1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Local properties of the surface layer(s) of BiFeO3 single crystals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/18/10.1063/1.4801974
1.
1. X. Martí, P. Ferrer, J. Herrero-Albillos, J. Narvaez, V. Holy, N. Barrett, M. Alexe, and G. Catalan, Phys. Rev. Lett. 106, 236101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.236101
2.
2. G. Xu, D. Viehland, J. F. Li, P. M. Gehring, and G. Shirane, Phys. Rev. B 68, 212410 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.212410
3.
3. P. M. Gehring, W. Chen, Z. G. Ye, and G. Shirane, J. Phys.: Condens. Matter 16, 7113 (2004).
http://dx.doi.org/10.1088/0953-8984/16/39/042
4.
4. R. Jarrier, X. Marti, J. Herrero-Albillos, P. Ferrer, R. Haumont, P. Gemeiner, G. Geneste, P. Berthet, T. Schülli, P. Cevc, R. Blinc, S. S. Wong, T.-J. Park, M. Alexe, M. A. Carpenter, J. F. Scott, G. Catalan, and B. Dkhil, Phys. Rev. B 85, 184104 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.184104
5.
5. A. Kumar, J. F. Scott, and R. S. Katiyar, Phys. Rev. B 85, 224410 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.224410
6.
6. F. Kubel and H. Schmid, J. Cryst. Growth 129, 515524 (1993).
http://dx.doi.org/10.1016/0022-0248(93)90485-F
7.
7. S. V. Kalinin, E. Karapetian, and M. Kachanov, Phys. Rev. B 70, 184101 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.184101
8.
8. A. Gruverman, P. M. Vilarinho, Y. Rosenwaks, and A. Kingon, Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials (Springer, Netherlands, 2005), Vol. 186, pp. 223249.
9.
9. E. Soergel, J. Phys. D: Appl. Phys. 44, 464003 (2011).
http://dx.doi.org/10.1088/0022-3727/44/46/464003
10.
10. B. J. Rodriguez, C. Callahan, S. V. Kalinin, and R. Proksch, Nanotechnology 18, 475504 (2007).
http://dx.doi.org/10.1088/0957-4484/18/47/475504
11.
11. M. Nonnenmacher, M. P. O'Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 58, 29212923 (1991).
http://dx.doi.org/10.1063/1.105227
12.
12. W. Melitz, J. Shen, A. C. Kummel, and S. Lee, Surf. Sci. Rep. 66, 127 (2011).
http://dx.doi.org/10.1016/j.surfrep.2010.10.001
13.
13. C. Kittel, Phys. Rev. 70, 965971 (1946).
http://dx.doi.org/10.1103/PhysRev.70.965
14.
14. T. Mitsui and J. Furuichi, Phys. Rev. 90, 193202 (1953).
http://dx.doi.org/10.1103/PhysRev.90.193
15.
15. A. L. Roitburd, Phys. Status Solidi A 37, 329339 (1976).
http://dx.doi.org/10.1002/pssa.2210370141
16.
16. G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Rev. Mod. Phys. 84, 119156 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.119
17.
17. V. Y. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, Appl. Phys. Lett. 76, 143145 (2000).
http://dx.doi.org/10.1063/1.125683
18.
18. A. Tabyaoui, A. Ainane, M. Saber, and I. Lukyanchuk, Phys. Scr. 72, 265 (2005).
http://dx.doi.org/10.1238/Physica.Regular.072a00265
19.
19. J. F. Scott, J. Phys.: Condens. Matter 18, R361 (2006).
http://dx.doi.org/10.1088/0953-8984/18/17/R02
20.
20. G. Catalan, J. F. Scott, A. Schilling, and J. M. Gregg, J. Phys.: Condens. Matter 19, 022201 (2007).
http://dx.doi.org/10.1088/0953-8984/19/2/022201
21.
21. A. Berger, D. Hesse, A. Hähnel, M. Arredondo, and M. Alexe, Phys. Rev. B 85, 064104 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.064104
22.
22. S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C. H. Yang, M. D. Rossell, P. Yu, Y. H. Chu, J. F. Scott, J. W. Ager, L. W. Martin, and R. Ramesh, Nat. Nanotechnol. 5, 143147 (2010).
http://dx.doi.org/10.1038/nnano.2009.451
23.
23. M. Alexe and D. Hesse, Nat. Commun. 2, 256 (2011).
http://dx.doi.org/10.1038/ncomms1261
24.
24. Q. He, C. H. Yeh, J. C. Yang, G. Singh-Bhalla, C. W. Liang, P. W. Chiu, G. Catalan, L. W. Martin, Y. H. Chu, J. F. Scott, and R. Ramesh, Phys. Rev. Lett. 108, 067203 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.067203
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/18/10.1063/1.4801974
Loading
/content/aip/journal/jap/113/18/10.1063/1.4801974
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/18/10.1063/1.4801974
2013-05-08
2014-11-23

Abstract

The surface of BiFeO single crystals has been characterized at the local level using several AFM-based techniques. We have observed the presence of two different epilayers showing electrical and mechanical properties different from those of the bulk: a ferroelectrically “dead” outer skin of 5 nm sitting upon a subsurface layer that displays an extremely fine pattern of hierarchical self-ordered nanodomains. Based on the size of the nanodomains and applying a Kittel-like analysis, we argue that the nanotwinned region should be confined in a layer less than a micron deep. The superficial phase transition at T* = 275 °C is restricted to the outer skin layer (the “dead” layer), while the nanotwinned layer is insensitive to this transition. In view of the photovoltaic properties and spin-dependent transport of domain walls in BiFeO, the existence of nanodomains (and thus a high density of domain walls) in bulk single crystals is likely to be relevant for understanding their functional properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/18/1.4801974.html;jsessionid=946116o7paobn.x-aip-live-06?itemId=/content/aip/journal/jap/113/18/10.1063/1.4801974&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Local properties of the surface layer(s) of BiFeO3 single crystals
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/18/10.1063/1.4801974
10.1063/1.4801974
SEARCH_EXPAND_ITEM