1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Spin injection from Heusler alloys into semiconductors: A materials perspective
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/19/10.1063/1.4802504
1.
1. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
http://dx.doi.org/10.1063/1.102730
2.
2. H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han, and M. Johnson, Science 325, 1515 (2009).
http://dx.doi.org/10.1126/science.1173667
3.
3. S. Bandyopadhyay and M. Cahay, Nanotechnology 20, 412001 (2009).
http://dx.doi.org/10.1088/0957-4484/20/41/412001
4.
4. H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.-P. Schönherr, and K. H. Ploog, Phys. Rev. Lett. 87, 016601 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.016601
5.
5. A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, Appl. Phys. Lett. 80, 1240 (2002).
http://dx.doi.org/10.1063/1.1449530
6.
6. X. Y. Dong, C. Adelmann, J. Q. Xie, and C. J. Palmstrøm, X. Lou, J. Strand, P. A. Crowell, J.-P. Barnes, and A. K. Petford-Long, Appl. Phys. Lett. 86, 102107 (2005).
http://dx.doi.org/10.1063/1.1881789
7.
7. G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B 62, R4790 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R4790
8.
8. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999).
http://dx.doi.org/10.1038/45509
9.
9. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature 402, 787 (1999).
http://dx.doi.org/10.1038/45502
10.
10. B. T. Jonker, Y. D. Park, B. R. Bennett, H. D. Cheong, G. Kioseoglou, and A. Petrou, Phys. Rev. B 62, 8180 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.8180
11.
11. E. I. Rashba, Phys. Rev. B 62, R16267 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R16267
12.
12. A. Fert and H. Jaffres, Phys. Rev. B 64, 184420 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.184420
13.
13. S. Hövel, N. C. Gerhardt, M. R. Hofmann, F.-Y. Lo, D. Reuter, A. D. Wieck, E. Schuster, W. Keune, H. Wende, O. Petracic, and K. Westerholt, Appl. Phys. Lett. 92, 242102 (2008).
http://dx.doi.org/10.1063/1.2948856
14.
14. X. Jiang, R. Wang, R. M. Shelby, R. M. Macfarlane, S. R. Bank, J. S. Harris, and S. S. P. Parkin, Phys. Rev. Lett. 94, 056601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.056601
15.
15. P. Renucci, V. G. Truong, H. Jaffrès, L. Lombez, P. H. Binh, T. Amand, J. M. George, and X. Marie, Phys. Rev. B 82, 195317 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.195317
16.
16. G. Salis, R. Wang, X. Jiang, R. M. Shelby, S. S. Parkin, S. R. Bank, and J. S. Harris, Appl. Phys. Lett. 87, 262503 (2005).
http://dx.doi.org/10.1063/1.2149369
17.
17. W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, Phys. Rev. B 63, 054416 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.054416
18.
18. O. M. J. van't Erve, G. Kioseoglou, A. T. Hanbicki, C. H. Li, B. T. Jonker, R. Mallory, M. Yasar, and A. Petrou, Appl. Phys. Lett. 84, 4334 (2004).
http://dx.doi.org/10.1063/1.1758305
19.
19. S. Fujii, S. Sugimura, S. Ishida, and S. Asano, J. Phys.: Condens. Matter 2, 8583 (1990).
http://dx.doi.org/10.1088/0953-8984/2/43/004
20.
20. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.174429
21.
21. B. Balke, S. Wurmehl, G. H. Fecher, C. Felser, and J. Kübler, Sci. Technol. Adv. Mater. 9, 014102 (2008).
http://dx.doi.org/10.1088/1468-6996/9/1/014102
22.
22. I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 134428 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.134428
23.
23. K. E. H. M. Hanssen, P. E. Mijnarends, L. P. L. M. Rabou, and K. H. J. Buschow, Phys. Rev. B 42, 1533 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.1533
24.
24. M. Hashimoto, J. Herfort, H.-P. Schönherr, and K. H. Ploog, Appl. Phys. Lett. 87, 102506 (2005).
http://dx.doi.org/10.1063/1.2041836
25.
25. M. Hashimoto, A. Trampert, J. Herfort, and K. H. Ploog, J. Vac. Sci. Technol. B 25, 1453 (2007).
http://dx.doi.org/10.1116/1.2748413
26.
26. M. Hashimoto, J. Herfort, A. Trampert, H.-P. Schönherr, and K. H. Ploog, J. Vac. Sci. Technol. B 24, 2004 (2006).
http://dx.doi.org/10.1116/1.2218863
27.
27. M. Hashimoto, J. Herfort, A. Trampert, H.-P. Schönherr, and K. H. Ploog, J. Phys. D: Appl. Phys. 40, 1631 (2007).
http://dx.doi.org/10.1088/0022-3727/40/6/007
28.
28. M. Hashimoto, J. Herfort, H.-P. Schönherr, and K. H. Ploog, J. Appl. Phys. 98, 104902 (2005).
http://dx.doi.org/10.1063/1.2136213
29.
29. M. Ramsteiner, O. Brandt, T. Flissikowski, H. T. Grahn, M. Hashimoto, J. Herfort, and H. Kostial, Phys. Rev. B 78, 121303R (2008).
http://dx.doi.org/10.1103/PhysRevB.78.121303
30.
30. C. D. Damsgaard, M. C. Hickey, S. N. Holmes, R. Feidenhans'l, S. O. Mariager, C. S. Jacobsen, and J. B. Hansen, J. Appl. Phys. 105, 124502 (2009).
http://dx.doi.org/10.1063/1.3148298
31.
31. A. Kawaharazuka, M. Ramsteiner, J. Herfort, H.-P. Schönherr, H. Kostial, and K. H. Ploog, Appl. Phys. Lett. 85, 3492 (2004).
http://dx.doi.org/10.1063/1.1807014
32.
32. Y. Ando, K. Hamaya, K. Kasahara, Y. Kishi, K. Ueda, K. Sawano, T. Sadoh, and M. Miyao, Appl. Phys. Lett. 94, 182105 (2009).
http://dx.doi.org/10.1063/1.3130211
33.
33. K. Kasahara, Y. Baba, K. Yamane, Y. Ando, S. Yamada, Y. Hoshi, K. Sawano, M. Miyao, and K. Hamaya, J. Appl. Phys. 111, 07C503 (2012).
http://dx.doi.org/10.1063/1.3670985
34.
34. S. Picozzi, A. Continenza, and A. J. Freeman, J. Appl. Phys. 94, 4723 (2003);
http://dx.doi.org/10.1063/1.1608469
34. S. Picozzi, A. Continenza, and A. J. Freeman, J. Phys. Chem. Solids 64, 1697 (2003).
http://dx.doi.org/10.1016/S0022-3697(03)00121-5
35.
35. S. Picozzi and A. J. Freeman, J. Phys.: Condens. Matter 19, 315215 (2007).
http://dx.doi.org/10.1088/0953-8984/19/31/315215
36.
36. S. Khosravizadeh, S. J. Hashemifar, and H. Akbarzadeh, Phys. Rev. B 79, 235203 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.235203
37.
37. I. Galanakis and P. H. Dederichs, Half-Metallic Alloys: Fundamentals and Applications (Springer, 2005).
38.
38. T. Graf, C. Felser, and S. S. P. Parkin, Prog. Solid State Chem. 39, 1 (2011).
http://dx.doi.org/10.1016/j.progsolidstchem.2011.02.001
39.
39. P. Bruski, S. C. Erwin, M. Ramsteiner, O. Brandt, K.-J. Friedland, R. Farshchi, J. Herfort, and H. Riechert, Phys. Rev. B 83, 140409 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.140409
40.
40. G. A. de Wijis and R. A. de Groot, Phys. Rev. B 64, 020402 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.020402
41.
41. S. Wurmehl, G. H. Fecher, H. C. Kandpal, V. Ksenofontov, C. Felser, H. Lin, and J. Morais, Phys. Rev. B 72, 184434 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.184434
42.
42. G. H. Fecher, H. C. Kandpal, S. Wurmehl, J. Morais, H. Lin, H. Elmers, G. Schönhense, and C. Felser, J. Phys.: Condens. Matter 17, 7237 (2005).
http://dx.doi.org/10.1088/0953-8984/17/46/008
43.
43. S. Ishida, T. Masaki, S. Fujii, and S. Asano, Physica B 245, 1 (1998).
http://dx.doi.org/10.1016/S0921-4526(97)00495-X
44.
44. J. Kübler, A. R. Williams, and C. B. Sommers, Phys. Rev. B 28, 1745 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.1745
45.
45. S. V. Karthik, A. Rajanikanth, Y. K. Takahashi, T. Okhubo, and K. Hono, Appl. Phys. Lett. 89, 052505 (2006).
http://dx.doi.org/10.1063/1.2245224
46.
46. P. J. Webster and K. R. A. Ziebeck, Magnetic Properties of Metals, Landolt-Börnstein, New Series III/19c (Springer, Berlin, 1988), p. 88.
47.
47. P. J. Webster and K. R. A. Ziebeck, Magnetic Properties of Metals, Landolt-Börnstein, New Series III/19c (Springer, Berlin, 1988), p. 101.
48.
48. W. H. Wang, M. Przybylski, W. Kuch, L. I. Chelaru, J. Wang, Y. F. Lu, J. Barthel, H. L. Meyerheim, and J. Kirschner, Phys. Rev. B 71, 144416 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.144416
49.
49. Z. Gercsi, A. Rajanikanth, Y. K. Takahashi, K. Hono, M. Kikuchi, N. Tezuka, and K. Inomata, Appl. Phys. Lett. 89, 082512 (2006).
http://dx.doi.org/10.1063/1.2338025
50.
50. S. Yamada, K. Hamaya, T. Murakami, B. Varaprasad, Y. K. Takahashi, A. Rajanikanth, K. Hono, and M. Miyao, J. Appl. Phys. 109, 07B113 (2011).
http://dx.doi.org/10.1063/1.3563039
51.
51. L. Ritchie, G. Xiao, Y. Ji, T. Y. Chen, C. L. Chien, M. Zhang, J. Chen, Z. Liu, G. Wu, and X. X. Zhang, Phys. Rev. B 68, 104430 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.104430
52.
52. L. J. Singh, Z. H. Barber, Y. Miyoshi, W. R. Branford, and L. F. Cohen, J. Appl. Phys. 95, 7231 (2004).
http://dx.doi.org/10.1063/1.1667857
53.
53. R. J. Soulen, Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science 282, 85 (1998).
http://dx.doi.org/10.1126/science.282.5386.85
54.
54. D. Ristoiu, J. P. Nozieres, C. N. Borca, T. Komesu, H. K. Jeong, and P. A. Dowben, Europhys. Lett. 49, 624 (2000).
http://dx.doi.org/10.1209/epl/i2000-00196-9
55.
55. M. Julliere, Phys. Lett. A 54, 225 (1975).
http://dx.doi.org/10.1016/0375-9601(75)90174-7
56.
56. S. Okamura, A. Miyazaki, S. Sugimoto, N. Tezuka, and K. Inomata, Appl. Phys. Lett. 86, 232503 (2005).
http://dx.doi.org/10.1063/1.1944893
57.
57. Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota, Appl. Phys. Lett. 88, 192508 (2006).
http://dx.doi.org/10.1063/1.2202724
58.
58. S. Kämmerer, A. Thomas, A. Hütten, and G. Reiss, Appl. Phys. Lett. 85, 79 (2004).
http://dx.doi.org/10.1063/1.1769082
59.
59. T. Marukame, T. Ishikawa, K. Matsuda, T. Uemura, and M. Yamamoto, Appl. Phys. Lett. 88, 262503 (2006).
http://dx.doi.org/10.1063/1.2217166
60.
60. K. Inomata, S. Okamura, A. Miyazaki, M. Kikuchi, N. Tezuka, M. Wojcik, and E. Jedryka, J. Phys. D 39, 816 (2006).
http://dx.doi.org/10.1088/0022-3727/39/5/S07
61.
61. N. Tezuka, N. Ikeda, S. Sugimoto, and K. Inomata, Appl. Phys. Lett. 89, 252508 (2006).
http://dx.doi.org/10.1063/1.2420793
62.
62. N. Tezuka, N. Ikeda, S. Sugimoto, and K. Inomata, Jpn. J. Appl. Phys., Part 2 46, L454 (2007).
http://dx.doi.org/10.1143/JJAP.46.L454
63.
63. K. Inomata, M. Wojcik, E. Jedryka, N. Ikeda, and N. Tezuka, Phys. Rev. B 77, 214425 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.214425
64.
64. S. V. Karthik, A. Rajanikanth, and T. M. Nakatani, Z. Gercsi, Y. K. Takahashi, T. Furubayashi, K. Inomata, and K. Hono, J. Appl. Phys. 102, 043903 (2007).
http://dx.doi.org/10.1063/1.2769175
65.
65. M. C. Hickey, C. D. Damsgaard, S. N. Holmes, I. Farrer, G. A. C. Jones, D. A. Ritchie, C. S. Jacobsen, J. B. Hansen, and M. Pepper, Appl. Phys. Lett. 92, 232101 (2008).
http://dx.doi.org/10.1063/1.2938418
66.
66. T. Ambrose, J. J. Krebs, and G. A. Prinz, Appl. Phys. Lett. 76, 3280 (2000).
http://dx.doi.org/10.1063/1.126606
67.
67. E. Y. Tsymbal and I. Zutic, Handbook of Spin Transport and Magnetism (CRC Press, Taylor & Francis Group, 2011).
68.
68. P. Bruski, Y. Manzke, R. Farshchi, O. Brandt, J. Herfort, and M. Ramsteiner, available at: http://arxiv.org/pdf/1304.5452v1.pdf (to be published).
69.
69. X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. Madhukar Reddy, S. D. Flexner, C. J. Palmstrøm, and P. A. Crowell, Nat. Phys. 3, 197 (2007).
http://dx.doi.org/10.1038/nphys543
70.
70. M. Ciorga, A. Einwanger, U. Wurstbauer, D. Schuh, W. Wegscheider, and D. Weiss, Phys. Rev. B 79, 165321 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.165321
71.
71. F. J. Jedema, H. B. Heersche, A. T. Filip, J. J. A. Baselmans, and B. J. van Wees, Nature 416, 713 (2002).
http://dx.doi.org/10.1038/416713a
72.
72. I. Appelbaum, B. Huang, and D. J. Monsma, Nature 447, 295 (2007).
http://dx.doi.org/10.1038/nature05803
73.
73. S. P. Dash, S. Sharma, R. S. Patel, M. P. de Jong, and R. Jansen, Nature 462, 491 (2009).
http://dx.doi.org/10.1038/nature08570
74.
74. W. Van Roy, J. De Boeck, B. Brijs, and G. Borghs, Appl. Phys. Lett. 77, 4190 (2000).
http://dx.doi.org/10.1063/1.1334356
75.
75. B. Jenichen, J. Herfort, K. Kumakura, and A. Trampert, J. Phys. D: Appl. Phys. 43, 285404 (2010).
http://dx.doi.org/10.1088/0022-3727/43/28/285404
76.
76. P. Bruski, K.-J. Friedland, R. Farshchi, J. Herfort, and M. Ramsteiner, Solid State Commun. 152, 1131 (2012).
http://dx.doi.org/10.1016/j.ssc.2012.04.003
77.
77. X. Y. Dong, J. W. Dong, J. Q. Xie, T. C. Shih, S. McKernan, C. Leighton, and C. J. Palmstrøm, J. Cryst. Growth 254, 384 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01172-2
78.
78. R. Farshchi, J. Herfort, and M. Ramsteiner, “Sign-reversal of spin polarization in Co2FeSi/(In,Ga)As spin-LEDs” (unpublished).
79.
79. G. H. Fecher and C. Felser, J. Phys. D: Appl. Phys. 40, 1576 (2007).
http://dx.doi.org/10.1088/0022-3727/40/6/S11
80.
80. K. Özdoğan and I. Galanakis, J. Appl. Phys. 110, 076101 (2011).
http://dx.doi.org/10.1063/1.3642990
81.
81. Y. Miura, K. Nagao, and M. Shirai, Phys. Rev. B 69, 144413 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.144413
82.
82. S. S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 69, 094423 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.094423
83.
83. D. Orgassa, H. Fujiwara, T. C. Schulthess, and W. H. Butler, Phys. Rev. B 60, 13237 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.13237
84.
84. O. Brandt, M. Ramsteiner, T. Flissikowski, J. Herfort, and H. T. Grahn, Phys. Rev. B 81, 115302 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.115302
85.
85. R. Farshchi, P. Bruski, M. Ramsteiner, J. Herfort, O. Brandt, Y. Manzke, K.-J. Friedland, and H. T. Grahn, Solid State Commun. 151, 436 (2011).
http://dx.doi.org/10.1016/j.ssc.2011.01.003
86.
86. C. M. Hurd, The Hall Effect in Metals and Alloys (Plenum Press, New York, 1972).
87.
87. S. Yamada, K. Hamaya, K. Yamamoto, T. Murakami, K. Mibu, and M. Miyao, Appl. Phys. Lett. 96, 082511 (2010).
http://dx.doi.org/10.1063/1.3330895
88.
88. J. Herfort, H.-P. Schönherr, and K. H. Ploog, Appl. Phys. Lett. 83, 3912 (2003).
http://dx.doi.org/10.1063/1.1625426
89.
89. B. D. Schultz, H. H. Farrell, M. M. R. Evans, K. Lüdge, and C. J. Palmstrøm, J. Vac. Sci. Technol. B 20, 1600 (2002).
http://dx.doi.org/10.1116/1.1491994
90.
90. K. Lüdge, B. D. Schultz, P. Vogt, M. M. R. Evans, W. Braun, C. J. Palmstrøm, W. Richter, and N. Esser, J. Vac. Sci. Technol. B 20, 1591 (2002).
http://dx.doi.org/10.1116/1.1491993
91.
91. R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, and H. T. Grahn, Appl. Phys. Lett. 98, 162508 (2011).
http://dx.doi.org/10.1063/1.3582917
92.
92. L. Berger, Phys. Rev. B 54, 9353 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9353
93.
93. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
94.
94. D. C. Ralph and M. D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.12.019
95.
95. Y. Chen, X. Wang, H. Li, H. Xi, W. Zhu and Y. Yan, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18, 1724 (2010).
http://dx.doi.org/10.1109/TVLSI.2009.2032192
96.
96. Z. Diao, M. Pakala, A. Panchula, Y. Ding, D. Apalkov, L. C. Wang, E. Chen, and Y. Huai, J. Appl. Phys. 99, 08G510 (2006).
http://dx.doi.org/10.1063/1.2165169
97.
97. R. Sbiaa, S. Lua, R. Law, H. Meng, R. Lye, and H. K. Tan, J. Appl. Phys. 109, 07C707 (2011).
http://dx.doi.org/10.1063/1.3540361
98.
98. H. Zhao, A. Lyle, Y. Zhang, P. K. Amiri, G. Rowlands, Z. Zeng, J. Katine, H. Jiang, K. Galatsis, K. L. Wang, I. N. Krivorotov, and J.-P. Wang, J. Appl. Phys. 109, 07C720 (2011).
http://dx.doi.org/10.1063/1.3556784
99.
99. H. Kubota, A. Fukushima, Y. Ootani, S. Yuasa, K. Ando, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and Y. Suzuki, Jpn. J. Appl. Phys. 44, L1237 (2005).
http://dx.doi.org/10.1143/JJAP.44.L1237
100.
100. K. Tsunekawa, D. D. Djayaprawira, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 87, 072503 (2005).
http://dx.doi.org/10.1063/1.2012525
101.
101. J. Hayakawa, S. Ikeda, Y. M. Lee, R. Sasaki, T. Meguro, F. Matsukura, H. Takahashi, and H. Ohno, Jpn. J. Appl. Phys. 44, L1267 (2005).
http://dx.doi.org/10.1143/JJAP.44.L1267
102.
102. H. Sukegawa, S. Kasai, T. Furubayashi, S. Mitani, and K. Inomata, Appl. Phys. Lett. 96, 042508 (2010).
http://dx.doi.org/10.1063/1.3297879
103.
103. Y. Ohdaira, M. Oogane, H. Naganuma, and Y. Ando, Appl. Phys. Lett. 99, 132513 (2011).
http://dx.doi.org/10.1063/1.3645637
104.
104. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Nature 455, 778 (2008).
http://dx.doi.org/10.1038/nature07321
105.
105. C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, J. P. Heremans, and R. C. Myers, Nature Mater. 9, 898 (2010).
http://dx.doi.org/10.1038/nmat2860
106.
106. S. Bosu, Y. Sakuraba, K. Uchida, K. Saito, T. Ota, E. Saitoh, and K. Takanashi, Phys. Rev. B 83, 224401 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.224401
107.
107. B. Balke, S. Ouardi, T. Graf, J. Barth, C. G. F. Blum, G. H. Fecher, A. Shkabko, A. Weidenkaff, and C. Felser, Solid State Commun. 150, 529 (2010).
http://dx.doi.org/10.1016/j.ssc.2009.10.044
108.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/19/10.1063/1.4802504
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Ball and stick representation of the atomic configuration in the L2 ordering of CoFeSi. Reproduced with permission from Hashimoto , J. Vac. Sci. Technol. B , 1453 (2007). Copyright 2007 American Vacuum Society.

Image of FIG. 2.

Click to view

FIG. 2.

Schematic diagrams depicting density of states for spin up and spin down sub-bands in various types of materials. E denotes the position of the Fermi level.

Image of FIG. 3.

Click to view

FIG. 3.

LDA + U calculation of density of states for spin up and spin down sub-bands for (a) CoFeSi and (b) CoFeGe. Reprinted with permission from Balke , Sci. Technol. Adv. Mater. , 014102 (2008). Copyright 2008 National Institute for Materials Science.

Image of FIG. 4.

Click to view

FIG. 4.

Cross-sectional high-resolution TEM images of (a) a CoFeSi/GaAs heterostructure. Reprinted with permission from Hashimoto , J. Vac. Sci. Technol. B , 2004 (2006). Copyright 2006 American Vacuum Society. (b) A CoMnGe/GaAs heterostructure. Reprinted with permission from Dong , Appl. Phys. Lett. , 102107 (2005). Copyright 2005 American Institute of Physics.

Image of FIG. 5.

Click to view

FIG. 5.

Schematic diagram of a spin light emitting diode with a CoFeSi injector layer and a GaAs quantum well. With the device under forward bias (V), spin polarized electrons from the CoFeSi layer recombine with unpolarized holes at the quantum well, leading to emission of circularly polarized light.

Image of FIG. 6.

Click to view

FIG. 6.

Topview microscope images of spin-LEDs displaying (a) surface of the device in the absence of an applied bias and (b) electroluminescence under forward bias. The total device diameter is 450 m, and the outer rings are Ti/Au electrical contacts.

Image of FIG. 7.

Click to view

FIG. 7.

(a) Quantum well EL demonstrating spin injection in a CoFeSi/(Al,Ga)As spin-LED at 5 T, showing intensities for left and right circularly polarized light emission. (b) Magnetic field dependence of the electroluminescence polarization, P. The agreement with the field dependence of the CoFeSi magnetization, shown with a red line, demonstrates that the EL polarization originates from the ferromagnetic layer. Reprinted with permission from Farshchi , Appl. Phys. Lett. , 162508 (2011). Copyright 2011 American Institute of Physics.

Image of FIG. 8.

Click to view

FIG. 8.

(a) Top-view scanning electron microscope image of the CoFeSi/GaAs spin-valve structure. (b) Schematic of the measurement geometry for non-local electrical spin injection and detection in the CoFeSi/GaAs spin-valve structure. (c) Non-local spin-valve voltage measurements upon sweeping the in-plane magnetic field applied parallel to the ferromagnetic stripe contacts. (d) Non-local voltage measurements (at various temperatures) upon sweeping the magnetic field applied perpendicularly to the sample plane (Hanle measurements). (e) I-V characteristics for CoFeSi/GaAs Schottky tunneling diodes at 40 K and 300 K.

Image of FIG. 9.

Click to view

FIG. 9.

(a) Field dependence of EL polarization for CoFeSi/(Al,Ga)As spin-LEDs, where the CoFeSi layer has been grown at various substrate temperatures. (b) EL polarization reveals narrow window of optimal substrate temperatures, with a maximum value of 18% for the case of T = 280 °C.

Image of FIG. 10.

Click to view

FIG. 10.

Dark-field cross-section TEM micrographs obtained using the (111) superlattice reflection in (a) CoFeSi grown by MBE at T = 275 °C on GaAs. Reprinted with permission from Jenichen , J. Phys. D: Appl. Phys. , 285404 (2010). Copyright 2010 IOP Publishing Ltd. (b) CoFeSi deposited by sputtering on MgO at T = 200 °C. Reprinted with permission from Gercsi , Appl. Phys. Lett. , 082512 (2006). Copyright 2006 American Institute of Physics. In both cases, a laterally inhomogeneous distribution of the L2 ordered phase is observed.

Image of FIG. 11.

Click to view

FIG. 11.

Field dependence of electroluminescence polarization for spin-LEDs with CoFeSi injector layers grown at ambient MBE temperatures (top panels) and 280 °C (bottom panels) upon spin injection into (a) GaAs quantum wells and (b) InGaAs quantum wells. The solid red lines in (a) indicate SQUID magnetization measurements on an arbitrary scale. Panel (a) is reprinted with permission from Bruski , Phys. Rev. B , 140409 (2011). Copyright 2011 American Physical Society.

Image of FIG. 12.

Click to view

FIG. 12.

Calculated electronic density of states for the highly ordered L2 (shaded) and the disordered B2 (solid line) phase of CoFeSi, displayed separately for the majority-spin and minority-spin states. Reprinted with permission from Bruski , Phys. Rev. B , 140409 (2011). Copyright 2011 American Physical Society.

Image of FIG. 13.

Click to view

FIG. 13.

Field dependence of electroluminescence polarization for (a) a spin-LED grown at T = 200 °C and measured at different temperatures and (b) a spin-LED grown at T = 300 °C and measured at different applied forward bias values of 1.7 V and 2.0 V, measured at 20 K. The symbols indicate experimental data, while the solid lines represent the results of simulations. The dotted line in (b) displays the magnetization of the sample on an arbitrary scale. The solid symbols in (a) denote the results obtained after etching the CoFeSi layer off. Reprinted with permission from Brandt , Phys. Rev. B , 115302 (2010). Copyright 2010 American Physical Society.

Image of FIG. 14.

Click to view

FIG. 14.

Magnetic field dependence of the Hall resistance for (a)–(c) CoFeSi/i-GaAs reference samples and (d)–(f) spin-LEDs, grown at various substrate temperatures (T) and measured at 20 and 300 K. The thicknesses of the CoFeSi layers (9 or 18 nm) are indicated in each panel. The solid lines in (a) indicate SQUID magnetization measurements on an arbitrary scale. The solid lines in (d)–(f) represent the results of simulations. Reprinted with permission from Farshchi , Solid State Commun. , 436 (2011). Copyright 2011 Elsevier Ltd.

Image of FIG. 15.

Click to view

FIG. 15.

Magnetic field dependence of the sheet resistance measured at 20 and 300 K for (a) the spin-LED with the CoFeSi layer grown at T = 100 °C and (b) the reference sample consisting of 18-nm thick CoFeSi grown on undoped GaAs at the same T. The solid lines in (a) represent the results of simulations. Reprinted with permission from Farshchi , Solid State Commun. , 436 (2011). Copyright 2011 Elsevier Ltd.

Image of FIG. 16.

Click to view

FIG. 16.

Simulations of band-diagrams for the spin-LEDs for the case of (a) no compensation of the -layers of the LED structure and (b) reduction of carriers in the -layer by one order of magnitude due to compensation. The indicated depths are in reference to the CoFeSi/(Al,Ga)As interface. For both cases, Schottky barrier heights of 0.35 eV and a forward bias of 2 V are considered. The upper and lower dashed lines in each plot represent the quasi-Fermi levels for electrons and holes, respectively. The simulations were carried out for room temperature.

Image of FIG. 17.

Click to view

FIG. 17.

Wide-range XRD ω–2θ curves taken with an open-detector of CoFeSi films grown in the range 150–400 °C. Reprinted with permission from Hashimoto , J. Phys. D: Appl. Phys. , 1631 (2007). Copyright 2007 IOP Publishing Ltd.

Image of FIG. 18.

Click to view

FIG. 18.

(a) A cross-section TEM micrograph around the reacted area of a CoFeSi/GaAs film grown at 250 °C and (b) a bright field image of a film grown at 400 °C obtained along the [110] zone axis. Reprinted with permission from Hashimoto , J. Phys. D: Appl. Phys. , 1631 (2007). Copyright 2007 IOP Publishing Ltd.

Image of FIG. 19.

Click to view

FIG. 19.

(a) Schematic of the optical communication experiment, featuring two spin-LEDs placed face to face in a magnet cryostat. The detector spin-LED contains a CoFeSi injector layer while the emitter contains a Fe or CoFeSi injector layer, where the latter are expected to inject opposite spins into the LED structure. (b) The magnetic field dependence of the photocurrent (normalized to the zero-field value) in the detector upon irradiation by each emitter. For the case of emission from the spin-LED with the CoFeSi (Fe) injector layer, increasing magnetic field leads to an increasing alignment (anti-alignment) of the spin polarizations in the emitter and detector injector layers relative to each other and hence to an increasing (decreasing) photocurrent in the detector. Therefore, the detector spin-LED can be used to “read out” the opposite spin polarizations injected in the emitter spin-LEDs. Reprinted with permission from Farshchi , Appl. Phys. Lett. , 162508 (2011). Copyright 2011 American Institute of Physics.

Image of FIG. 20.

Click to view

FIG. 20.

(a) High-resolution cross-section TEM image of a CoFeB/MgO(15 Å)/CoFeB tunnel junction. Reprinted with permission from Hayakawa , Appl. Phys. Lett. , 072503 (2005). Copyright 2005 American Institute of Physics. (b) Example of current-induced magnetization switching in CoFeB/MgO/CoFeB MTJs. Reprinted with permission from Kubota , Jpn. J. Appl. Phys. , L1237 (2005). Copyright 2005 Japan Society of Applied Physics. (c) Scanning electron microscopy image of CoFeAlSi/Ag/CFAS nanopillar. Reprinted with permission from Ohdaira , Appl. Phys. Lett. , 042508 (2010). Copyright 2010 American Institute of Physics.

Image of FIG. 21.

Click to view

FIG. 21.

(a) Schematic illustration of fabricated spin-transistor structure with CoMnSi electrodes and (b) Cross-sectional view taken along arrow 1 of (a). (c) Drain current dependence on source-drain voltage for various gate voltages in parallel and anti-parallel MTJ conditions. Reprinted with permission from Ohdaira , Appl. Phys. Lett. , 132513 (2011). Copyright 2011 American Institute of Physics.

Tables

Generic image for table

Click to view

Table I.

Partial list of Co-based ferromagnetic Heusler alloys predicted to be half-metallic or nearly half-metallic, along with their ferromagnetic Curie temperatures, magnetic moments, lattice mismatch to GaAs, and spin injection efficiencies into GaAs structures. NA: not available.

Loading

Article metrics loading...

/content/aip/journal/jap/113/19/10.1063/1.4802504
2013-05-15
2014-04-16

Abstract

The notion of using electron spins as bits for highly efficient computation coupled with non-volatile data storage has driven an intense international research effort over the past decade. Such an approach, known as spin-based electronics or spintronics, is considered to be a promising alternative to charge-based electronics in future integrated circuit technologies. Many proposed spin-based devices, such as the well-known spin-transistor, require injection of spin polarized currents from ferromagnetic layers into semiconductor channels, where the degree of injected spin polarization is crucial to the overall device performance. Several ferromagnetic Heusler alloys are predicted to be half-metallic, meaning 100% spin-polarized at the Fermi level, and hence considered to be excellent candidates for electrical spin injection. Furthermore, they exhibit high Curie temperatures and close lattice matching to III-V semiconductors. Despite their promise, Heusler alloy/semiconductor heterostructures investigated in the past decade have failed to fulfill the expectation of near perfect spin injection and in certain cases have even demonstrated inferior behavior compared to their elemental ferromagnetic counterparts. To address this problem, a slew of theoretical and experimental work has emerged studying Heusler alloy/semiconductor interface properties. Here, we review the dominant prohibitive materials challenges that have been identified, namely atomic disorder in the Heusler alloy and in-diffusion of magnetic impurities into the semiconductor, and their ensuing detrimental effects on spin injection. To mitigate these effects, we propose the incorporation of half-metallic Heusler alloys grown at high temperatures (>200 °C) along with insertion of a MgO tunnel barrier at the ferromagnet/semiconductor interface to minimize magnetic impurity in-diffusion and potentially act as a spin-filter. By considering evidence from a variety of structural, optical, and electrical studies, we hope to paint a realistic picture of the materials environment encountered by spins upon injection from Heusler alloys into semiconductors. Finally, we review several emerging device paradigms that utilize Heusler alloys as sources of spin polarized electrons.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/19/1.4802504.html;jsessionid=c8i01z5pux9k.x-aip-live-01?itemId=/content/aip/journal/jap/113/19/10.1063/1.4802504&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Spin injection from Heusler alloys into semiconductors: A materials perspective
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/19/10.1063/1.4802504
10.1063/1.4802504
SEARCH_EXPAND_ITEM