1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Formation mechanism of femtosecond laser-induced high spatial frequency ripples on semiconductors at low fluence and high repetition rate
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/18/10.1063/1.4803895
1.
1. M. Birnbaum, J. Appl. Phys. 36, 3688 (1965).
http://dx.doi.org/10.1063/1.1703071
2.
2. M. Fauchet and A. E. Siegman, Appl. Phys. Lett. 40, 824 (1982).
http://dx.doi.org/10.1063/1.93274
3.
3. A. Borowiec and H. K. Haugen, Appl. Phys. Lett. 82, 4462 (2003).
http://dx.doi.org/10.1063/1.1586457
4.
4. M. Couillard, A. Borowiec, H. K. Haugen, J. S. Preston, E. M. Griswold, and G. A. Botton, J. Appl. Phys. 101, 033519 (2007).
http://dx.doi.org/10.1063/1.2423136
5.
5. U. Chakravarty, R. A. Ganeev, P. A. Naik, J. A. Chakera, M. Babu, and P. D. Gupta, J. Appl. Phys. 109, 084347 (2011).
http://dx.doi.org/10.1063/1.3580329
6.
6. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, J. Laser Appl. 24, 042006 (2012).
http://dx.doi.org/10.2351/1.4712658
7.
7. M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, J. Appl. Phys. 111, 124315 (2012).
http://dx.doi.org/10.1063/1.4730381
8.
8. G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, Opt. Express 20, 14848 (2012).
http://dx.doi.org/10.1364/OE.20.014848
9.
9. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, J. Appl. Phys. 105, 034908 (2009).
http://dx.doi.org/10.1063/1.3074106
10.
10. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, Phys. Rev. B 72, 125429 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125429
11.
11. C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, Nanotechnology 21, 075304 (2010).
http://dx.doi.org/10.1088/0957-4484/21/7/075304
12.
12. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, T. Velten, and K. König, Opt. Express 13, 6651 (2005).
http://dx.doi.org/10.1364/OPEX.13.006651
13.
13. T. H. R. Crawford and H. K. Haugen, Appl. Surf. Sci. 253, 4970 (2007).
http://dx.doi.org/10.1016/j.apsusc.2006.11.004
14.
14. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, Phys. Rev. B 27, 1141 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.1141
15.
15. E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, Appl. Phys. Lett. 92, 221112 (2008).
http://dx.doi.org/10.1063/1.2936865
16.
16. J. Bonse, M. Munz, and H. Sturm, J. Appl. Phys. 97, 013538 (2005).
http://dx.doi.org/10.1063/1.1827919
17.
17. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, Opt. Lett. 36, 229 (2011).
http://dx.doi.org/10.1364/OL.36.000229
18.
18. F. Costache, M. Henyk, and J. Reif, Appl. Surf. Sci. 208/209, 486 (2003).
http://dx.doi.org/10.1016/S0169-4332(02)01443-5
19.
19. R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, Appl. Phys. Lett. 98, 211905 (2011).
http://dx.doi.org/10.1063/1.3593493
20.
20. G. Miyaji and K. Miyazaki, Opt. Express 16, 16265 (2008).
http://dx.doi.org/10.1364/OE.16.016265
21.
21. Y. Dong and P. Molian, Appl. Phys. Lett. 84, 10 (2004).
http://dx.doi.org/10.1063/1.1637948
22.
22. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, Phys. Procedia 12, 29 (2011).
http://dx.doi.org/10.1016/j.phpro.2011.03.102
23.
23. K. Sokolowski-Tinten, J. Bialkowski, and D. Von der Linde, Phs. Rev. B 51, 14186 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.14186
24.
24. A. Borowiec, M. Mackenzie, G. C. Weatherly, H. K. Haugen, Appl. Phys. A: Mater. Sci. Process. 76, 201 (2003).
http://dx.doi.org/10.1007/s003390201409
25.
25. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A: Mater. Sci. Process. 74, 19 (2002).
http://dx.doi.org/10.1007/s003390100893
26.
26. A. Cavalleri, C. W. Siders, C. Rose-Petruck, R. Jimenez, Cs. Tóth, J. A. Squier, C. P. J. Barty, K. R. Wilson, K. Sokolowski-Tinten, M. Horn von Hoegen, and D. von der Linde, Phys. Rev. B 63, 193306 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.193306
27.
27. J. Bonse, G. Bachelier, J. Siegel, and J. Solis, Phys. Rev. B 74, 134106 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.134106
28.
28. M. I. Park, C. O. Park, C. S. Kim, and S. C. Jeoung, J. Korean Phys. Soc. 46, 531 (2005).
29.
29. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, J. Appl. Phys. 85, 3301 (1999).
http://dx.doi.org/10.1063/1.369675
30.
30. K. Sokolowski-Tinten, H. Schulz, J. Bialkowski, and D. von der Linde, Appl. Phys. A: Solids Surf. 53, 227 (1991).
http://dx.doi.org/10.1007/BF00324257
31.
31. D. Bäuerle, Laser Processing and Chemistry, 2nd ed. (Springer-Verlag, Berlin, 1996), Chap. 7.
32.
32. A. Kiani, K. Venkatakrishnan, and B. Tan, Opt. Express 18, 1872 (2010).
http://dx.doi.org/10.1364/OE.18.001872
33.
33. A. Y. Vorobyev and C. L. Guo, Appl. Phys. Lett. 86, 011916 (2005).
http://dx.doi.org/10.1063/1.1844598
34.
34. Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, Orlando, 1985).
35.
35. S. M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, Inc., New York, 1981).
36.
36. Y. Jee, M. F. Becker, and R. M. Walser, J. Opt. Soc. Am. B 5, 648 (1988).
http://dx.doi.org/10.1364/JOSAB.5.000648
37.
37. A. Borowiec, M. Couillard, G. A. Botton, and H. K. Haugen, Appl. Phys. A 79(8), 1887 (2004).
http://dx.doi.org/10.1007/s00339-004-2962-x
38.
38. M. Zhou, D. Q. Yuan, W. Zhang, J. Shen, B. J. Li, J. Song, and L. Cai, Chin. Phys. Lett. 26, 037901 (2009).
http://dx.doi.org/10.1088/0256-307X/26/3/037901
39.
39. K. Sokolowski-Tinten and D. Von der Linde, Phys. Rev. B 61, 2643 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.2643
40.
40. B.-G. Park, S. W. Hwang, and Y. J. Park, Nanoelectronic Devices, 1st ed. (Pan Stanford Publishing, 2012), p. 394.
41.
41. A. J. Sabbah and D. M. Riffe, Phys. Rev. B 66, 165217 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165217
42.
42. H. Garcia and K. N. Avanaki, Appl. Phys. Lett. 100, 131105 (2012).
http://dx.doi.org/10.1063/1.3693389
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/18/10.1063/1.4803895
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SEM images of a (500 m) square area filled with HSFL generated in Si at 800 nm, at a fluence of 0.2 J/cm and an effective number of pulses per spot diameter N = 1.6 × 10. (a) gives a global view of the nanostructured square area, (b) shows details of the HSFL.

Image of FIG. 2.

Click to view

FIG. 2.

Evolution of the temperature after multi-pulses ( ) irradiation as a function of the pulse rate up to the melting temperature of Si (solid line) and Ge (dashed line).

Image of FIG. 3.

Click to view

FIG. 3.

SEM images of HSFL generated in Si at 750 nm (a) and at 950 nm (b) (F = 0.2 J/cm, N = 1.6 × 10).

Image of FIG. 4.

Click to view

FIG. 4.

SEM images of HSFL generated in Ge at 750 nm (a) and at 950 nm (b) (F = 0.05 J/cm, N = 1.6 × 10).

Image of FIG. 5.

Click to view

FIG. 5.

Comparison of experimental data and the λ/2n-model of HSFL spacing as a function of the wavelength for Si and Ge. The experimental data follow the λ/2n-model with a nonnegligible offset.

Image of FIG. 6.

Click to view

FIG. 6.

Comparison of experimental data and the refined model of the SHG ripples spacing theory , where is the modified femtosecond laser excited refractive index as a function of the wavelength for Si and Ge.

Tables

Generic image for table

Click to view

Table I.

Summary of optical and physical data for Si and Ge as a function of the wavelength. is the electron charge, is the free electron mass, is the vacuum dielectric permittivity constant, is the speed of light, is the Planck constant, is the Drude damping time, and are the effective masses of the carriers, is the effective pulse duration at the sample behind the objective, and are the classical nonexcited refractive indexes, and are the linear absorption coefficients, and are the surface reflectivities, and are the carrier densities under femtosecond irradiation, and are the modified refractive indexes.

Loading

Article metrics loading...

/content/aip/journal/jap/113/18/10.1063/1.4803895
2013-05-08
2014-04-20

Abstract

Periodic high spatial frequency ripples structures (HSFL) have been generated in silicon (Si) and in germanium (Ge) at very low fluence below or close to the melting fluence threshold, at different wavelengths and at high repetition rate femtosecond laser pulses (80 MHz, 700–950 nm, 170 fs). HSFL initiation, formation, and arrangement combine structural modification of the surface initiated by heat accumulation of successive pulses with second harmonic generation. HSFL are wavelength dependent and the refractive index plays a central role on their periodicities. HSFL spacing follows quite well a law of , where is the modified femtosecond laser excited refractive index as a function of the wavelength for Si and Ge.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/18/1.4803895.html;jsessionid=2mvsjwl90dsy6.x-aip-live-03?itemId=/content/aip/journal/jap/113/18/10.1063/1.4803895&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Formation mechanism of femtosecond laser-induced high spatial frequency ripples on semiconductors at low fluence and high repetition rate
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/18/10.1063/1.4803895
10.1063/1.4803895
SEARCH_EXPAND_ITEM