Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Franke, J. Besold, W. Haessler, and C. Seegebarth, “ Modification and detection of domains on ferroelectric PZT films by scanning force microscopy,” Surf. Sci. 302, L283 (1994).
2. K. Franke and M. Weihnacht, “ Evaluation of electrically polar substances by electric scanning force microscopy. Part I: Measurement signals due to Maxwell stress,” Ferroelectr., Lett. Sect. 19, 25 (1995).
3. K. Takata, K. Kushida, and K. Torii, “ Strain-imaging observation of PB(ZR,TI)O-3 thin-films,” Jpn. J. Appl. Phys., Part 1 34, 2890 (1995).
4. A. Gruverman, O. Auciello, R. Ramesh, and H. Tokumoto, “ Scanning force microscopy of domain structure in ferroelectric thin films: Imaging and control,” Nanotechnology 8, A38 (1997).
5. A. L. Gruverman, J. Hatano, and H. Tokumoto, “ Scanning force microscopy studies of domain structure in BaTiO3 single crystals,” Jpn. J. Appl. Phys., Part 1 36, 2207 (1997).
6. A. Gruverman and A. Kholkin, “ Nanoscale ferroelectrics: Processing, characterization and future trends,” Rep. Prog. Phys. 69, 2443 (2006).
7. L. M. Eng, S. Grafstrom, C. Loppacher, F. Schlaphof, S. Trogisch, A. Roelofs, and R. Waser, in Advances in Solid State Physics, edited by B. Kramer (Springer-Verlag, Berlin, 2001), Vol. 41, p. 287.
8. A. Roelofs, U. Bottger, R. Waser, F. Schlaphof, S. Trogisch, and L. M. Eng, “ Differentiating 180 degrees and 90 degrees switching of ferroelectric domains with three-dimensional piezoresponse force microscopy,” Appl. Phys. Lett. 77, 3444 (2000).
9. F. Zavaliche, P. Shafer, R. Ramesh, M. P. Cruz, R. R. Das, D. M. Kim, and C. B. Eom, “ Polarization switching in epitaxial BiFeO(3) films,” Appl. Phys. Lett. 87, 252902 (2005).
10. S. V. Kalinin, N. Setter, and A. L. Kholkin, “ Preface to special topic: Invited papers from the international symposium on piezoresponse force microscopy and nanoscale phenomena in polar materials, Aveiro, Portugal, 2009,” J. Appl. Phys. 108, 041901 (2010).
11. S. V. Kalinin, S. Jesse, B. J. Rodriguez, Y. H. Chu, R. Ramesh, E. A. Eliseev, and A. N. Morozovska, “ Probing the role of single defects on the thermodynamics of electric-field induced phase transitions,” Phys. Rev. Lett. 100, 155703 (2008).
12. R. Proksch, N. Balke, S. Jesse, and S. Kalinin, “ Electrochemical strain microscopy of Li-ion conductive materials for energy generation and storage,” Asylum Research Application Note,
13. S. Kalinin, N. Balke, S. Jesse, A. Tselev, A. Kumar, T. M. Arruda, S. L. Guo, and R. Proksch, “ Li-ion dynamics and reactivity on the nanoscale,” Mater. Today 14, 548 (2011).
14. N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I. N. Ivanov, N. J. Dudney, and S. V. Kalinin, “ Real space mapping of Li-Ion transport in amorphous Si anodes with nanometer resolution,” Nano Lett. 10, 3420 (2010).
15. N. Balke, S. Jesse, Y. Kim, L. Adamczyk, I. N. Ivanov, N. J. Dudney, and S. V. Kalinin, “ Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale,” ACS Nano 4, 7349 (2010).
16. N. Balke, S. Jesse, A. N. Morozovska, E. Eliseev, D. W. Chung, Y. Kim, L. Adamczyk, R. E. Garcia, N. Dudney, and S. V. Kalinin, “ Nanoscale mapping of ion diffusion in a lithium-ion battery cathode,” Nat. Nanotechnol. 5, 749 (2010).
17. Q. N. Chen, Y. Y. Liu, Y. M. Liu, S. H. Xie, G. Z. Cao, and J. Y. Li, “ Delineating local electromigration for nanoscale probing of lithium ion intercalation and extraction by electrochemical strain microscopy,” Appl. Phys. Lett. 101, 063901 (2012).
18. A. Kumar, F. Ciucci, A. N. Morozovska, S. V. Kalinin, and S. Jesse, “ Measuring oxygen reduction/evolution reactions on the nanoscale,” Nat. Chem. 3, 707 (2011).
19. T. M. Arruda, A. Kumar, S. V. Kalinin, and S. Jesse, “ Mapping irreversible electrochemical processes on the nanoscale: Ionic phenomena in Li ion conductive glass ceramics,” Nano Lett. 11, 4161 (2011).
20. T. M. Arruda, A. Kumar, S. V. Kalinin, and S. Jesse, “ The partially reversible formation of Li-metal particles on a solid Li electrolyte: Applications toward nanobatteries,” Nanotechnology 23, 325402 (2012).
21. T. M. Arruda, M. Heon, V. Presser, P. C. Hillesheim, S. Dai, Y. Gogotsi, S. V. Kalinin, and N. Balke, “ In situ tracking of the nanoscale expansion of porous carbon electrodes,” Energy Environ. Sci. 6, 225 (2013).
22. T. Li and K. Zeng, “ Piezoelectric properties and surface potential of green abalone shell studied by scanning probe microscopy techniques,” Acta Mater. 59, 3667 (2011).
23. Y. M. Liu, Y. H. Zhang, M. J. Chow, Q. N. Chen, and J. Y. Li, “ Biological ferroelectricity uncovered in aortic walls by piezoresponse force microscopy,” Phys. Rev. Lett. 108, 078103 (2012).
24. Y. M. Liu, Y. Wang, M.-J. Chow, N. Q. Chen, F. Y. Ma, Y. H. Zhang, and J. Y. Li, “ Glucose suppresses biological ferroelectricity in aortic elastin,” Phys. Rev. Lett. 110, 168101 (2013).
25. A. Heredia, V. Meunier, I. K. Bdikin, J. Gracio, N. Balke, S. Jesse, A. Tselev, P. K. Agarwal, B. G. Sumpter, S. V. Kalinin, and A. L. Kholkin, “ Nanoscale ferroelectricity in crystalline γ-glycine,” Adv. Funct. Mater. 22, 2996 (2012).
26. I. Bdikin, V. Bystrov, S. Kopyl, R. P. G. Lopes, I. Delgadillo, J. Gracio, E. Mishina, A. Sigov, and A. L. Kholkin, “ Evidence of ferroelectricity and phase transition in pressed diphenylalanine peptide nanotubes,” Appl. Phys. Lett. 100, 043702 (2012).
27. B. J. Rodriguez, S. V. Kalinin, J. Shin, S. Jesse, V. Grichko, T. Thundat, A. P. Baddorf, and A. Gruverman, “ Electromechanical imaging of biomaterials by scanning probe microscopy,” J. Struct. Biol. 153, 151 (2006).
28. S. V. Kalinin, B. J. Rodriguez, J. Shin, S. Jesse, V. Grichko, T. Thundat, A. P. Baddorf, and A. Gruverman, “ Bioelectromechanical imaging by scanning probe microscopy: Galvani's experiment at the nanoscale,” Ultramicroscopy 106, 334 (2006).
29. A. Gruverman, D. Wu, B. J. Rodriguez, S. V. Kalinin, and S. Habelitz, “ High-resolution imaging of proteins in human teeth by scanning probe microscopy,” Biochem. Biophys. Res. Commun. 352, 142 (2007).
30. S. Habelitz, B. J. Rodriguez, S. J. Marshall, G. W. Marshall, S. V. Kalinin, and A. Gruverman, “ Peritubular dentin lacks piezoelectricity,” J. Dent. Res. 86, 908 (2007).
31. S. V. Kalinin, B. J. Rodriguez, S. Jesse, T. Thundat, and A. Gruverman, “ Electromechanical imaging of biological systems with sub-10 nm resolution,” Appl. Phys. Lett. 87, 053901 (2005).
32. H. Lu, C. W. Bark, D. E. de los Ojos, J. Alcala, C. B. Eom, G. Catalan, and A. Gruverman, “ Mechanical writing of ferroelectric polarization,” Science 336, 59 (2012).
33. S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. J. Lei, Z. H. Hu, R. Shao, and J. H. Ferris, “ Ferroelectric lithography of multicomponent nanostructures,” Adv. Mater. 16, 795 (2004).
34. A. Haussmann, P. Milde, C. Erler, and L. M. Eng, “ Ferroelectric lithography: Bottom-up assembly and electrical performance of a single metallic nanowire,” Nano Lett. 9, 763 (2009).
35. J. Y. Jo, P. Chen, R. J. Sichel, S. H. Baek, R. T. Smith, N. Balke, S. V. Kalinin, M. V. Holt, J. Maser, K. Evans-Lutterodt, C. B. Eom, and P. G. Evans, “ Structural consequences of ferroelectric nanolithography,” Nano Lett. 11, 3080 (2011).
36. S. V. Kalinin and D. A. Bonnell, in Ferroelectric Thin Films VIII, Vol. 596 (Eds: R. W. Schwartz, P. C. McIntyre, Y. Miyasaka, S. R. Summerfelt, and D. Wouters), 2000, 327.
37. S. V. Kalinin and D. A. Bonnell, “ Dynamic behavior of domain-related topography and surface potential on the BaTiO3 (100) surface by variable temperature scanning surface potential microscopy,” Z. Metallkd. 90, 983 (1999).
38. S. V. Kalinin and D. A. Bonnell, “ Effect of phase transition on the surface potential of the BaTiO3 (100) surface by variable temperature scanning surface potential microscopy,” J. Appl. Phys. 87, 3950 (2000).
39. S. V. Kalinin and D. A. Bonnell, “ Local potential and polarization screening on ferroelectric surfaces,” Phys. Rev. B 63, 125411 (2001).
40. S. V. Kalinin and D. A. Bonnell, “ Temperature dependence of polarization and charge dynamics on the BaTiO3(100) surface by scanning probe microscopy,” Appl. Phys. Lett. 78, 1116 (2001).
41. M. Kopycinska-Muller, R. H. Geiss, J. Muller, and D. C. Hurley, “ Elastic-property measurements of ultrathin films using atomic force acoustic microscopy,” Nanotechnology 16, 703 (2005).
42. D. C. Hurley, K. Shen, N. M. Jennett, and J. A. Turner, “ Atomic force acoustic microscopy methods to determine thin-film elastic properties,” J. Appl. Phys. 94, 2347 (2003).
43. E. Karapetian, M. Kachanov, and S. V. Kalinin, “ Nanoelectromechanics of piezoelectric indentation and applications to scanning probe microscopies of ferroelectric materials,” Philos. Mag. 85, 1017 (2005).
44. J. Shin, B. J. Rodriguez, A. P. Baddorf, T. Thundat, E. Karapetian, M. Kachanov, A. Gruverman, and S. V. Kalinin, “ Simultaneous elastic and electromechanical imaging by scanning probe microscopy: Theory and applications to ferroelectric and biological materials,” J. Vac. Sci. Technol. B 23, 2102 (2005).
45. S. V. Kalinin, E. Karapetian, and M. Kachanov, “ Nanoelectromechanics of piezoresponse force microscopy,” Phys. Rev. B 70, 184101 (2004).
46. S. V. Kalinin, J. Shin, M. Kachanov, E. Karapetian, and A. P. Baddorf, in Ferroelectric Thin Films XII, Vol. 784, edited by S. Hoffmann Eifert, H. Funakubo, V. Joshi, A. I. Kingon, and I. P. Koutsaroff, 2004, p. 43.
47. F. Felten, G. A. Schneider, J. M. Saldana, and S. V. Kalinin, “ Modeling and measurement of surface displacements in BaTiO3 bulk material in piezoresponse force microscopy,” J. Appl. Phys. 96, 563 (2004).
48. G. A. Schneider, F. Felten, and R. M. McMeeking, “ The electrical potential difference across cracks in PZT measured by Kelvin probe microscopy and the implications for fracture,” Acta Mater. 51, 2235 (2003).
49. U. Rabe, M. Kopycinska, S. Hirsekorn, J. M. Saldana, G. A. Schneider, and W. Arnold, “ High-resolution characterization of piezoelectric ceramics by ultrasonic scanning force microscopy techniques,” J. Phys. D 35, 2621 (2002).
50. G. B. Stephenson and M. J. Highland, “ Equilibrium and stability of polarization in ultrathin ferroelectric films with ionic surface compensation,” Phys. Rev. B 84, 064107 (2011).
51. M. J. Highland, T. T. Fister, D. D. Fong, P. H. Fuoss, C. Thompson, J. A. Eastman, S. K. Streiffer, and G. B. Stephenson, “ Equilibrium polarization of ultrathin PbTiO3 with surface compensation controlled by oxygen partial pressure,” Phys. Rev. Lett. 107, 187602 (2011).
52. M. J. Highland, T. T. Fister, M. I. Richard, D. D. Fong, P. H. Fuoss, C. Thompson, J. A. Eastman, S. K. Streiffer, and G. B. Stephenson, “ Polarization switching without domain formation at the intrinsic coercive field in ultrathin ferroelectric PbTiO3,” Phys. Rev. Lett. 105, 167601 (2010).
53. R. V. Wang, D. D. Fong, F. Jiang, M. J. Highland, P. H. Fuoss, C. Thompson, A. M. Kolpak, J. A. Eastman, S. K. Streiffer, A. M. Rappe, and G. B. Stephenson, “ Reversible chemical switching of a ferroelectric film,” Phys. Rev. Lett. 102, 047601 (2009).
54. Q. N. Chen, F. Y. Ma, S. H. Xie, Y. M. Liu, R. Proksch, and J. Y. Li, “ High sensitivity piezomagnetic force microscopy for quantitative probing of magnetic materials at the nanoscale,” Nanoscale (submitted).
55. S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, and Y. Tokura, “ Above-room-temperature ferroelectricity in a single-component molecular crystal,” Nature 463, 789 (2010).
56. D. W. Fu, H. L. Cai, Y. M. Liu, Q. Ye, W. Zhang, Y. Zhang, X. Y. Chen, G. Giovannetti, M. Capone, J. Y. Li, and R. G. Xiong, “ Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal,” Science 339, 425 (2013).
57. S. Horiuchi, F. Kagawa, K. Hatahara, K. Kobayashi, R. Kumai, Y. Murakami, and Y. Tokura, “ Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles,” Nature Commun. 3, 1308 (2012).
58. E. Karapetian and S. V. Kalinin, J. Appl. Phys. 113, 187201 (2013).
59. T. Li and K. Zeng, J. Appl. Phys. 113, 187202 (2013).
60. A. N. Morozovska, E. A. Eliseev, G. S. Svechnikov, and S. V. Kalinin, J. Appl. Phys. 113, 187203 (2013).
61. T. Xu, Y. Kan, Y. Jin, H. Sun, Y. Du, X. Wu, H. Bo, W. Cai, F. Huang, X. Lu, and J. Zhu, J. Appl. Phys. 113, 187204 (2013).
62. Y. M. Liu, K. H. Lam, K. K. Shung, J. Y. Li, and Q. F. Zhou, J. Appl. Phys. 113, 187205 (2013).
63. E. B. Araújo, E. C. Lima, I. K. Bdikin, and A. L. Kholkin, J. Appl. Phys. 113, 187206 (2013).
64. N. Deepak, P. F. Zhang, L. Keeney, M. E. Pemble, and R. W. Whatmore, J. Appl. Phys. 113, 187207 (2013).
65. V. V. Shvartsman, A. L. Kholkin, I. P. Raevski, S. I. Raevskaya, F. I. Savenko, and A. S. Emelyanov, J. Appl. Phys. 113, 187208 (2013).
66. I. Jankowska-Sumara, K. Szot, A. Majchrowski, and K. Roleder, J. Appl. Phys. 113, 187209 (2013).
67. D. Guo, X. Chen, X. Chu, F. Zeng, Y. Bai, J. Cao, and B. Dkhil, J. Appl. Phys. 113, 187210 (2013).
68. V. Ya. Shur, E. A. Mingaliev, V. A. Lebedev, D. K. Kuznetsov, and D. V. Fursov, J. Appl. Phys. 113, 187211 (2013).
69. N. C. Carville, M. Manzo, D. Denning, K. Gallo, and B. J. Rodriguez, J. Appl. Phys. 113, 187212 (2013).
70. J. J. Segura, N. Domingo, J. Fraxedas, and A. Verdaguer, J. Appl. Phys. 113, 187213 (2013).
71. X. L. Zhou, F. X. Li, and H. R. Zeng, J. Appl. Phys. 113, 187214 (2013).
72. F. Rubio-Marcos, A. Del Campo, and J. F. Fernández, J. Appl. Phys. 113, 187215 (2013).
73. F. Borodavka, I. Gregora, A. Bartasyte, S. Margueron, V. Plausinaitiene, A. Abrutis, and J. Hlinka, J. Appl. Phys. 113, 187216 (2013).
74. N. Barrett, J. E. Rault, J. L. Wang, C. Mathieu, A. Locatelli, T. O. Mentes, M. A. Niño, S. Fusil, M. Bibes, A. Barthél Émy, D. Sando, W. Ren, S. Prosandeev, L. Bellaiche, B. Vilquin, A. Petraru, I. P. Krug, and C. M. Schneider, J. Appl. Phys. 113, 187217 (2013).
75. D. V. Karpinsky, I. O. Troyanchuk, V. Sikolenko, V. Efimov, and A. L. Kholkin, J. Appl. Phys. 113, 187218 (2013).
76. E. Venkata Ramana, S. M. Yang, Ranju Jung, M. H. Jung, B. W. Lee, and C. U. Jung, J. Appl. Phys. 113, 187219 (2013).
77. N. Domingo, J. Narvaez, M. Alexe, and G. Catalan, J. Appl. Phys. 113, 187220 (2013).
78. Ž. Lazarević, Č. Jovalekić, A. Milutinović, D. Sekulić, V. N. Ivanovski, A. Rečnik, B. Cekić, and N. Ž. Romčević, J. Appl. Phys. 113, 187221 (2013).
79. A. N. Morozovska, E. A. Eliseev, O. V. Varenyk, and S. V. Kalinin, J. Appl. Phys. 113, 187222 (2013).
80. K. Pan, Y. M. Liu, Y. Y. Liu, and J. Y. Li, J. Appl. Phys. 113, 187223 (2013).

Data & Media loading...


Article metrics loading...



There is no abstract available for this article.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd