1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Electron transport in quantum dot chains: Dimensionality effects and hopping conductance
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/18/10.1063/1.4804324
1.
1. Zh. M. Wang, K. Holmes, Yu. I. Mazur, and G. J. Salamo, Appl. Phys. Lett. 84, 1931 (2004).
http://dx.doi.org/10.1063/1.1669064
2.
2. J. H. Lee, Zh. M. Wang, B. L. Liang, W. Black, Vas. P. Kunets, Yu. I. Mazur, and G. J. Salamo, Nanotechnology 17, 2275 (2006).
http://dx.doi.org/10.1088/0957-4484/17/9/034
3.
3. Yu. I. Mazur, W. Q. Ma, X. Wang, Zh. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson, Appl. Phys. Lett. 83, 987 (2003).
http://dx.doi.org/10.1063/1.1596712
4.
4. Zh. M. Wang, Yu. I. Mazur, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, J. Appl. Phys. 99, 033705 (2006).
http://dx.doi.org/10.1063/1.2169868
5.
5. D. F. Cesar, M. D. Teodoro, V. Lopez-Richard, G. E. Marques, E. Marega, Jr., V. G. Dorogan, Yu. I. Mazur, and G. J. Salamo, Phys. Rev. B 83, 195307 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195307
6.
6. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.16631
7.
7. Vas. P. Kunets, S. Prosandeev, Yu. I. Mazur, M. E. Ware, M. D. Teodoro, V. G. Dorogan, P. M. Lytvyn, and G. J. Salamo, J. Appl. Phys. 110, 083714 (2011).
http://dx.doi.org/10.1063/1.3656455
8.
8. A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).
http://dx.doi.org/10.1103/PhysRev.120.745
9.
9. P. N. Bucher, Linear and Nonlinear Electronic Transport in Solids, edited by J. T. Devreese and V. E. Van Doren (Plenum, New York, 1976), pp. 341381.
10.
10. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors, Springer Series in Solid-State Science (Springer-Verlag, 1984), Vol. 45.
11.
11. W. F. Pasveer, P. A. Bobbert, and M. A. J. Michels, Phys. Status Solidi C 1, 164 (2004).
http://dx.doi.org/10.1002/pssc.200303631
12.
12. W. Paschoal, Jr., S. Kumar, C. Borschel, P. Wu, C. M. Canali, C. Ronning, L. Samuelson, and H. Pettersson, Nano Lett. 12, 4838 (2012).
http://dx.doi.org/10.1021/nl302318f
13.
13. D. C. Look, Electrical characterization of GaAs Materials and Devices (John Wiley and Sons, New York, 1989).
14.
14. N. Mott, J. Non-Cryst. Solids 1, 1 (1968).
http://dx.doi.org/10.1016/0022-3093(68)90002-1
15.
15. D. N. Tsigankov and A. L. Efros, Phys. Rev. Lett. 88, 176602 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.176602
16.
16. F. W. Van Keuls, X. L. Hu, H. W. Jiang, and A. J. Damm, Phys. Rev. B 56, 1161 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.1161
17.
17. A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and A. A. Bloshkin, JETP Lett. 77, 376 (2003).
http://dx.doi.org/10.1134/1.1581964
18.
18. A. G. Zabrodskii and K. N. Zinov'eva, Sov. Phys. JETP 59, 425 (1984).
19.
19. S. V. Zaitsev-Zotov, Y. A. Kumzerov, Y. A. Firsov, and P. Monceau, J. Phys.: Condens. Matter 12, L303 (2000).
http://dx.doi.org/10.1088/0953-8984/12/20/101
20.
20. E. Slot, M. A. Holst, H. S. J. van der Zant, and S. V. Zaitsev-Zotov, Phys. Rev. Lett. 93, 176602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.176602
21.
21. L. Venkataraman, Y. S. Hong, and P. Kim, Phys. Rev. Lett. 96, 076601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.076601
22.
22. Z. Zhou, K. Xiao, R. Jin, D. Mandrus, J. Tao, D. Geohegan, and S. Pennycook, Appl. Phys. Lett. 90, 193115 (2007).
http://dx.doi.org/10.1063/1.2738380
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/18/10.1063/1.4804324
Loading
/content/aip/journal/jap/113/18/10.1063/1.4804324
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/18/10.1063/1.4804324
2013-05-10
2014-11-28

Abstract

Detailed experimental and theoretical studies of lateral electron transport in a system of quantum dot chains demonstrate the complicated character of the conductance within the chain structure due to the interaction of conduction channels with different dimensionalities. The one-dimensional character of states in the wetting layer results in an anisotropic mobility, while the presence of the zero-dimensional states of the quantum dots leads to enhanced hopping conductance, which affects the low-temperature mobility and demonstrates an anisotropy in the conductance. These phenomena were probed by considering a one-dimensional model of hopping along with band filling effects. Differences between the model and the experimental results indicate that this system does not obey the simple one-dimensional Mott's law of hopping and deserves further experimental and theoretical considerations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/18/1.4804324.html;jsessionid=46q4jadqrjn7g.x-aip-live-06?itemId=/content/aip/journal/jap/113/18/10.1063/1.4804324&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electron transport in quantum dot chains: Dimensionality effects and hopping conductance
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/18/10.1063/1.4804324
10.1063/1.4804324
SEARCH_EXPAND_ITEM