1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Formation mechanism of femtosecond laser-induced high spatial frequency ripples on semiconductors at low fluence and high repetition rate
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/18/10.1063/1.4803895
1.
1. M. Birnbaum, J. Appl. Phys. 36, 3688 (1965).
http://dx.doi.org/10.1063/1.1703071
2.
2. M. Fauchet and A. E. Siegman, Appl. Phys. Lett. 40, 824 (1982).
http://dx.doi.org/10.1063/1.93274
3.
3. A. Borowiec and H. K. Haugen, Appl. Phys. Lett. 82, 4462 (2003).
http://dx.doi.org/10.1063/1.1586457
4.
4. M. Couillard, A. Borowiec, H. K. Haugen, J. S. Preston, E. M. Griswold, and G. A. Botton, J. Appl. Phys. 101, 033519 (2007).
http://dx.doi.org/10.1063/1.2423136
5.
5. U. Chakravarty, R. A. Ganeev, P. A. Naik, J. A. Chakera, M. Babu, and P. D. Gupta, J. Appl. Phys. 109, 084347 (2011).
http://dx.doi.org/10.1063/1.3580329
6.
6. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, J. Laser Appl. 24, 042006 (2012).
http://dx.doi.org/10.2351/1.4712658
7.
7. M. Straub, M. Afshar, D. Feili, H. Seidel, and K. König, J. Appl. Phys. 111, 124315 (2012).
http://dx.doi.org/10.1063/1.4730381
8.
8. G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji, and J. Fujita, Opt. Express 20, 14848 (2012).
http://dx.doi.org/10.1364/OE.20.014848
9.
9. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, J. Appl. Phys. 105, 034908 (2009).
http://dx.doi.org/10.1063/1.3074106
10.
10. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, Phys. Rev. B 72, 125429 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125429
11.
11. C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, Nanotechnology 21, 075304 (2010).
http://dx.doi.org/10.1088/0957-4484/21/7/075304
12.
12. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, T. Velten, and K. König, Opt. Express 13, 6651 (2005).
http://dx.doi.org/10.1364/OPEX.13.006651
13.
13. T. H. R. Crawford and H. K. Haugen, Appl. Surf. Sci. 253, 4970 (2007).
http://dx.doi.org/10.1016/j.apsusc.2006.11.004
14.
14. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, Phys. Rev. B 27, 1141 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.1141
15.
15. E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, Appl. Phys. Lett. 92, 221112 (2008).
http://dx.doi.org/10.1063/1.2936865
16.
16. J. Bonse, M. Munz, and H. Sturm, J. Appl. Phys. 97, 013538 (2005).
http://dx.doi.org/10.1063/1.1827919
17.
17. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, Opt. Lett. 36, 229 (2011).
http://dx.doi.org/10.1364/OL.36.000229
18.
18. F. Costache, M. Henyk, and J. Reif, Appl. Surf. Sci. 208/209, 486 (2003).
http://dx.doi.org/10.1016/S0169-4332(02)01443-5
19.
19. R. Le Harzic, D. Dörr, D. Sauer, F. Stracke, and H. Zimmermann, Appl. Phys. Lett. 98, 211905 (2011).
http://dx.doi.org/10.1063/1.3593493
20.
20. G. Miyaji and K. Miyazaki, Opt. Express 16, 16265 (2008).
http://dx.doi.org/10.1364/OE.16.016265
21.
21. Y. Dong and P. Molian, Appl. Phys. Lett. 84, 10 (2004).
http://dx.doi.org/10.1063/1.1637948
22.
22. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, Phys. Procedia 12, 29 (2011).
http://dx.doi.org/10.1016/j.phpro.2011.03.102
23.
23. K. Sokolowski-Tinten, J. Bialkowski, and D. Von der Linde, Phs. Rev. B 51, 14186 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.14186
24.
24. A. Borowiec, M. Mackenzie, G. C. Weatherly, H. K. Haugen, Appl. Phys. A: Mater. Sci. Process. 76, 201 (2003).
http://dx.doi.org/10.1007/s003390201409
25.
25. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A: Mater. Sci. Process. 74, 19 (2002).
http://dx.doi.org/10.1007/s003390100893
26.
26. A. Cavalleri, C. W. Siders, C. Rose-Petruck, R. Jimenez, Cs. Tóth, J. A. Squier, C. P. J. Barty, K. R. Wilson, K. Sokolowski-Tinten, M. Horn von Hoegen, and D. von der Linde, Phys. Rev. B 63, 193306 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.193306
27.
27. J. Bonse, G. Bachelier, J. Siegel, and J. Solis, Phys. Rev. B 74, 134106 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.134106
28.
28. M. I. Park, C. O. Park, C. S. Kim, and S. C. Jeoung, J. Korean Phys. Soc. 46, 531 (2005).
29.
29. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, and D. von der Linde, J. Appl. Phys. 85, 3301 (1999).
http://dx.doi.org/10.1063/1.369675
30.
30. K. Sokolowski-Tinten, H. Schulz, J. Bialkowski, and D. von der Linde, Appl. Phys. A: Solids Surf. 53, 227 (1991).
http://dx.doi.org/10.1007/BF00324257
31.
31. D. Bäuerle, Laser Processing and Chemistry, 2nd ed. (Springer-Verlag, Berlin, 1996), Chap. 7.
32.
32. A. Kiani, K. Venkatakrishnan, and B. Tan, Opt. Express 18, 1872 (2010).
http://dx.doi.org/10.1364/OE.18.001872
33.
33. A. Y. Vorobyev and C. L. Guo, Appl. Phys. Lett. 86, 011916 (2005).
http://dx.doi.org/10.1063/1.1844598
34.
34. Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, Orlando, 1985).
35.
35. S. M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, Inc., New York, 1981).
36.
36. Y. Jee, M. F. Becker, and R. M. Walser, J. Opt. Soc. Am. B 5, 648 (1988).
http://dx.doi.org/10.1364/JOSAB.5.000648
37.
37. A. Borowiec, M. Couillard, G. A. Botton, and H. K. Haugen, Appl. Phys. A 79(8), 1887 (2004).
http://dx.doi.org/10.1007/s00339-004-2962-x
38.
38. M. Zhou, D. Q. Yuan, W. Zhang, J. Shen, B. J. Li, J. Song, and L. Cai, Chin. Phys. Lett. 26, 037901 (2009).
http://dx.doi.org/10.1088/0256-307X/26/3/037901
39.
39. K. Sokolowski-Tinten and D. Von der Linde, Phys. Rev. B 61, 2643 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.2643
40.
40. B.-G. Park, S. W. Hwang, and Y. J. Park, Nanoelectronic Devices, 1st ed. (Pan Stanford Publishing, 2012), p. 394.
41.
41. A. J. Sabbah and D. M. Riffe, Phys. Rev. B 66, 165217 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165217
42.
42. H. Garcia and K. N. Avanaki, Appl. Phys. Lett. 100, 131105 (2012).
http://dx.doi.org/10.1063/1.3693389
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/18/10.1063/1.4803895
Loading
/content/aip/journal/jap/113/18/10.1063/1.4803895
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/18/10.1063/1.4803895
2013-05-08
2014-08-27

Abstract

Periodic high spatial frequency ripples structures (HSFL) have been generated in silicon (Si) and in germanium (Ge) at very low fluence below or close to the melting fluence threshold, at different wavelengths and at high repetition rate femtosecond laser pulses (80 MHz, 700–950 nm, 170 fs). HSFL initiation, formation, and arrangement combine structural modification of the surface initiated by heat accumulation of successive pulses with second harmonic generation. HSFL are wavelength dependent and the refractive index plays a central role on their periodicities. HSFL spacing follows quite well a law of , where is the modified femtosecond laser excited refractive index as a function of the wavelength for Si and Ge.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/18/1.4803895.html;jsessionid=2mp0pejpqdtol.x-aip-live-03?itemId=/content/aip/journal/jap/113/18/10.1063/1.4803895&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Formation mechanism of femtosecond laser-induced high spatial frequency ripples on semiconductors at low fluence and high repetition rate
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/18/10.1063/1.4803895
10.1063/1.4803895
SEARCH_EXPAND_ITEM