1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Preface to Special Topic: Selected Papers from the Piezoresponse Force Microscopy Workshop Series: Part of the Joint ISAF-ECAPD-PFM 2012 Conference
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/18/10.1063/1.4802189
1.
1. K. Franke, J. Besold, W. Haessler, and C. Seegebarth, “ Modification and detection of domains on ferroelectric PZT films by scanning force microscopy,” Surf. Sci. 302, L283 (1994).
http://dx.doi.org/10.1016/0039-6028(94)91089-8
2.
2. K. Franke and M. Weihnacht, “ Evaluation of electrically polar substances by electric scanning force microscopy. Part I: Measurement signals due to Maxwell stress,” Ferroelectr., Lett. Sect. 19, 25 (1995).
http://dx.doi.org/10.1080/07315179508205938
3.
3. K. Takata, K. Kushida, and K. Torii, “ Strain-imaging observation of PB(ZR,TI)O-3 thin-films,” Jpn. J. Appl. Phys., Part 1 34, 2890 (1995).
http://dx.doi.org/10.1143/JJAP.34.2890
4.
4. A. Gruverman, O. Auciello, R. Ramesh, and H. Tokumoto, “ Scanning force microscopy of domain structure in ferroelectric thin films: Imaging and control,” Nanotechnology 8, A38 (1997).
http://dx.doi.org/10.1088/0957-4484/8/3A/008
5.
5. A. L. Gruverman, J. Hatano, and H. Tokumoto, “ Scanning force microscopy studies of domain structure in BaTiO3 single crystals,” Jpn. J. Appl. Phys., Part 1 36, 2207 (1997).
http://dx.doi.org/10.1143/JJAP.36.2207
6.
6. A. Gruverman and A. Kholkin, “ Nanoscale ferroelectrics: Processing, characterization and future trends,” Rep. Prog. Phys. 69, 2443 (2006).
http://dx.doi.org/10.1088/0034-4885/69/8/R04
7.
7. L. M. Eng, S. Grafstrom, C. Loppacher, F. Schlaphof, S. Trogisch, A. Roelofs, and R. Waser, in Advances in Solid State Physics, edited by B. Kramer (Springer-Verlag, Berlin, 2001), Vol. 41, p. 287.
8.
8. A. Roelofs, U. Bottger, R. Waser, F. Schlaphof, S. Trogisch, and L. M. Eng, “ Differentiating 180 degrees and 90 degrees switching of ferroelectric domains with three-dimensional piezoresponse force microscopy,” Appl. Phys. Lett. 77, 3444 (2000).
http://dx.doi.org/10.1063/1.1328049
9.
9. F. Zavaliche, P. Shafer, R. Ramesh, M. P. Cruz, R. R. Das, D. M. Kim, and C. B. Eom, “ Polarization switching in epitaxial BiFeO(3) films,” Appl. Phys. Lett. 87, 252902 (2005).
http://dx.doi.org/10.1063/1.2149180
10.
10. S. V. Kalinin, N. Setter, and A. L. Kholkin, “ Preface to special topic: Invited papers from the international symposium on piezoresponse force microscopy and nanoscale phenomena in polar materials, Aveiro, Portugal, 2009,” J. Appl. Phys. 108, 041901 (2010).
http://dx.doi.org/10.1063/1.3474648
11.
11. S. V. Kalinin, S. Jesse, B. J. Rodriguez, Y. H. Chu, R. Ramesh, E. A. Eliseev, and A. N. Morozovska, “ Probing the role of single defects on the thermodynamics of electric-field induced phase transitions,” Phys. Rev. Lett. 100, 155703 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.155703
12.
12. R. Proksch, N. Balke, S. Jesse, and S. Kalinin, “ Electrochemical strain microscopy of Li-ion conductive materials for energy generation and storage,” Asylum Research Application Note, http://www.asylumresearch.com/Applications/ESM/ESM.shtml.
13.
13. S. Kalinin, N. Balke, S. Jesse, A. Tselev, A. Kumar, T. M. Arruda, S. L. Guo, and R. Proksch, “ Li-ion dynamics and reactivity on the nanoscale,” Mater. Today 14, 548 (2011).
http://dx.doi.org/10.1016/S1369-7021(11)70280-2
14.
14. N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I. N. Ivanov, N. J. Dudney, and S. V. Kalinin, “ Real space mapping of Li-Ion transport in amorphous Si anodes with nanometer resolution,” Nano Lett. 10, 3420 (2010).
http://dx.doi.org/10.1021/nl101439x
15.
15. N. Balke, S. Jesse, Y. Kim, L. Adamczyk, I. N. Ivanov, N. J. Dudney, and S. V. Kalinin, “ Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale,” ACS Nano 4, 7349 (2010).
http://dx.doi.org/10.1021/nn101502x
16.
16. N. Balke, S. Jesse, A. N. Morozovska, E. Eliseev, D. W. Chung, Y. Kim, L. Adamczyk, R. E. Garcia, N. Dudney, and S. V. Kalinin, “ Nanoscale mapping of ion diffusion in a lithium-ion battery cathode,” Nat. Nanotechnol. 5, 749 (2010).
http://dx.doi.org/10.1038/nnano.2010.174
17.
17. Q. N. Chen, Y. Y. Liu, Y. M. Liu, S. H. Xie, G. Z. Cao, and J. Y. Li, “ Delineating local electromigration for nanoscale probing of lithium ion intercalation and extraction by electrochemical strain microscopy,” Appl. Phys. Lett. 101, 063901 (2012).
http://dx.doi.org/10.1063/1.4742933
18.
18. A. Kumar, F. Ciucci, A. N. Morozovska, S. V. Kalinin, and S. Jesse, “ Measuring oxygen reduction/evolution reactions on the nanoscale,” Nat. Chem. 3, 707 (2011).
http://dx.doi.org/10.1038/nchem.1112
19.
19. T. M. Arruda, A. Kumar, S. V. Kalinin, and S. Jesse, “ Mapping irreversible electrochemical processes on the nanoscale: Ionic phenomena in Li ion conductive glass ceramics,” Nano Lett. 11, 4161 (2011).
http://dx.doi.org/10.1021/nl202039v
20.
20. T. M. Arruda, A. Kumar, S. V. Kalinin, and S. Jesse, “ The partially reversible formation of Li-metal particles on a solid Li electrolyte: Applications toward nanobatteries,” Nanotechnology 23, 325402 (2012).
http://dx.doi.org/10.1088/0957-4484/23/32/325402
21.
21. T. M. Arruda, M. Heon, V. Presser, P. C. Hillesheim, S. Dai, Y. Gogotsi, S. V. Kalinin, and N. Balke, “ In situ tracking of the nanoscale expansion of porous carbon electrodes,” Energy Environ. Sci. 6, 225 (2013).
http://dx.doi.org/10.1039/c2ee23707e
22.
22. T. Li and K. Zeng, “ Piezoelectric properties and surface potential of green abalone shell studied by scanning probe microscopy techniques,” Acta Mater. 59, 3667 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.03.001
23.
23. Y. M. Liu, Y. H. Zhang, M. J. Chow, Q. N. Chen, and J. Y. Li, “ Biological ferroelectricity uncovered in aortic walls by piezoresponse force microscopy,” Phys. Rev. Lett. 108, 078103 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.078103
24.
24. Y. M. Liu, Y. Wang, M.-J. Chow, N. Q. Chen, F. Y. Ma, Y. H. Zhang, and J. Y. Li, “ Glucose suppresses biological ferroelectricity in aortic elastin,” Phys. Rev. Lett. 110, 168101 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.168101
25.
25. A. Heredia, V. Meunier, I. K. Bdikin, J. Gracio, N. Balke, S. Jesse, A. Tselev, P. K. Agarwal, B. G. Sumpter, S. V. Kalinin, and A. L. Kholkin, “ Nanoscale ferroelectricity in crystalline γ-glycine,” Adv. Funct. Mater. 22, 2996 (2012).
http://dx.doi.org/10.1002/adfm.201103011
26.
26. I. Bdikin, V. Bystrov, S. Kopyl, R. P. G. Lopes, I. Delgadillo, J. Gracio, E. Mishina, A. Sigov, and A. L. Kholkin, “ Evidence of ferroelectricity and phase transition in pressed diphenylalanine peptide nanotubes,” Appl. Phys. Lett. 100, 043702 (2012).
http://dx.doi.org/10.1063/1.3676417
27.
27. B. J. Rodriguez, S. V. Kalinin, J. Shin, S. Jesse, V. Grichko, T. Thundat, A. P. Baddorf, and A. Gruverman, “ Electromechanical imaging of biomaterials by scanning probe microscopy,” J. Struct. Biol. 153, 151 (2006).
http://dx.doi.org/10.1016/j.jsb.2005.10.008
28.
28. S. V. Kalinin, B. J. Rodriguez, J. Shin, S. Jesse, V. Grichko, T. Thundat, A. P. Baddorf, and A. Gruverman, “ Bioelectromechanical imaging by scanning probe microscopy: Galvani's experiment at the nanoscale,” Ultramicroscopy 106, 334 (2006).
http://dx.doi.org/10.1016/j.ultramic.2005.10.005
29.
29. A. Gruverman, D. Wu, B. J. Rodriguez, S. V. Kalinin, and S. Habelitz, “ High-resolution imaging of proteins in human teeth by scanning probe microscopy,” Biochem. Biophys. Res. Commun. 352, 142 (2007).
http://dx.doi.org/10.1016/j.bbrc.2006.10.182
30.
30. S. Habelitz, B. J. Rodriguez, S. J. Marshall, G. W. Marshall, S. V. Kalinin, and A. Gruverman, “ Peritubular dentin lacks piezoelectricity,” J. Dent. Res. 86, 908 (2007).
http://dx.doi.org/10.1177/154405910708600920
31.
31. S. V. Kalinin, B. J. Rodriguez, S. Jesse, T. Thundat, and A. Gruverman, “ Electromechanical imaging of biological systems with sub-10 nm resolution,” Appl. Phys. Lett. 87, 053901 (2005).
http://dx.doi.org/10.1063/1.2006984
32.
32. H. Lu, C. W. Bark, D. E. de los Ojos, J. Alcala, C. B. Eom, G. Catalan, and A. Gruverman, “ Mechanical writing of ferroelectric polarization,” Science 336, 59 (2012).
http://dx.doi.org/10.1126/science.1218693
33.
33. S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. J. Lei, Z. H. Hu, R. Shao, and J. H. Ferris, “ Ferroelectric lithography of multicomponent nanostructures,” Adv. Mater. 16, 795 (2004).
http://dx.doi.org/10.1002/adma.200305702
34.
34. A. Haussmann, P. Milde, C. Erler, and L. M. Eng, “ Ferroelectric lithography: Bottom-up assembly and electrical performance of a single metallic nanowire,” Nano Lett. 9, 763 (2009).
http://dx.doi.org/10.1021/nl8033784
35.
35. J. Y. Jo, P. Chen, R. J. Sichel, S. H. Baek, R. T. Smith, N. Balke, S. V. Kalinin, M. V. Holt, J. Maser, K. Evans-Lutterodt, C. B. Eom, and P. G. Evans, “ Structural consequences of ferroelectric nanolithography,” Nano Lett. 11, 3080 (2011).
http://dx.doi.org/10.1021/nl2009873
36.
36. S. V. Kalinin and D. A. Bonnell, in Ferroelectric Thin Films VIII, Vol. 596 (Eds: R. W. Schwartz, P. C. McIntyre, Y. Miyasaka, S. R. Summerfelt, and D. Wouters), 2000, 327.
37.
37. S. V. Kalinin and D. A. Bonnell, “ Dynamic behavior of domain-related topography and surface potential on the BaTiO3 (100) surface by variable temperature scanning surface potential microscopy,” Z. Metallkd. 90, 983 (1999).
38.
38. S. V. Kalinin and D. A. Bonnell, “ Effect of phase transition on the surface potential of the BaTiO3 (100) surface by variable temperature scanning surface potential microscopy,” J. Appl. Phys. 87, 3950 (2000).
http://dx.doi.org/10.1063/1.372440
39.
39. S. V. Kalinin and D. A. Bonnell, “ Local potential and polarization screening on ferroelectric surfaces,” Phys. Rev. B 63, 125411 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.125411
40.
40. S. V. Kalinin and D. A. Bonnell, “ Temperature dependence of polarization and charge dynamics on the BaTiO3(100) surface by scanning probe microscopy,” Appl. Phys. Lett. 78, 1116 (2001).
http://dx.doi.org/10.1063/1.1348303
41.
41. M. Kopycinska-Muller, R. H. Geiss, J. Muller, and D. C. Hurley, “ Elastic-property measurements of ultrathin films using atomic force acoustic microscopy,” Nanotechnology 16, 703 (2005).
http://dx.doi.org/10.1088/0957-4484/16/6/013
42.
42. D. C. Hurley, K. Shen, N. M. Jennett, and J. A. Turner, “ Atomic force acoustic microscopy methods to determine thin-film elastic properties,” J. Appl. Phys. 94, 2347 (2003).
http://dx.doi.org/10.1063/1.1592632
43.
43. E. Karapetian, M. Kachanov, and S. V. Kalinin, “ Nanoelectromechanics of piezoelectric indentation and applications to scanning probe microscopies of ferroelectric materials,” Philos. Mag. 85, 1017 (2005).
http://dx.doi.org/10.1080/14786430412331324680
44.
44. J. Shin, B. J. Rodriguez, A. P. Baddorf, T. Thundat, E. Karapetian, M. Kachanov, A. Gruverman, and S. V. Kalinin, “ Simultaneous elastic and electromechanical imaging by scanning probe microscopy: Theory and applications to ferroelectric and biological materials,” J. Vac. Sci. Technol. B 23, 2102 (2005).
http://dx.doi.org/10.1116/1.2052714
45.
45. S. V. Kalinin, E. Karapetian, and M. Kachanov, “ Nanoelectromechanics of piezoresponse force microscopy,” Phys. Rev. B 70, 184101 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.184101
46.
46. S. V. Kalinin, J. Shin, M. Kachanov, E. Karapetian, and A. P. Baddorf, in Ferroelectric Thin Films XII, Vol. 784, edited by S. Hoffmann Eifert, H. Funakubo, V. Joshi, A. I. Kingon, and I. P. Koutsaroff, 2004, p. 43.
47.
47. F. Felten, G. A. Schneider, J. M. Saldana, and S. V. Kalinin, “ Modeling and measurement of surface displacements in BaTiO3 bulk material in piezoresponse force microscopy,” J. Appl. Phys. 96, 563 (2004).
http://dx.doi.org/10.1063/1.1758316
48.
48. G. A. Schneider, F. Felten, and R. M. McMeeking, “ The electrical potential difference across cracks in PZT measured by Kelvin probe microscopy and the implications for fracture,” Acta Mater. 51, 2235 (2003).
http://dx.doi.org/10.1016/S1359-6454(03)00027-2
49.
49. U. Rabe, M. Kopycinska, S. Hirsekorn, J. M. Saldana, G. A. Schneider, and W. Arnold, “ High-resolution characterization of piezoelectric ceramics by ultrasonic scanning force microscopy techniques,” J. Phys. D 35, 2621 (2002).
http://dx.doi.org/10.1088/0022-3727/35/20/323
50.
50. G. B. Stephenson and M. J. Highland, “ Equilibrium and stability of polarization in ultrathin ferroelectric films with ionic surface compensation,” Phys. Rev. B 84, 064107 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.064107
51.
51. M. J. Highland, T. T. Fister, D. D. Fong, P. H. Fuoss, C. Thompson, J. A. Eastman, S. K. Streiffer, and G. B. Stephenson, “ Equilibrium polarization of ultrathin PbTiO3 with surface compensation controlled by oxygen partial pressure,” Phys. Rev. Lett. 107, 187602 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.187602
52.
52. M. J. Highland, T. T. Fister, M. I. Richard, D. D. Fong, P. H. Fuoss, C. Thompson, J. A. Eastman, S. K. Streiffer, and G. B. Stephenson, “ Polarization switching without domain formation at the intrinsic coercive field in ultrathin ferroelectric PbTiO3,” Phys. Rev. Lett. 105, 167601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.167601
53.
53. R. V. Wang, D. D. Fong, F. Jiang, M. J. Highland, P. H. Fuoss, C. Thompson, A. M. Kolpak, J. A. Eastman, S. K. Streiffer, A. M. Rappe, and G. B. Stephenson, “ Reversible chemical switching of a ferroelectric film,” Phys. Rev. Lett. 102, 047601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.047601
54.
54. Q. N. Chen, F. Y. Ma, S. H. Xie, Y. M. Liu, R. Proksch, and J. Y. Li, “ High sensitivity piezomagnetic force microscopy for quantitative probing of magnetic materials at the nanoscale,” Nanoscale (submitted).
55.
55. S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, and Y. Tokura, “ Above-room-temperature ferroelectricity in a single-component molecular crystal,” Nature 463, 789 (2010).
http://dx.doi.org/10.1038/nature08731
56.
56. D. W. Fu, H. L. Cai, Y. M. Liu, Q. Ye, W. Zhang, Y. Zhang, X. Y. Chen, G. Giovannetti, M. Capone, J. Y. Li, and R. G. Xiong, “ Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal,” Science 339, 425 (2013).
http://dx.doi.org/10.1126/science.1229675
57.
57. S. Horiuchi, F. Kagawa, K. Hatahara, K. Kobayashi, R. Kumai, Y. Murakami, and Y. Tokura, “ Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles,” Nature Commun. 3, 1308 (2012).
http://dx.doi.org/10.1038/ncomms2322
58.
58. E. Karapetian and S. V. Kalinin, J. Appl. Phys. 113, 187201 (2013).
http://dx.doi.org/10.1063/1.4802097
59.
59. T. Li and K. Zeng, J. Appl. Phys. 113, 187202 (2013).
http://dx.doi.org/10.1063/1.4801982
60.
60. A. N. Morozovska, E. A. Eliseev, G. S. Svechnikov, and S. V. Kalinin, J. Appl. Phys. 113, 187203 (2013).
http://dx.doi.org/10.1063/1.4801959
61.
61. T. Xu, Y. Kan, Y. Jin, H. Sun, Y. Du, X. Wu, H. Bo, W. Cai, F. Huang, X. Lu, and J. Zhu, J. Appl. Phys. 113, 187204 (2013).
http://dx.doi.org/10.1063/1.4801978
62.
62. Y. M. Liu, K. H. Lam, K. K. Shung, J. Y. Li, and Q. F. Zhou, J. Appl. Phys. 113, 187205 (2013).
http://dx.doi.org/10.1063/1.4801975
63.
63. E. B. Araújo, E. C. Lima, I. K. Bdikin, and A. L. Kholkin, J. Appl. Phys. 113, 187206 (2013).
http://dx.doi.org/10.1063/1.4801961
64.
64. N. Deepak, P. F. Zhang, L. Keeney, M. E. Pemble, and R. W. Whatmore, J. Appl. Phys. 113, 187207 (2013).
http://dx.doi.org/10.1063/1.4801985
65.
65. V. V. Shvartsman, A. L. Kholkin, I. P. Raevski, S. I. Raevskaya, F. I. Savenko, and A. S. Emelyanov, J. Appl. Phys. 113, 187208 (2013).
http://dx.doi.org/10.1063/1.4801964
66.
66. I. Jankowska-Sumara, K. Szot, A. Majchrowski, and K. Roleder, J. Appl. Phys. 113, 187209 (2013).
http://dx.doi.org/10.1063/1.4801980
67.
67. D. Guo, X. Chen, X. Chu, F. Zeng, Y. Bai, J. Cao, and B. Dkhil, J. Appl. Phys. 113, 187210 (2013).
http://dx.doi.org/10.1063/1.4801971
68.
68. V. Ya. Shur, E. A. Mingaliev, V. A. Lebedev, D. K. Kuznetsov, and D. V. Fursov, J. Appl. Phys. 113, 187211 (2013).
http://dx.doi.org/10.1063/1.4801969
69.
69. N. C. Carville, M. Manzo, D. Denning, K. Gallo, and B. J. Rodriguez, J. Appl. Phys. 113, 187212 (2013).
http://dx.doi.org/10.1063/1.4801963
70.
70. J. J. Segura, N. Domingo, J. Fraxedas, and A. Verdaguer, J. Appl. Phys. 113, 187213 (2013).
http://dx.doi.org/10.1063/1.4801983
71.
71. X. L. Zhou, F. X. Li, and H. R. Zeng, J. Appl. Phys. 113, 187214 (2013).
http://dx.doi.org/10.1063/1.4801976
72.
72. F. Rubio-Marcos, A. Del Campo, and J. F. Fernández, J. Appl. Phys. 113, 187215 (2013).
http://dx.doi.org/10.1063/1.4802096
73.
73. F. Borodavka, I. Gregora, A. Bartasyte, S. Margueron, V. Plausinaitiene, A. Abrutis, and J. Hlinka, J. Appl. Phys. 113, 187216 (2013).
http://dx.doi.org/10.1063/1.4801966
74.
74. N. Barrett, J. E. Rault, J. L. Wang, C. Mathieu, A. Locatelli, T. O. Mentes, M. A. Niño, S. Fusil, M. Bibes, A. Barthél Émy, D. Sando, W. Ren, S. Prosandeev, L. Bellaiche, B. Vilquin, A. Petraru, I. P. Krug, and C. M. Schneider, J. Appl. Phys. 113, 187217 (2013).
http://dx.doi.org/10.1063/1.4801968
75.
75. D. V. Karpinsky, I. O. Troyanchuk, V. Sikolenko, V. Efimov, and A. L. Kholkin, J. Appl. Phys. 113, 187218 (2013).
http://dx.doi.org/10.1063/1.4801960
76.
76. E. Venkata Ramana, S. M. Yang, Ranju Jung, M. H. Jung, B. W. Lee, and C. U. Jung, J. Appl. Phys. 113, 187219 (2013).
http://dx.doi.org/10.1063/1.4801965
77.
77. N. Domingo, J. Narvaez, M. Alexe, and G. Catalan, J. Appl. Phys. 113, 187220 (2013).
http://dx.doi.org/10.1063/1.4801974
78.
78. Ž. Lazarević, Č. Jovalekić, A. Milutinović, D. Sekulić, V. N. Ivanovski, A. Rečnik, B. Cekić, and N. Ž. Romčević, J. Appl. Phys. 113, 187221 (2013).
http://dx.doi.org/10.1063/1.4801962
79.
79. A. N. Morozovska, E. A. Eliseev, O. V. Varenyk, and S. V. Kalinin, J. Appl. Phys. 113, 187222 (2013).
http://dx.doi.org/10.1063/1.4801988
80.
80. K. Pan, Y. M. Liu, Y. Y. Liu, and J. Y. Li, J. Appl. Phys. 113, 187223 (2013).
http://dx.doi.org/10.1063/1.4801970
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/18/10.1063/1.4802189
Loading
/content/aip/journal/jap/113/18/10.1063/1.4802189
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/18/10.1063/1.4802189
2013-05-08
2014-10-24

Abstract

There is no abstract available for this article.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/18/1.4802189.html;jsessionid=9d26jpkn411p.x-aip-live-02?itemId=/content/aip/journal/jap/113/18/10.1063/1.4802189&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Preface to Special Topic: Selected Papers from the Piezoresponse Force Microscopy Workshop Series: Part of the Joint ISAF-ECAPD-PFM 2012 Conference
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/18/10.1063/1.4802189
10.1063/1.4802189
SEARCH_EXPAND_ITEM