y. C. Chen, G. F. Wang, H. H. Tai, J. W. Chen, Y. C. Huang, J. C. Yang, and Y. H. Chu, Nanotechnology 22, 254030 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254030
14.
14. A. Gruverman, D. Wu, H. J. Fan, I. Vrejoiu, M. Alexe, R. J. Harrison, and J. F. Scott, J. Phys.: Condens. Matter 20, 342201 (2008).
http://dx.doi.org/10.1088/0953-8984/20/34/342201
15.
15. S. M. Yang, T. H. Kim, J. G. Yoon, and T. W. Noh, Adv. Funct. Mater. 22, 2310 (2012).
http://dx.doi.org/10.1002/adfm.201102685
16.
16. Z. J. Hu, M. W. Tian, B. Nysten, and A. M. Jonas, Nature 8, 62 (2009).
http://dx.doi.org/10.1038/nmat2339
17.
17. B. J. Rodriguez, X. S. Gao, L. F. Liu, W. Lee, I. I. Naumov, A. M. Bratkovsky, D. Hesse, and M. Alexe, Nano Lett. 9, 1127 (2009).
http://dx.doi.org/10.1021/nl8036646
18.
18. S. V. Kalinin, S. Jesse, B. J. Rodriguez, J. Shin, A. P. Baddorf, H. N. Lee, A. Borisevich, and S. J. Pennycook, Nanotechnology 17, 3400 (2006).
http://dx.doi.org/10.1088/0957-4484/17/14/010
19.
19. A. N. Morozovska, S. V. Svechnikov, E. A. Eliseev, and S. V. Kalinin, Phys. Rev. B 76, 054123 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.054123
20.
20. K. Pan, Y. Y. Liu, Y. M. Liu, and J. Y. Li, J. Appl. Phys. 112, 052016 (2012).
http://dx.doi.org/10.1063/1.4746034
21.
21. S. V. Kalinin, S. Jesse, B. J. Rodriguez, E. A. Eliseev, V. Gopalan, and A. N. Morozovska, Appl. Phys. Lett. 90, 212905 (2007).
http://dx.doi.org/10.1063/1.2742900
22.
22. J. E. Mele, Am. J. Phys. 69, 557 (2001).
http://dx.doi.org/10.1119/1.1341252
23.
23. F. Felten, G. A. Schneider, J. Munoz Saldana, and S. V. Kalinin, J. Appl. Phys. 96, 563 (2004).
http://dx.doi.org/10.1063/1.1758316
24.
24. E. A. Eliseev, S. V. Kalinin, S. Jesse, S. L. Bravina, and A. N. Morozovska, J. Appl. Phys. 102, 014109 (2007).
http://dx.doi.org/10.1063/1.2749463
25.
25. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pregamon, London, 1959).
26.
26. R. Piessens and M. Branders, Math. Comput. 28, 135 (1974).
http://dx.doi.org/10.1090/S0025-5718-1974-0343552-5
27.
27. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramic (Academic, New York, 1971).
28.
28. T. Jungk, A. Hoffmann, and E. Soergel, New J. Phys. 10, 013019 (2008).
http://dx.doi.org/10.1088/1367-2630/10/1/013019
29.
29. B. J. Rodriguez, A. Gruverman, A. I. Kingon, R. J. Nemanich, and J. S. Cross, J. Appl. Phys. 95, 1958 (2004).
http://dx.doi.org/10.1063/1.1638889
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/18/10.1063/1.4801970
Loading
/content/aip/journal/jap/113/18/10.1063/1.4801970
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/18/10.1063/1.4801970
2013-05-08
2014-11-28

Abstract

A numerical approach has been developed to study the spatial resolution of piezoresponse force microscopy (PFM) in resolving ferroelectric nanostructures, capable of analyzing complicated domain patterns with arbitrary three-dimensional heterogeneity. It is found that the spatial resolution of PFM is limited by long range electroelastic interactions, resulting in a nominal domain wall thickness over which piezoresponse varies, even if the probed domain wall is sharp. It is also observed that ferroelectric features smaller than probe tip radius can be resolved, and tilted domain wall tends to show larger nominal domain wall thickness, resulting in poorer lateral PFM resolution than vertical one. Probing ferroelectric structures underneath of the surface by PFM is also demonstrated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/18/1.4801970.html;jsessionid=3kg7gpkj0q7tu.x-aip-live-06?itemId=/content/aip/journal/jap/113/18/10.1063/1.4801970&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Resolving ferroelectric nanostructures via piezoresponse force microscopy—A numerical investigation
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/18/10.1063/1.4801970
10.1063/1.4801970
SEARCH_EXPAND_ITEM