1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Spin injection from Heusler alloys into semiconductors: A materials perspective
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/19/10.1063/1.4802504
1.
1. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
http://dx.doi.org/10.1063/1.102730
2.
2. H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han, and M. Johnson, Science 325, 1515 (2009).
http://dx.doi.org/10.1126/science.1173667
3.
3. S. Bandyopadhyay and M. Cahay, Nanotechnology 20, 412001 (2009).
http://dx.doi.org/10.1088/0957-4484/20/41/412001
4.
4. H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.-P. Schönherr, and K. H. Ploog, Phys. Rev. Lett. 87, 016601 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.016601
5.
5. A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, Appl. Phys. Lett. 80, 1240 (2002).
http://dx.doi.org/10.1063/1.1449530
6.
6. X. Y. Dong, C. Adelmann, J. Q. Xie, and C. J. Palmstrøm, X. Lou, J. Strand, P. A. Crowell, J.-P. Barnes, and A. K. Petford-Long, Appl. Phys. Lett. 86, 102107 (2005).
http://dx.doi.org/10.1063/1.1881789
7.
7. G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B 62, R4790 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R4790
8.
8. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999).
http://dx.doi.org/10.1038/45509
9.
9. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature 402, 787 (1999).
http://dx.doi.org/10.1038/45502
10.
10. B. T. Jonker, Y. D. Park, B. R. Bennett, H. D. Cheong, G. Kioseoglou, and A. Petrou, Phys. Rev. B 62, 8180 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.8180
11.
11. E. I. Rashba, Phys. Rev. B 62, R16267 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R16267
12.
12. A. Fert and H. Jaffres, Phys. Rev. B 64, 184420 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.184420
13.
13. S. Hövel, N. C. Gerhardt, M. R. Hofmann, F.-Y. Lo, D. Reuter, A. D. Wieck, E. Schuster, W. Keune, H. Wende, O. Petracic, and K. Westerholt, Appl. Phys. Lett. 92, 242102 (2008).
http://dx.doi.org/10.1063/1.2948856
14.
14. X. Jiang, R. Wang, R. M. Shelby, R. M. Macfarlane, S. R. Bank, J. S. Harris, and S. S. P. Parkin, Phys. Rev. Lett. 94, 056601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.056601
15.
15. P. Renucci, V. G. Truong, H. Jaffrès, L. Lombez, P. H. Binh, T. Amand, J. M. George, and X. Marie, Phys. Rev. B 82, 195317 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.195317
16.
16. G. Salis, R. Wang, X. Jiang, R. M. Shelby, S. S. Parkin, S. R. Bank, and J. S. Harris, Appl. Phys. Lett. 87, 262503 (2005).
http://dx.doi.org/10.1063/1.2149369
17.
17. W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, Phys. Rev. B 63, 054416 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.054416
18.
18. O. M. J. van't Erve, G. Kioseoglou, A. T. Hanbicki, C. H. Li, B. T. Jonker, R. Mallory, M. Yasar, and A. Petrou, Appl. Phys. Lett. 84, 4334 (2004).
http://dx.doi.org/10.1063/1.1758305
19.
19. S. Fujii, S. Sugimura, S. Ishida, and S. Asano, J. Phys.: Condens. Matter 2, 8583 (1990).
http://dx.doi.org/10.1088/0953-8984/2/43/004
20.
20. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.174429
21.
21. B. Balke, S. Wurmehl, G. H. Fecher, C. Felser, and J. Kübler, Sci. Technol. Adv. Mater. 9, 014102 (2008).
http://dx.doi.org/10.1088/1468-6996/9/1/014102
22.
22. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 134428 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.134428
23.
23. K. E. H. M. Hanssen, P. E. Mijnarends, L. P. L. M. Rabou, and K. H. J. Buschow, Phys. Rev. B 42, 1533 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.1533
24.
24. M. Hashimoto, J. Herfort, H.-P. Schönherr, and K. H. Ploog, Appl. Phys. Lett. 87, 102506 (2005).
http://dx.doi.org/10.1063/1.2041836
25.
25. M. Hashimoto, A. Trampert, J. Herfort, and K. H. Ploog, J. Vac. Sci. Technol. B 25, 1453 (2007).
http://dx.doi.org/10.1116/1.2748413
26.
26. M. Hashimoto, J. Herfort, A. Trampert, H.-P. Schönherr, and K. H. Ploog, J. Vac. Sci. Technol. B 24, 2004 (2006).
http://dx.doi.org/10.1116/1.2218863
27.
27. M. Hashimoto, J. Herfort, A. Trampert, H.-P. Schönherr, and K. H. Ploog, J. Phys. D: Appl. Phys. 40, 1631 (2007).
http://dx.doi.org/10.1088/0022-3727/40/6/007
28.
28. M. Hashimoto, J. Herfort, H.-P. Schönherr, and K. H. Ploog, J. Appl. Phys. 98, 104902 (2005).
http://dx.doi.org/10.1063/1.2136213
29.
29. M. Ramsteiner, O. Brandt, T. Flissikowski, H. T. Grahn, M. Hashimoto, J. Herfort, and H. Kostial, Phys. Rev. B 78, 121303R (2008).
http://dx.doi.org/10.1103/PhysRevB.78.121303
30.
30. C. D. Damsgaard, M. C. Hickey, S. N. Holmes, R. Feidenhans'l, S. O. Mariager, C. S. Jacobsen, and J. B. Hansen, J. Appl. Phys. 105, 124502 (2009).
http://dx.doi.org/10.1063/1.3148298
31.
31. A. Kawaharazuka, M. Ramsteiner, J. Herfort, H.-P. Schönherr, H. Kostial, and K. H. Ploog, Appl. Phys. Lett. 85, 3492 (2004).
http://dx.doi.org/10.1063/1.1807014
32.
32. Y. Ando, K. Hamaya, K. Kasahara, Y. Kishi, K. Ueda, K. Sawano, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 94, 182105 (2009).
http://dx.doi.org/10.1063/1.3130211
33.
33. K. Kasahara, Y. Baba, K. Yamane, Y. Ando, S. Yamada, Y. Hoshi, K. Sawano, M. Miyao, and K. Hamaya, J. Appl. Phys. 111, 07C503 (2012).
http://dx.doi.org/10.1063/1.3670985
34.
34. S. Picozzi, A. Continenza, and A. J. Freeman, J. Appl. Phys. 94, 4723 (2003);
http://dx.doi.org/10.1063/1.1608469
34. S. Picozzi, A. Continenza, and A. J. Freeman, J. Phys. Chem. Solids 64, 1697 (2003).
http://dx.doi.org/10.1016/S0022-3697(03)00121-5
35.
35. S. Picozzi and A. J. Freeman, J. Phys.: Condens. Matter 19, 315215 (2007).
http://dx.doi.org/10.1088/0953-8984/19/31/315215
36.
36. S. Khosravizadeh, S. J. Hashemifar, and H. Akbarzadeh, Phys. Rev. B 79, 235203 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.235203
37.
37. I. Galanakis and P. H. Dederichs, Half-Metallic Alloys: Fundamentals and Applications (Springer, 2005).
38.
38. T. Graf, C. Felser, and S. S. P. Parkin, Prog. Solid State Chem. 39, 1 (2011).
http://dx.doi.org/10.1016/j.progsolidstchem.2011.02.001
39.
39. P. Bruski, S. C. Erwin, M. Ramsteiner, O. Brandt, K.-J. Friedland, R. Farshchi, J. Herfort, and H. Riechert, Phys. Rev. B 83, 140409 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.140409
40.
40. G. A. de Wijis and R. A. de Groot, Phys. Rev. B 64, 020402 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.020402
41.
41. S. Wurmehl, G. H. Fecher, H. C. Kandpal, V. Ksenofontov, C. Felser, H. Lin, and J. Morais, Phys. Rev. B 72, 184434 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.184434
42.
42. G. H. Fecher, H. C. Kandpal, S. Wurmehl, J. Morais, H. Lin, H. Elmers, G. Schönhense, and C. Felser, J. Phys.: Condens. Matter 17, 7237 (2005).
http://dx.doi.org/10.1088/0953-8984/17/46/008
43.
43. S. Ishida, T. Masaki, S. Fujii, and S. Asano, Physica B 245, 1 (1998).
http://dx.doi.org/10.1016/S0921-4526(97)00495-X
44.
44. J. Kübler, A. R. Williams, and C. B. Sommers, Phys. Rev. B 28, 1745 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.1745
45.
45. S. V. Karthik, A. Rajanikanth, Y. K. Takahashi, T. Okhubo, and K. Hono, Appl. Phys. Lett. 89, 052505 (2006).
http://dx.doi.org/10.1063/1.2245224
46.
46. P. J. Webster and K. R. A. Ziebeck, Magnetic Properties of Metals, Landolt-Börnstein, New Series III/19c (Springer, Berlin, 1988), p. 88.
47.
47. P. J. Webster and K. R. A. Ziebeck, Magnetic Properties of Metals, Landolt-Börnstein, New Series III/19c (Springer, Berlin, 1988), p. 101.
48.
48. W. H. Wang, M. Przybylski, W. Kuch, L. I. Chelaru, J. Wang, Y. F. Lu, J. Barthel, H. L. Meyerheim, and J. Kirschner, Phys. Rev. B 71, 144416 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.144416
49.
49. Z. Gercsi, A. Rajanikanth, Y. K. Takahashi, K. Hono, M. Kikuchi, N. Tezuka, and K. Inomata, Appl. Phys. Lett. 89, 082512 (2006).
http://dx.doi.org/10.1063/1.2338025
50.
50. S. Yamada, K. Hamaya, T. Murakami, B. Varaprasad, Y. K. Takahashi, A. Rajanikanth, K. Hono, and M. Miyao, J. Appl. Phys. 109, 07B113 (2011).
http://dx.doi.org/10.1063/1.3563039
51.
51. L. Ritchie, G. Xiao, Y. Ji, T. Y. Chen, C. L. Chien, M. Zhang, J. Chen, Z. Liu, G. Wu, and X. X. Zhang, Phys. Rev. B 68, 104430 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.104430
52.
52. L. J. Singh, Z. H. Barber, Y. Miyoshi, W. R. Branford, and L. F. Cohen, J. Appl. Phys. 95, 7231 (2004).
http://dx.doi.org/10.1063/1.1667857
53.
53. R. J. Soulen, Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science 282, 85 (1998).
http://dx.doi.org/10.1126/science.282.5386.85
54.
54. D. Ristoiu, J. P. Nozieres, C. N. Borca, T. Komesu, H. K. Jeong, and P. A. Dowben, Europhys. Lett. 49, 624 (2000).
http://dx.doi.org/10.1209/epl/i2000-00196-9
55.
55. M. Julliere, Phys. Lett. A 54, 225 (1975).
http://dx.doi.org/10.1016/0375-9601(75)90174-7
56.
56. S. Okamura, A. Miyazaki, S. Sugimoto, N. Tezuka, and K. Inomata, Appl. Phys. Lett. 86, 232503 (2005).
http://dx.doi.org/10.1063/1.1944893
57.
57. Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota, Appl. Phys. Lett. 88, 192508 (2006).
http://dx.doi.org/10.1063/1.2202724
58.
58. S. Kämmerer, A. Thomas, A. Hütten, and G. Reiss, Appl. Phys. Lett. 85, 79 (2004).
http://dx.doi.org/10.1063/1.1769082
59.
59. T. Marukame, T. Ishikawa, K. Matsuda, T. Uemura, and M. Yamamoto, Appl. Phys. Lett. 88, 262503 (2006).
http://dx.doi.org/10.1063/1.2217166
60.
60. K. Inomata, S. Okamura, A. Miyazaki, M. Kikuchi, N. Tezuka, M. Wojcik, and E. Jedryka, J. Phys. D 39, 816 (2006).
http://dx.doi.org/10.1088/0022-3727/39/5/S07
61.
61. N. Tezuka, N. Ikeda, S. Sugimoto, and K. Inomata, Appl. Phys. Lett. 89, 252508 (2006).
http://dx.doi.org/10.1063/1.2420793
62.
62. N. Tezuka, N. Ikeda, S. Sugimoto, and K. Inomata, Jpn. J. Appl. Phys., Part 2 46, L454 (2007).
http://dx.doi.org/10.1143/JJAP.46.L454
63.
63. K. Inomata, M. Wojcik, E. Jedryka, N. Ikeda, and N. Tezuka, Phys. Rev. B 77, 214425 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.214425
64.
64. S. V. Karthik, A. Rajanikanth, and T. M. Nakatani, Z. Gercsi, Y. K. Takahashi, T. Furubayashi, K. Inomata, and K. Hono, J. Appl. Phys. 102, 043903 (2007).
http://dx.doi.org/10.1063/1.2769175
65.
65. M. C. Hickey, C. D. Damsgaard, S. N. Holmes, I. Farrer, G. A. C. Jones, D. A. Ritchie, C. S. Jacobsen, J. B. Hansen, and M. Pepper, Appl. Phys. Lett. 92, 232101 (2008).
http://dx.doi.org/10.1063/1.2938418
66.
66. T. Ambrose, J. J. Krebs, and G. A. Prinz, Appl. Phys. Lett. 76, 3280 (2000).
http://dx.doi.org/10.1063/1.126606
67.
67. E. Y. Tsymbal and I. Zutic, Handbook of Spin Transport and Magnetism (CRC Press, Taylor & Francis Group, 2011).
68.
68. P. Bruski, Y. Manzke, R. Farshchi, O. Brandt, J. Herfort, and M. Ramsteiner, available at: http://arxiv.org/pdf/1304.5452v1.pdf (to be published).
69.
69. X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. Madhukar Reddy, S. D. Flexner, C. J. Palmstrøm, and P. A. Crowell, Nat. Phys. 3, 197 (2007).
http://dx.doi.org/10.1038/nphys543
70.
70. M. Ciorga, A. Einwanger, U. Wurstbauer, D. Schuh, W. Wegscheider, and D. Weiss, Phys. Rev. B 79, 165321 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.165321
71.
71. F. J. Jedema, H. B. Heersche, A. T. Filip, J. J. A. Baselmans, and B. J. van Wees, Nature 416, 713 (2002).
http://dx.doi.org/10.1038/416713a
72.
72. I. Appelbaum, B. Huang, and D. J. Monsma, Nature 447, 295 (2007).
http://dx.doi.org/10.1038/nature05803
73.
73. S. P. Dash, S. Sharma, R. S. Patel, M. P. de Jong, and R. Jansen, Nature 462, 491 (2009).
http://dx.doi.org/10.1038/nature08570
74.
74. W. Van Roy, J. De Boeck, B. Brijs, and G. Borghs, Appl. Phys. Lett. 77, 4190 (2000).
http://dx.doi.org/10.1063/1.1334356
75.
75. B. Jenichen, J. Herfort, K. Kumakura, and A. Trampert, J. Phys. D: Appl. Phys. 43, 285404 (2010).
http://dx.doi.org/10.1088/0022-3727/43/28/285404
76.
76. P. Bruski, K.-J. Friedland, R. Farshchi, J. Herfort, and M. Ramsteiner, Solid State Commun. 152, 1131 (2012).
http://dx.doi.org/10.1016/j.ssc.2012.04.003
77.
77. X. Y. Dong, J. W. Dong, J. Q. Xie, T. C. Shih, S. McKernan, C. Leighton, and C. J. Palmstrøm, J. Cryst. Growth 254, 384 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01172-2
78.
78. R. Farshchi, J. Herfort, and M. Ramsteiner, “Sign-reversal of spin polarization in Co2FeSi/(In,Ga)As spin-LEDs” (unpublished).
79.
79. G. H. Fecher and C. Felser, J. Phys. D: Appl. Phys. 40, 1576 (2007).
http://dx.doi.org/10.1088/0022-3727/40/6/S11
80.
80. K. Özdoğan and I. Galanakis, J. Appl. Phys. 110, 076101 (2011).
http://dx.doi.org/10.1063/1.3642990
81.
81. Y. Miura, K. Nagao, and M. Shirai, Phys. Rev. B 69, 144413 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.144413
82.
82. S. S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 69, 094423 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.094423
83.
83. D. Orgassa, H. Fujiwara, T. C. Schulthess, and W. H. Butler, Phys. Rev. B 60, 13237 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.13237
84.
84. O. Brandt, M. Ramsteiner, T. Flissikowski, J. Herfort, and H. T. Grahn, Phys. Rev. B 81, 115302 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.115302
85.
85. R. Farshchi, P. Bruski, M. Ramsteiner, J. Herfort, O. Brandt, Y. Manzke, K.-J. Friedland, and H. T. Grahn, Solid State Commun. 151, 436 (2011).
http://dx.doi.org/10.1016/j.ssc.2011.01.003
86.
86. C. M. Hurd, The Hall Effect in Metals and Alloys (Plenum Press, New York, 1972).
87.
87. S. Yamada, K. Hamaya, K. Yamamoto, T. Murakami, K. Mibu, and M. Miyao, Appl. Phys. Lett. 96, 082511 (2010).
http://dx.doi.org/10.1063/1.3330895
88.
88. J. Herfort, H.-P. Schönherr, and K. H. Ploog, Appl. Phys. Lett. 83, 3912 (2003).
http://dx.doi.org/10.1063/1.1625426
89.
89. B. D. Schultz, H. H. Farrell, M. M. R. Evans, K. Lüdge, and C. J. Palmstrøm, J. Vac. Sci. Technol. B 20, 1600 (2002).
http://dx.doi.org/10.1116/1.1491994
90.
90. K. Lüdge, B. D. Schultz, P. Vogt, M. M. R. Evans, W. Braun, C. J. Palmstrøm, W. Richter, and N. Esser, J. Vac. Sci. Technol. B 20, 1591 (2002).
http://dx.doi.org/10.1116/1.1491993
91.
91. R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, Appl. Phys. Lett. 98, 162508 (2011).
http://dx.doi.org/10.1063/1.3582917
92.
92. L. Berger, Phys. Rev. B 54, 9353 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9353
93.
93. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
94.
94. D. C. Ralph and M. D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.12.019
95.
95. Y. Chen, X. Wang, H. Li, H. Xi, W. Zhu and Y. Yan, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18, 1724 (2010).
http://dx.doi.org/10.1109/TVLSI.2009.2032192
96.
96. Z. Diao, M. Pakala, A. Panchula, Y. Ding, D. Apalkov, L. C. Wang, E. Chen, and Y. Huai, J. Appl. Phys. 99, 08G510 (2006).
http://dx.doi.org/10.1063/1.2165169
97.
97. R. Sbiaa, S. Lua, R. Law, H. Meng, R. Lye, and H. K. Tan, J. Appl. Phys. 109, 07C707 (2011).
http://dx.doi.org/10.1063/1.3540361
98.
98. H. Zhao, A. Lyle, Y. Zhang, P. K. Amiri, G. Rowlands, Z. Zeng, J. Katine, H. Jiang, K. Galatsis, K. L. Wang, I. N. Krivorotov, and J.-P. Wang, J. Appl. Phys. 109, 07C720 (2011).
http://dx.doi.org/10.1063/1.3556784
99.
99. H. Kubota, A. Fukushima, Y. Ootani, S. Yuasa, K. Ando, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and Y. Suzuki, Jpn. J. Appl. Phys. 44, L1237 (2005).
http://dx.doi.org/10.1143/JJAP.44.L1237
100.
100. K. Tsunekawa, D. D. Djayaprawira, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 87, 072503 (2005).
http://dx.doi.org/10.1063/1.2012525
101.
101. J. Hayakawa, S. Ikeda, Y. M. Lee, R. Sasaki, T. Meguro, F. Matsukura, H. Takahashi, and H. Ohno, Jpn. J. Appl. Phys. 44, L1267 (2005).
http://dx.doi.org/10.1143/JJAP.44.L1267
102.
102. H. Sukegawa, S. Kasai, T. Furubayashi, S. Mitani, and K. Inomata, Appl. Phys. Lett. 96, 042508 (2010).
http://dx.doi.org/10.1063/1.3297879
103.
103. Y. Ohdaira, M. Oogane, H. Naganuma, and Y. Ando, Appl. Phys. Lett. 99, 132513 (2011).
http://dx.doi.org/10.1063/1.3645637
104.
104. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Nature 455, 778 (2008).
http://dx.doi.org/10.1038/nature07321
105.
105. C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, J. P. Heremans, and R. C. Myers, Nature Mater. 9, 898 (2010).
http://dx.doi.org/10.1038/nmat2860
106.
106. S. Bosu, Y. Sakuraba, K. Uchida, K. Saito, T. Ota, E. Saitoh, and K. Takanashi, Phys. Rev. B 83, 224401 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.224401
107.
107. B. Balke, S. Ouardi, T. Graf, J. Barth, C. G. F. Blum, G. H. Fecher, A. Shkabko, A. Weidenkaff, and C. Felser, Solid State Commun. 150, 529 (2010).
http://dx.doi.org/10.1016/j.ssc.2009.10.044
108.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/19/10.1063/1.4802504
Loading
/content/aip/journal/jap/113/19/10.1063/1.4802504
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/19/10.1063/1.4802504
2013-05-15
2014-07-30

Abstract

The notion of using electron spins as bits for highly efficient computation coupled with non-volatile data storage has driven an intense international research effort over the past decade. Such an approach, known as spin-based electronics or spintronics, is considered to be a promising alternative to charge-based electronics in future integrated circuit technologies. Many proposed spin-based devices, such as the well-known spin-transistor, require injection of spin polarized currents from ferromagnetic layers into semiconductor channels, where the degree of injected spin polarization is crucial to the overall device performance. Several ferromagnetic Heusler alloys are predicted to be half-metallic, meaning 100% spin-polarized at the Fermi level, and hence considered to be excellent candidates for electrical spin injection. Furthermore, they exhibit high Curie temperatures and close lattice matching to III-V semiconductors. Despite their promise, Heusler alloy/semiconductor heterostructures investigated in the past decade have failed to fulfill the expectation of near perfect spin injection and in certain cases have even demonstrated inferior behavior compared to their elemental ferromagnetic counterparts. To address this problem, a slew of theoretical and experimental work has emerged studying Heusler alloy/semiconductor interface properties. Here, we review the dominant prohibitive materials challenges that have been identified, namely atomic disorder in the Heusler alloy and in-diffusion of magnetic impurities into the semiconductor, and their ensuing detrimental effects on spin injection. To mitigate these effects, we propose the incorporation of half-metallic Heusler alloys grown at high temperatures (>200 °C) along with insertion of a MgO tunnel barrier at the ferromagnet/semiconductor interface to minimize magnetic impurity in-diffusion and potentially act as a spin-filter. By considering evidence from a variety of structural, optical, and electrical studies, we hope to paint a realistic picture of the materials environment encountered by spins upon injection from Heusler alloys into semiconductors. Finally, we review several emerging device paradigms that utilize Heusler alloys as sources of spin polarized electrons.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/19/1.4802504.html;jsessionid=52r8mbhrohnio.x-aip-live-02?itemId=/content/aip/journal/jap/113/19/10.1063/1.4802504&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Spin injection from Heusler alloys into semiconductors: A materials perspective
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/19/10.1063/1.4802504
10.1063/1.4802504
SEARCH_EXPAND_ITEM