1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/2/10.1063/1.4757907
1.
1. T. Suntola, Mater. Sci. Rep. 4, 261 (1989).
http://dx.doi.org/10.1016/S0920-2307(89)80006-4
2.
2. R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005).
http://dx.doi.org/10.1063/1.1940727
3.
3. M. Ritala and M. Leskelä, in Handbook of Thin Film Materials, edited by H. S. Nalwa (Academic, San Diego, 2002), Vol. 1, pp. 103159.
4.
4. M. Leskelä and M. Ritala, Angew. Chem., Int. Ed. 42, 5548 (2003).
http://dx.doi.org/10.1002/anie.200301652
5.
5. M. Putkonen, T. Sajavaara, L. Niinistö, and J. Keinonen, Anal. Bioanal. Chem. 382, 1791 (2005).
http://dx.doi.org/10.1007/s00216-005-3365-3
6.
6. M. Putkonen and L. Niinistö, Top. Organomet. Chem. 9, 125 (2005).
http://dx.doi.org/10.1007/b136145
7.
7. K. E. Elers, T. Blomberg, M. Peussa, B. Aitchison, S. Haukka, and S. Marcus, Chem. Vap. Deposition 12, 13 (2006).
http://dx.doi.org/10.1002/cvde.200500024
8.
8. M. Schumacher, P. K. Baumann, and T. Seidel, Chem. Vap. Deposition 12, 99 (2006).
http://dx.doi.org/10.1002/cvde.200500027
9.
9. A. C. Jones, H. C. Aspinall, P. R. Chalker, R. J. Potter, T. D. Manning, Y. F. Loo, R. O'Kane, J. M. Gaskell, and L. M. Smith, Chem. Vap. Deposition 12, 83 (2006).
http://dx.doi.org/10.1002/cvde.200500023
10.
10. M. Knez, K. Nielsch, and L. Niinistö, Adv. Mater. 19, 3425 (2007).
http://dx.doi.org/10.1002/adma.200700079
11.
11. F. Zaera, J. Mater. Chem. 18, 3521 (2008).
http://dx.doi.org/10.1039/b803832e
12.
12. A. Sherman, Atomic Layer Deposition for Nanotechnology: An Enabling Process for Nanotechnology Fabrication (Ivoryton, Connecticut, 2008).
13.
13. M. Ritala and J. Niinistö, “Atomic layer deposition,” in Chemical Vapour Deposition (Royal Society of Chemistry, Cambridge, UK, 2009), pp. 158206.
14.
14. J. Niinistö, K. Kukli, M. Heikkilä, M. Ritala, and M. Leskelä, Adv. Eng. Mater. 11, 223 (2009).
http://dx.doi.org/10.1002/adem.200800316
15.
15. H. Kim, H. -B.-R. Lee, and W. J. Maeng, Thin Solid Films 517, 2563 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.09.007
16.
16. G. Clavel, E. Rauwel, M.-G. Willinger, and N. Pinna, J. Mater. Chem. 19, 454 (2009).
http://dx.doi.org/10.1039/b806215c
17.
17. S. M. George, Chem. Rev. 110, 111 (2010).
http://dx.doi.org/10.1021/cr900056b
18.
18. R. L. Puurunen, H. Kattelus, and T. Suntola, “Atomic layer deposition in MEMS technology,” in Handbook of Silicon-Based MEMS Materials and Technologies (Elsevier, 2010), pp. 433446.
19.
19. J. R. Bakke, K. L. Pickrahn, T. P. Brennan, and S. F. Bent, Nanoscale 3, 3482 (2011).
http://dx.doi.org/10.1039/c1nr10349k
20.
20. H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, J. Vac. Sci. Technol. A 29, 050801 (2011).
http://dx.doi.org/10.1116/1.3609974
21.
21. C. Detavernier, J. Dendooven, S. P. Sree, K. F. Ludwig, and J. A. Martens, Chem. Soc. Rev. 40, 5242 (2011).
http://dx.doi.org/10.1039/c1cs15091j
22.
22. S. M. George, B. H. Lee, B. Yoon, A. I. Abdulagatov, and R. A. Hall, J. Nanosci. Nanotechnol. 11, 7948 (2011).
http://dx.doi.org/10.1166/jnn.2011.5034
23.
23. E. Marin, A. Lanzutti, F. Andreatta, M. Lekka, L. Guzman, and L. Fedrizzi, Corros. Rev. 29, 191 (2011).
http://dx.doi.org/10.1515/CORRREV.2011.010
24.
24. G. N. Parsons, S. M. George, and M. Knez, MRS Bull. 36, 865 (2011).
http://dx.doi.org/10.1557/mrs.2011.238
25.
25. M. Leskelä, M. Ritala, and O. Nilsen, MRS Bull. 36, 877 (2011).
http://dx.doi.org/10.1557/mrs.2011.240
26.
26. C. Bae, H. Shin, and K. Nielsch, MRS Bull. 36, 887 (2011).
http://dx.doi.org/10.1557/mrs.2011.264
27.
27. J. W. Elam, N. P. Dasgupta, and F. B. Prinz, MRS Bull. 36, 899 (2011).
http://dx.doi.org/10.1557/mrs.2011.265
28.
28. W. Kessels and M. Putkonen, MRS Bull. 36, 907 (2011).
http://dx.doi.org/10.1557/mrs.2011.239
29.
29. Q. Peng, J. S. Lewis, P. G. Hoertz, J. T. Glass, and G. N. Parsons, J. Vac. Sci. Technol. A 30, 010803 (2012).
http://dx.doi.org/10.1116/1.3672027
30.
30. H. Im, N. J. Wittenberg, N. C. Lindquist, and S. H. Oh, J. Mater. Res. 27, 663 (2012).
http://dx.doi.org/10.1557/jmr.2011.434
31.
31. H. C. M. Knoops, M. E. Donders, M. C. M. van de Sanden, P. H. L. Notten, and W. M. M. Kessels, J. Vac. Sci. Technol. A 30, 010801 (2012).
http://dx.doi.org/10.1116/1.3660699
32.
32. F. Zaera, J. Phys. Chem. Lett. 3, 1301 (2012).
http://dx.doi.org/10.1021/jz300125f
33.
33. S. D. Elliott, Semicond. Sci. Technol. 27, 074008 (2012).
http://dx.doi.org/10.1088/0268-1242/27/7/074008
34.
34. M. Knez, Semicond. Sci. Technol. 27, 074001 (2012).
http://dx.doi.org/10.1088/0268-1242/27/7/074001
35.
35. J. A. van Delft, D. Garcia-Alonso, and W. M. M. Kessels, Semicond. Sci. Technol. 27, 074002 (2012).
http://dx.doi.org/10.1088/0268-1242/27/7/074002
36.
36. C. Wiemer, L. Lamagna, and M. Fanciulli, Semicond. Sci. Technol. 27, 074013 (2012).
http://dx.doi.org/10.1088/0268-1242/27/7/074013
37.
37. O. Nilsen, O. B. Karlsen, A. Kjekshus, and H. Fjellvåg, Thin Solid Films 515, 4527 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.11.023
38.
38. O. Nilsen, O. B. Karlsen, A. Kjekshus, and H. Fjellvåg, Thin Solid Films 515, 4538 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.11.024
39.
39. O. Nilsen, O. B. Karlsen, A. Kjekshus, and H. Fjellvåg, Thin Solid Films 515, 4550 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.11.025
40.
40. O. Nilsen, O. B. Karlsen, A. Kjekshus, and H. Fjellvåg, J. Cryst. Growth 308, 366 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2007.08.001
41.
41. R. L. Puurunen, Appl. Surf. Sci. 245, 6 (2005).
http://dx.doi.org/10.1016/j.apsusc.2004.10.003
42.
42. H. C. M. Knoops, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 157, G241 (2010).
http://dx.doi.org/10.1149/1.3491381
43.
43. D. Hausmann, J. Becker, S. L. Wang, and R. G. Gordon, Science 298, 402 (2002).
http://dx.doi.org/10.1126/science.1073552
44.
44. T. Aaltonen, M. Alnes, O. Nilsen, L. Costelle, and H. Fjellvåg, J. Mater. Chem. 20, 2877 (2010).
http://dx.doi.org/10.1039/b923490j
45.
45. M. Putkonen, T. Aaltonen, M. Alnes, T. Sajavaara, O. Nilsen, and H. Fjellvåg, J. Mater. Chem. 19, 8767 (2009).
http://dx.doi.org/10.1039/b913466b
46.
46. S. I. Kol'tsov, T. V. Tuz, and A. N. Volkova, Zh. Prikl. Khim. 52, 2196 (1979)
46. S. I. Kol'tsov, T. V. Tuz, and A. N. Volkova, [J. Appl. Chem. USSR 52, 2074 (1979)].
47.
47. M. Putkonen and L. Niinistö, Thin Solid Films 514, 145 (2006).
http://dx.doi.org/10.1016/j.tsf.2006.03.001
48.
48. J. D. Ferguson, A. W. Weimer, and S. M. George, Thin Solid Films 413, 16 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00431-5
49.
49. B. Mårlid, M. Ottosson, U. Pettersson, K. Larsson, and J.-O. Carlsson, Thin Solid Films 402, 167 (2002).
http://dx.doi.org/10.1016/S0040-6090(01)01706-0
50.
50. J. Olander, L. M. Ottosson, P. Heszler, J. O. Carlsson, and K. M. E. Larsson, Chem. Vap. Deposition 11, 330 (2005).
http://dx.doi.org/10.1002/cvde.200506365
51.
51. V. V. Brei, V. A. Kasperskii, and N. E. Gulyanitskaya, React. Kinet. Catal. Lett. 50, 415 (1993).
http://dx.doi.org/10.1007/BF02062242
52.
52. V. M. Gun'ko, Kinet. Katal. 34, 463 (1993)
52. V. M. Gun'ko, Kinet. Katal. 34, 406 (1993).
53.
53. S. F. Komarov, J. J. Lee, J. B. Hudson, and M. P. D'Evelyn, Diamond Relat. Mater. 7, 1087 (1998).
http://dx.doi.org/10.1016/S0925-9635(98)00167-8
54.
54. T. I. Hukka, R. E. Rawles, and M. P. D'Evelyn, Thin Solid Films 225, 212 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90157-K
55.
55. R. Huang and A. H. Kitai, Appl. Phys. Lett. 61, 1450 (1992).
http://dx.doi.org/10.1063/1.107514
56.
56. R. Huang and A. H. Kitai, J. Electron. Mater. 22, 215 (1993).
http://dx.doi.org/10.1007/BF02665029
57.
57. R. Huang and A. H. Kitai, J. Mater. Sci. Lett. 12, 1444 (1993).
http://dx.doi.org/10.1007/BF00591603
58.
58. M. Putkonen, T. Sajavaara, and L. Niinistö, J. Mater. Chem. 10, 1857 (2000).
http://dx.doi.org/10.1039/b000643m
59.
59. M. Putkonen, M. Nieminen, and L. Niinistö, Thin Solid Films 466, 103 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.02.078
60.
60. T. Törndahl, C. Platzer-Björkman, J. Kessler, and M. Edoff, Prog. Photovoltaics 15, 225 (2007).
http://dx.doi.org/10.1002/pip.733
61.
61. R. Mantovan, M. Georcieva, M. Perego, H. L. Lu, A. Zenkevich, G. Scarel, and M. Fanciulli, Acta Phys. Pol. A 112, 1271 (2007).
62.
62. H.-L. Lu, S.-J. Ding, and D. W. Zhang, Electrochem. Solid-State Lett. 13, G25 (2010).
http://dx.doi.org/10.1149/1.3272800
63.
63. B. B. Burton, D. N. Goldstein, and S. M. George, J. Phys. Chem. C 113, 1939 (2009).
http://dx.doi.org/10.1021/jp806088m
64.
64. T. Hatanpää, J. Ihanus, J. Kansikas, I. Mutikainen, M. Ritala, and M. Leskelä, Chem. Mater. 11, 1846 (1999).
http://dx.doi.org/10.1021/cm991008e
65.
65. M. Putkonen, L.-S. Johansson, E. Rauhala, and L. Niinistö, J. Mater. Chem. 9, 2449 (1999).
http://dx.doi.org/10.1039/a904315b
66.
66. T. Pilvi, T. Hatanpää, E. Puukilainen, K. Arstila, M. Bischoff, U. Kaiser, N. Kaiser, M. Leskelä, and M. Ritala, J. Mater. Chem. 17, 5077 (2007).
http://dx.doi.org/10.1039/b710903b
67.
67. T. Pilvi, M. Ritala, M. Leskelä, M. Bischoff, U. Kaiser, and N. Kaiser, Appl. Opt. 47, C271 (2008).
http://dx.doi.org/10.1364/AO.47.00C271
68.
68. T. Pilvi, E. Puukilainen, U. Kreissig, M. Leskelä, and M. Ritala, Chem. Mater. 20, 5023 (2008).
http://dx.doi.org/10.1021/cm800948k
69.
69. J. M. Hartmann, J. Cibert, F. Kany, H. Mariette, M. Charleux, P. Alleysson, R. Langer, and G. Feuillet, J. Appl. Phys. 80, 6257 (1996).
http://dx.doi.org/10.1063/1.363714
70.
70. J. M. Hartmann, M. Charleux, H. Mariette, and J. L. Rouvière, Appl. Surf. Sci. 112, 142 (1997).
http://dx.doi.org/10.1016/S0169-4332(96)00978-6
71.
71. Y. J. Lee and S.-W. Kang, J. Vac. Sci. Technol. A 20, 1983 (2002).
http://dx.doi.org/10.1116/1.1513636
72.
72. Y. J. Lee and S.-W. Kang, Electrochem. Solid-State Lett. 5, C91 (2002).
http://dx.doi.org/10.1149/1.1503204
73.
73. S. I. Kol'tsov, V. B. Kopylov, V. M. Smirnov, and V. B. Aleskovskii, Zh. Prikl. Khim. 49, 516 (1976)
73. S. I. Kol'tsov, V. B. Kopylov, V. M. Smirnov, and V. B. Aleskovskii, [J. Appl. Chem. USSR 49, 525 (1976)].
74.
74. S. I. Kol'tsov, V. M. Smirnov, R. R. Rachkovskii, T. V. Malalaeva, and V. B. Aleskovskii, Zh. Prikl. Khim. 51, 2596 (1978)
74. S. I. Kol'tsov, V. M. Smirnov, R. R. Rachkovskii, T. V. Malalaeva, and V. B. Aleskovskii, [J. Appl. Chem. USSR 51, 2475 (1978)].
75.
75. K. Ezhovskii and A. I. Klusevich, Neorg. Mater. 39, 1230 (2003)
75. K. Ezhovskii and A. I. Klusevich, [Inorg. Mater. 39, 1062 (2003)].
http://dx.doi.org/10.1023/A:1026043209924
76.
76. T. Suntola, J. Antson, A. Pakkala, and S. Lindfors, in SID International Symposium in San Diego, California, 29 April-1 May 1980, Digest of Technical Papers (SID, Los Angeles, California, 1980), pp. 108109.
77.
77. T. S. Suntola, A. J. Pakkala, and S. G. Lindfors, U.S. patent 4,413,022 (1 November, 1983).
78.
78. T. S. Suntola, A. J. Pakkala, and S. G. Lindfors, U.S. patent 4,389,973 (28 June, 1983).
79.
79. J. Aarik, A. Aidla, A. Jaek, A.-A. Kiisler, and A.-A. Tammik, Acta Polytech. Scand., Chem. Technol. Metall. Ser. 195, 201 (1990).
80.
80. L. Hiltunen, H. Kattelus, M. Leskelä, M. Mäkelä, L. Niinistö, E. Nykänen, P. Soininen, and M. Tiitta, Mater. Chem. Phys. 28, 379 (1991).
http://dx.doi.org/10.1016/0254-0584(91)90073-4
81.
81. H. Kattelus, M. Ylilammi, J. Saarilahti, J. Antson, and S. Lindfors, Thin Solid Films 225, 296 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90173-M
82.
82. M. Nieminen, L. Niinistö, and R. Lappalainen, Microchim. Acta 119, 13 (1995).
http://dx.doi.org/10.1007/BF01244850
83.
83. M. Ritala, H. Saloniemi, M. Leskelä, T. Prohaska, G. Friedbacher, and M. Grasserbauer, Thin Solid Films 286, 54 (1996).
http://dx.doi.org/10.1016/S0040-6090(95)08524-6
84.
84. D. Riihelä, M. Ritala, R. Matero, and M. Leskelä, Thin Solid Films 289, 250 (1996).
http://dx.doi.org/10.1016/S0040-6090(96)08890-6
85.
85. K. Kukli, J. Ihanus, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 144, 300 (1997).
http://dx.doi.org/10.1149/1.1837399
86.
86. S. J. Yun, K. H. Lee, J. Skarp, H. R. Kim, and K. S. Nam, J. Vac. Sci. Technol. A 15, 2993 (1997).
http://dx.doi.org/10.1116/1.580895
87.
87. S. J. Yun, J. S. Kang, M. C. Paek, and K. S. Nam, J. Korean Phys. Soc. 33, S170 (1998).
http://dx.doi.org/10.3938/jkps.33.170
88.
88. M. Tiitta, E. Nykänen, P. Soininen, L. Niinistö, M. Leskelä, and R. Lappalainen, Mater. Res. Bull. 33, 1315 (1998).
http://dx.doi.org/10.1016/S0025-5408(98)00119-6
89.
89. M. Nieminen and L. Niinistö, Fresenius' J. Anal. Chem. 364, 224 (1999).
http://dx.doi.org/10.1007/s002160051328
90.
90. Y. S. Kim, J. S. Kang, S. J. Yun, and K. I. Cho, J. Korean Phys. Soc. 35, S216 (1999).
http://dx.doi.org/10.3938/jkps.35.216
91.
91. K. Kukli, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 148, F35 (2001).
http://dx.doi.org/10.1149/1.1343106
92.
92. M. Lulla, J. Asari, J. Aarik, K. Kukli, R. Rammula, U. Tapper, E. Kauppinen, and V. Sammelselg, Microchim. Acta 155, 195 (2006).
http://dx.doi.org/10.1007/s00604-006-0542-9
93.
93. S. Dueñas, H. Castán, H. García, A. de Castro, L. Bailón, K. Kukli, A. Aidla, J. Aarik, H. Mändar, T. Uustare, J. Lu, and A. Hårsta, J. Appl. Phys. 99, 054902 (2006).
http://dx.doi.org/10.1063/1.2177383
94.
94. M. Kemell, E. Färm, M. Ritala, and M. Leskelä, Eur. Polym. J. 44, 3564 (2008).
http://dx.doi.org/10.1016/j.eurpolymj.2008.09.005
95.
95. E. Färm, M. Kemell, M. Ritala, and M. Leskelä, J. Phys. Chem. C 112, 15791 (2008).
http://dx.doi.org/10.1021/jp803872s
96.
96. S. Dueñas, H. Castán, H. García, A. Gómez, L. Bailón, K. Kukli, J. Aarik, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 155, G241 (2008).
http://dx.doi.org/10.1149/1.2975828
97.
97. A. K. Roy, W. Baumann, I. Koenig, G. Baumann, S. Schulze, M. Hietschold, T. Maeder, D. J. Nestler, B. Wielage, and W. A. Goedel, Anal. Bioanal. Chem. 396, 1913 (2010).
http://dx.doi.org/10.1007/s00216-010-3470-9
98.
98. E. Färm, M. Kemell, E. Santala, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 157, K10 (2010).
http://dx.doi.org/10.1149/1.3250936
99.
99. Y. K. Ezhovskii and V. Y. Kholkin, Inorg. Mater. 46, 38 (2010).
http://dx.doi.org/10.1134/S0020168510010097
100.
100. G. Oya, M. Yoshida, and Y. Sawada, Appl. Phys. Lett. 51, 1143 (1987).
http://dx.doi.org/10.1063/1.98765
101.
101. G. Oya and Y. Sawada, J. Cryst. Growth 99, 572 (1990).
http://dx.doi.org/10.1016/0022-0248(90)90585-9
102.
102. M. Leskelä, L. Niinistö, E. Nykänen, P. Soininen, and M. Tiitta, Acta Polytech. Scand., Chem. Technol. Metall. Ser. 195, 193 (1990).
103.
103. M. Ritala, K. Kukli, A. Rahtu, P. I. Räisänen, M. Leskelä, T. Sajavaara, and J. Keinonen, Science 288, 319 (2000).
http://dx.doi.org/10.1126/science.288.5464.319
104.
104. P. I. Räisänen, M. Ritala, and M. Leskelä, J. Mater. Chem. 12, 1415 (2002).
http://dx.doi.org/10.1039/b201385c
105.
105. G. V. Anikeev, K. Ezhovskii, and S. I. Kol’tsov, Neorg. Mater. 24, 619 (1988)
105. G. V. Anikeev, K. Ezhovskii, and S. I. Kol’tsov, [Inorg. Mater. 24, 514 (1988)].
106.
106. G. S. Higashi and L. J. Rothberg, J. Vac. Sci. Technol. B 3, 1460 (1985).
http://dx.doi.org/10.1116/1.582966
107.
107. G. S. Higashi and C. G. Fleming, Appl. Phys. Lett. 55, 1963 (1989).
http://dx.doi.org/10.1063/1.102337
108.
108. C. Soto and W. T. Tysoe, J. Vac. Sci. Technol. A 9, 2686 (1991).
http://dx.doi.org/10.1116/1.577226
109.
109. C. Soto, R. Wu, D. W. Bennett, and W. T. Tysoe, Chem. Mater. 6, 1705 (1994).
http://dx.doi.org/10.1021/cm00046a024
110.
110. V. E. Drozd, A. P. Baraban, and I. O. Nikiforova, Appl. Surf. Sci. 82/83, 583 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90279-8
111.
111. S. M. George, O. Sneh, A. C. Dillon, M. L. Wise, A. W. Ott, L. A. Okada, and J. D. Way, Appl. Surf. Sci. 82/83, 460 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90259-3
112.
112. A. C. Dillon, A. W. Ott, J. D. Way, and S. M. George, Surf. Sci. 322, 230 (1995).
http://dx.doi.org/10.1016/0039-6028(95)90033-0
113.
113. E.-L. Lakomaa, A. Root, and T. Suntola, Appl. Surf. Sci. 107, 107 (1996).
http://dx.doi.org/10.1016/S0169-4332(96)00513-2
114.
114. A. W. Ott, K. C. McCarley, J. W. Klaus, J. D. Way, and S. M. George, Appl. Surf. Sci. 107, 128 (1996).
http://dx.doi.org/10.1016/S0169-4332(96)00503-X
115.
115. A. W. Ott, J. W. Klaus, J. M. Johnson, and S. M. George, Thin Solid Films 292, 135 (1997).
http://dx.doi.org/10.1016/S0040-6090(96)08934-1
116.
116. A. W. Ott, J. W. Klaus, J. M. Johnson, S. M. George, K. C. McCarley, and J. D. Way, Chem. Mater. 9, 707 (1997).
http://dx.doi.org/10.1021/cm960377x
117.
117. J. I. Skarp, P. J. Soininen, and P. T. Soininen, Appl. Surf. Sci. 112, 251 (1997).
http://dx.doi.org/10.1016/S0169-4332(96)01000-8
118.
118. P. Ericsson, S. Bengtsson, and J. Skarp, Microelectron. Eng. 36, 91 (1997).
http://dx.doi.org/10.1016/S0167-9317(97)00022-1
119.
119. Y. Kim, S. M. Lee, C. S. Park, S. I. Lee, and M. Y. Lee, Appl. Phys. Lett. 71, 3604 (1997).
http://dx.doi.org/10.1063/1.120454
120.
120. B. S. Berland, I. P. Gartland, A. W. Ott, and S. M. George, Chem. Mater. 10, 3941 (1998).
http://dx.doi.org/10.1021/cm980384g
121.
121. M. Ritala, M. Leskelä, J.-P. Dekker, C. Mutsaers, P. J. Soininen, and J. Skarp, Chem. Vap. Deposition 5, 7 (1999).
http://dx.doi.org/10.1002/(SICI)1521-3862(199901)5:1<7::AID-CVDE7>3.0.CO;2-J
122.
122. M. Ritala, M. Juppo, K. Kukli, A. Rahtu, and M. Leskelä, J. Phys. IV France 9, Pr81021 (1999).
http://dx.doi.org/10.1051/jp4:19998127
123.
123. R. Matero, M. Ritala, M. Leskelä, T. Salo, J. Aromaa, and O. Forsén, J. Phys. IV France 9, Pr8493 (1999).
http://dx.doi.org/10.1051/jp4:1999862
124.
124. E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, Appl. Phys. Lett. 76, 176 (2000).
http://dx.doi.org/10.1063/1.125694
125.
125. R. L. Puurunen, A. Root, S. Haukka, E. I. Iiskola, M. Lindblad, and A. O. I. Krause, J. Phys. Chem. B 104, 6599 (2000).
http://dx.doi.org/10.1021/jp000454i
126.
126. A. M. Uusitalo, T. T. Pakkanen, M. Kröger-Laukkanen, L. Niinistö, K. Hakala, S. Paavola, and B. Löfgren, J. Mol. Catal. A: Chem. 160, 343 (2000).
http://dx.doi.org/10.1016/S1381-1169(00)00330-7
127.
127. M. Juppo, A. Rahtu, M. Ritala, and M. Leskelä, Langmuir 16, 4034 (2000).
http://dx.doi.org/10.1021/la991183+
128.
128. R. Matero, A. Rahtu, M. Ritala, M. Leskelä, and T. Sajavaara, Thin Solid Films 368, 1 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)00890-7
129.
129. J. D. Ferguson, A. W. Weimer, and S. M. George, Thin Solid Films 371, 95 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)00973-1
130.
130. J. D. Ferguson, A. W. Weimer, and S. M. George, Appl. Surf. Sci. 162/163, 280 (2000).
http://dx.doi.org/10.1016/S0169-4332(00)00205-1
131.
131. M. Juppo, “ Atomic layer deposition of metal and transition metal nitride thin films and in situ mass spectrometry studies,” Ph.D. dissertation (University of Helsinki, Finland, 2001).
132.
132. R. L. Puurunen, M. Lindblad, A. Root, and A. O. I. Krause, Phys. Chem. Chem. Phys. 3, 1093 (2001).
http://dx.doi.org/10.1039/b007249o
133.
133. A. Rahtu, T. Alaranta, and M. Ritala, Langmuir 17, 6506 (2001).
http://dx.doi.org/10.1021/la010103a
134.
134. A. Paranjpe, S. Gopinath, T. Omstead, and R. Bubber, J. Electrochem. Soc. 148, G465 (2001).
http://dx.doi.org/10.1149/1.1385822
135.
135. E. P. Gusev, E. Cartier, D. A. Buchanan, M. Gribelyuk, M. Copel, H. Okorn-Schmidt, and C. D'Emic, Microelectron. Eng. 59, 341 (2001).
http://dx.doi.org/10.1016/S0167-9317(01)00667-0
136.
136. A. Rahtu, “ Atomic layer deposition of high permittivity oxides: Film growth and in situ studies,” Ph.D. dissertation (University of Helsinki, Finland, 2002).
137.
137. R. Puurunen, “ Preparation by atomic layer deposition and characterisation of catalyst supports surfaced with aluminium nitride,” Ph.D. dissertation (Helsinki University of Technology, Espoo, Finland, 2002).
138.
138. O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, Thin Solid Films 402, 248 (2002).
http://dx.doi.org/10.1016/S0040-6090(01)01678-9
139.
139. H. Nohira, W. Tsai, W. Besling, E. Young, J. Petry, T. Conard, W. Vandervorst, S. De Gendt, M. Heyns, J. Maes, and M. Tuominen, J. Non-Cryst. Solids 303, 83 (2002).
http://dx.doi.org/10.1016/S0022-3093(02)00970-5
140.
140. W. F. A. Besling, E. Young, T. Conard, C. Zhao, R. Carter, W. Vandervorst, M. Caymax, S. De Gendt, M. Heyns, J. Maes, M. Tuominen, and S. Haukka, J. Non-Cryst. Solids 303, 123 (2002).
http://dx.doi.org/10.1016/S0022-3093(02)00969-9
141.
141. L. G. Gosset, J.-F. Damlencourt, O. Renault, D. Rouchon, Ph. Holliger, A. Ermolieff, I. Trimaille, J.-J. Ganem, F. Martin, and M.-N. Séméria, J. Non-Cryst. Solids 303, 17 (2002).
http://dx.doi.org/10.1016/S0022-3093(02)00958-4
142.
142. J. W. Elam, Z. A. Sechrist, and S. M. George, Thin Solid Films 414, 43 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00427-3
143.
143. J. W. Elam, M. D. Groner, and S. M. George, Rev. Sci. Instrum. 73, 2981 (2002).
http://dx.doi.org/10.1063/1.1490410
144.
144. M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George, Thin Solid Films 413, 186 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00438-8
145.
145. J. M. Jensen, A. B. Oelkers, R. Toivola, D. C. Johnson, J. W. Elam, and S. M. George, Chem. Mater. 14, 2276 (2002).
http://dx.doi.org/10.1021/cm011587z
146.
146. B. Brijs, C. Huyghebaert, S. Nauwelaerts, M. Caymax, W. Vandervorst, K. Nakajima, K. Kimura, A. Bergmaier, G. Döllinger, W. N. Lennard, G. Terwagne, and A. Vantomme, Nucl. Instrum. Methods Phys. Res. B 190, 505 (2002).
http://dx.doi.org/10.1016/S0168-583X(02)00468-8
147.
147. J. W. Elam and S. M. George, Chem. Mater. 15, 1020 (2003).
http://dx.doi.org/10.1021/cm020607+
148.
148. T. M. Mayer, J. W. Elam, S. M. George, P. G. Kotula, and R. S. Goeke, Appl. Phys. Lett. 82, 2883 (2003).
http://dx.doi.org/10.1063/1.1570926
149.
149. N. D. Hoivik, J. W. Elam, R. J. Linderman, V. M. Bright, S. M. George, and Y. C. Lee, Sens. Actuators, A 103, 100 (2003).
http://dx.doi.org/10.1016/S0924-4247(02)00319-9
150.
150. R. Kuse, M. Kundu, T. Yasuda, N. Miyata, and A. Toriumi, J. Appl. Phys. 94, 6411 (2003).
http://dx.doi.org/10.1063/1.1618918
151.
151. S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl, and J. W. Bartha, Thin Solid Films 425, 216 (2003).
http://dx.doi.org/10.1016/S0040-6090(02)01262-2
152.
152. S. Jakschik, U. Schroeder, T. Hecht, D. Krueger, G. Dollinger, A. Bergmaier, C. Luhmann, and J. W. Bartha, Appl. Surf. Sci. 211, 352 (2003).
http://dx.doi.org/10.1016/S0169-4332(03)00264-2
153.
153. R. L. Puurunen, Chem. Vap. Deposition 9, 327 (2003).
http://dx.doi.org/10.1002/cvde.200306266
154.
154. J.-F. Damlencourt, O. Renault, A. Chabli, F. Martin, and M.-N. Séméria, J. Mater. Sci.: Mater. Electron. 14, 379 (2003).
http://dx.doi.org/10.1023/A:1023904802351
155.
155. M. M. Frank, Y. J. Chabal, and G. D. Wilk, Appl. Phys. Lett. 82, 4758 (2003).
http://dx.doi.org/10.1063/1.1585129
156.
156. M. M. Frank, Y. J. Chabal, M. L. Green, A. Delabie, B. Brijs, G. D. Wilk, M.-Y. Ho, E. B. O. da Rosa, I. J. R. Baumvol, and F. C. Stedile, Appl. Phys. Lett. 83, 740 (2003).
http://dx.doi.org/10.1063/1.1595719
157.
157. P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H. -J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, and J. Bude, Appl. Phys. Lett. 83, 180 (2003).
http://dx.doi.org/10.1063/1.1590743
158.
158. J. S. Lee, B. Min, K. Cho, S. Kim, J. Park, Y. T. Lee, N. S. Kim, M. S. Lee, S. O. Park, and J. T. Moon, J. Cryst. Growth 254, 443 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01203-X
159.
159. M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, Chem. Mater. 16, 639 (2004).
http://dx.doi.org/10.1021/cm0304546
160.
160. T. Kawahara, K. Torii, R. Mitsuhashi, A. Muto, A. Horiuchi, H. Ito, and H. Kitajima, Jpn. J. Appl. Phys., Part 1 43, 4129 (2004).
http://dx.doi.org/10.1143/JJAP.43.4129
161.
161. S. Jakschik, U. Schroeder, T. Hecht, D. Krueger, G. Dollinger, A. Bergmaier, C. Luhmann, and J. W. Bartha, Mater. Sci. Eng., B 107, 251 (2004).
http://dx.doi.org/10.1016/j.mseb.2003.09.044
162.
162. R. L. Puurunen, W. Vandervorst, W. F. A. Besling, O. Richard, H. Bender, T. Conard, C. Zhao, A. Delabie, M. Caymax, S. De Gendt, M. Heyns, M. M. Viitanen, M. de Ridder, H. H. Brongersma, Y. Tamminga, T. Dao, T. de Win, M. Verheijen, M. Kaiser, and M. Tuominen, J. Appl. Phys. 96, 4878 (2004).
http://dx.doi.org/10.1063/1.1787624
163.
163. R. L. Puurunen and W. Vandervorst, J. Appl. Phys. 96, 7686 (2004).
http://dx.doi.org/10.1063/1.1810193
164.
164. R. T. Brewer, M.-T. Ho, K. Z. Zhang, L. V. Goncharova, D. G. Starodub, T. Gustafsson, Y. J. Chabal, and N. Moumen, Appl. Phys. Lett. 85, 3830 (2004).
http://dx.doi.org/10.1063/1.1807024
165.
165. R. K. Grubbs, C. E. Nelson, N. J. Steinmetz, and S. M. George, Thin Solid Films 467, 16 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.02.099
166.
166. S. S. Lee, J. Y. Baik, K.-S. An, Y. D. Suh, J.-H. Oh, and Y. Kim, J. Phys. Chem. B 108, 15128 (2004).
http://dx.doi.org/10.1021/jp048038b
167.
167. M. Kang, J.-S. Lee, S.-K. Sim, B. Min, K. Cho, H. Kim, M.-Y. Sung, S. Kim, S. A. Song, and M.-S. Lee, Thin Solid Films 466, 265 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.02.025
168.
168. C. Lee, J. Choi, M. Cho, J. Park, C. S. Hwang, H. J. Kim, and J. Jeong, J. Vac. Sci. Technol. B 22, 1838 (2004).
http://dx.doi.org/10.1116/1.1775203
169.
169. R. G. Vitchev, J. J. Pireaux, T. Conard, H. Bender, J. Wolstenholme, and C. Defranoux, Appl. Surf. Sci. 235, 21 (2004).
http://dx.doi.org/10.1016/j.apsusc.2004.05.135
170.
170. J. D. Ferguson, A. W. Weimer, and S. M. George, Chem. Mater. 16, 5602 (2004).
http://dx.doi.org/10.1021/cm040008y
171.
171. H. Bender, T. Conard, O. Richard, B. Brijs, J. Pétry, W. Vandervorst, C. Defranoux, P. Boher, N. Rochat, C. Wyon, P. Mack, J. Wolstenholme, R. Vitchev, L. Houssiau, J.-J. Pireaux, A. Bergmaier, and G. Dollinger, Mater. Sci. Eng., B 109, 60 (2004).
http://dx.doi.org/10.1016/j.mseb.2003.10.118
172.
172. P. Boher, C. Defranoux, P. Heinrich, J. Wolstenholme, and H. Bender, Mater. Sci. Eng., B 109, 64 (2004).
http://dx.doi.org/10.1016/j.mseb.2003.10.117
173.
173. C. Lee, C. S. Hwang, and H. J. Kim, Integr. Ferroelectr. 67, 49 (2004).
http://dx.doi.org/10.1080/10584580490898443
174.
174. R. Matero, “ Atomic layer deposition of oxide filmsGrowth, characterisation and reaction mechanism studies,” Ph.D. dissertation (University of Helsinki, Finland, 2004).
175.
175. D. Wu, J. Lu, E. Vainonen-Ahlgren, E. Tois, M. Tuominen, M. Östling, and S.-L. Zhang, Solid-State Electron. 49, 193 (2005).
http://dx.doi.org/10.1016/j.sse.2004.08.012
176.
176. D. R. G. Mitchell, D. J. Attard, K. S. Finnie, G. Triani, C. J. Barbé, C. Depagne, and J. R. Bartlett, Appl. Surf. Sci. 243, 265 (2005).
http://dx.doi.org/10.1016/j.apsusc.2004.09.070
177.
177. S. -H. K. Park, J. Oh, C.-S. Hwang, J.-I. Lee, Y. S. Yang, and H. Y. Chu, Electrochem. Solid-State Lett. 8, H21 (2005).
http://dx.doi.org/10.1149/1.1850396
178.
178. K. K. Yadavalli, A. O. Orlov, G. L. Snider, and J. Elam, Microelectron. J. 36, 272 (2005).
http://dx.doi.org/10.1016/j.mejo.2005.02.024
179.
179. G. Xiong, J. W. Elam, H. Feng, C. Y. Han, H. H. Wang, L. E. Iton, L. A. Curtiss, M. J. Pellin, M. Kung, H. Kung, and P. C. Stair, J. Phys. Chem. B 109, 14059 (2005).
http://dx.doi.org/10.1021/jp0503415
180.
180. C. Wilson, R. Grubbs, and S. George, Chem. Mater. 17, 5625 (2005).
http://dx.doi.org/10.1021/cm050704d
181.
181. L. S. Wielunski, Y. Chabal, M. Paunescu, M. T. Ho, R. Brewer, and J. E. Reyes, Nucl. Instrum. Methods Phys. Res. B 241, 377 (2005).
http://dx.doi.org/10.1016/j.nimb.2005.07.045
182.
182. K. Y. Gao, Th. Seyller, K. Emtsev, L. Ley, F. Ciobanu, and G. Pensl, Silicon Carbide And Related Materials 2004 483, 559 (2005).
http://dx.doi.org/10.4028/www.scientific.net/MSF.483-485.559
183.
183. A. V. Whitney, J. W. Elam, S. L. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. B 109, 20522 (2005).
http://dx.doi.org/10.1021/jp0540656
184.
184. M. K. Tripp, F. Fabreguette, C. F. Herrmann, S. M. George, and V. M. Bright, Proc. SPIE 5720, 241 (2005).
http://dx.doi.org/10.1117/12.590429
185.
185. A. Stesmans and V. V. Afanas’ev, J. Appl. Phys. 97, 033510 (2005).
http://dx.doi.org/10.1063/1.1818718
186.
186. T. Seidel, G. Y. Kim, A. Srivastava, and Z. Karim, Solid State Technol. 48, 45 (2005).
187.
187. Z. A. Sechrist, F. H. Fabreguette, O. Heintz, T. M. Phung, D. C. Johnson, and S. M. George, Chem. Mater. 17, 3475 (2005).
http://dx.doi.org/10.1021/cm050470y
188.
188. M. Park, J. Koo, J. Kim, H. Jeon, C. Bae, and C. Krug, Appl. Phys. Lett. 86, 252110 (2005).
http://dx.doi.org/10.1063/1.1944206
189.
189. J. Koo, J. Lee, S. Kim, Y. Do Kim, H. Jeon, D. S. Kim, and Y. Kim, J. Korean Phys. Soc. 47, 501 (2005).
http://dx.doi.org/10.3938/jkps.47.501
190.
190. J. Koo and H. Jeon, J. Korean Phys. Soc. 46, 945 (2005).
http://dx.doi.org/10.3938/jkps.46.945
191.
191. N. Kawakami, Y. Yokota, T. Tachibana, K. Hayashi, and K. Kobashi, Diamond Relat. Mater. 14, 2015 (2005).
http://dx.doi.org/10.1016/j.diamond.2005.08.020
192.
192. M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, Appl. Phys. Lett. 87, 252104 (2005).
http://dx.doi.org/10.1063/1.2146060
193.
193. C. F. Herrmann, F. H. Fabreguette, D. S. Finch, R. Geiss, and S. M. George, Appl. Phys. Lett. 87, 123110 (2005).
http://dx.doi.org/10.1063/1.2053358
194.
194. L. F. Hakim, S. M. George, and A. W. Weimer, Nanotechnology 16, S375 (2005).
http://dx.doi.org/10.1088/0957-4484/16/7/010
195.
195. L. F. Hakim, J. Blackson, S. M. George, and A. W. Weimer, Chem. Vap. Deposition 11, 420 (2005).
http://dx.doi.org/10.1002/cvde.200506392
196.
196. N. J. Seong, S. G. Yoon, S. J. Yeom, H. K. Woo, D. S. Kil, J. S. Roh, and H. C. Sohn, Integr. Ferroelectr. 74, 131 (2005).
http://dx.doi.org/10.1080/10584580500414077
197.
197. D. B. Farmer and R. G. Gordon, Electrochem. Solid-State Lett. 8, G89 (2005).
http://dx.doi.org/10.1149/1.1862474
198.
198. J. W. Elam and M. J. Pellin, Anal. Chem. 77, 3531 (2005).
http://dx.doi.org/10.1021/ac050349a
199.
199. M. Cho, H. B. Park, J. Park, S. W. Lee, C. S. Hwang, J. Jeong, H. S. Kang, and Y. W. Kim, J. Electrochem. Soc. 152, F49 (2005).
http://dx.doi.org/10.1149/1.1884130
200.
200. A. A. Yasseri, N. P. Kobayashi, and T. I. Kamins, Appl. Phys. A 84, 1 (2006).
http://dx.doi.org/10.1007/s00339-006-3595-z
201.
201. W. S. Yang and S. W. Kang, Thin Solid Films 500, 231 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.11.014
202.
202. M. Xu, C. Zhang, S. J. Ding, H. L. Lu, W. Chen, Q. Q. Sun, D. W. Zhang, and L. K. Wang, J. Appl. Phys. 100, 106101 (2006).
http://dx.doi.org/10.1063/1.2388044
203.
203. M. Xu, C. H. Xu, S. J. Ding, H. L. Lu, D. W. Zhang, and L. K. Wang, J. Appl. Phys. 99, 074109 (2006).
http://dx.doi.org/10.1063/1.2187409
204.
204. C. R. Stoldt and V. M. Bright, J. Phys. D: Appl. Phys. 39, R163 (2006).
http://dx.doi.org/10.1088/0022-3727/39/9/R01
205.
205. Z. A. Sechrist, B. T. Schwartz, J. H. Lee, J. A. McCormick, R. Piestun, W. Park, and S. M. George, Chem. Mater. 18, 3562 (2006).
http://dx.doi.org/10.1021/cm060263d
206.
206. B. Moghtaderi, I. Shames, and E. Doroodchi, Chem. Eng. Technol. 29, 97 (2006).
http://dx.doi.org/10.1002/ceat.200500244
207.
207. D. R. G. Mitchell, G. Triani, D. J. Attard, K. S. Finnie, P. J. Evans, C. J. Barbé, and J. R. Bartlett, Smart Mater. Struct. 15, S57 (2006).
http://dx.doi.org/10.1088/0964-1726/15/1/010
208.
208. Y. S. Min, I. P. Asanov, and C. S. Hwang, Electrochem. Solid-State Lett. 9, G231 (2006).
http://dx.doi.org/10.1149/1.2197972
209.
209. H. L. Lu, L. Sun, S. J. Ding, M. Xu, D. W. Zhang, and L. K. Wang, Appl. Phys. Lett. 89, 152910 (2006).
http://dx.doi.org/10.1063/1.2363145
210.
210. H.-L. Lu, Y.-B. Li, M. Xu, S.-J. Ding, L. Sun, W. Zhang, and L.-K. Wang, Chin. Phys. Lett. 23, 1929 (2006).
http://dx.doi.org/10.1088/0256-307X/23/7/075
211.
211. K. Y. Lee, W. C. Lee, Y. J. Lee, M. L. Huang, C. H. Chang, T. B. Wu, M. Hong, and J. Kwo, Appl. Phys. Lett. 89, 222906 (2006).
http://dx.doi.org/10.1063/1.2397542
212.
212. M. Knez, A. Kadri, C. Wege, U. Gösele, H. Jeske, and K. Nielsch, Nano Lett. 6, 1172 (2006).
http://dx.doi.org/10.1021/nl060413j
213.
213. H. J. Kim, M. W. Kim, H. S. Kim, H. S. Kim, S. H. Kim, S. W. Lee, B. H. Choi, B. K. Jeong, and H. H. Lee, Mol. Cryst. Liq. Cryst. 459, 239 (2006).
http://dx.doi.org/10.1080/15421400600930375
214.
214. L. F. Hakim, J. A. McCormick, G. D. Zhan, A. W. Weimer, P. Li, and S. M. George, J. Am. Ceram. Soc. 89, 3070 (2006).
http://dx.doi.org/10.1111/j.1551-2916.2006.01216.x
215.
215. M. D. Groner, S. M. George, R. S. McLean, and P. F. Carcia, Appl. Phys. Lett. 88, 051907 (2006).
http://dx.doi.org/10.1063/1.2168489
216.
216. S. D. Elliott, G. Scarel, C. Wiemer, M. Fanciulli, and G. Pavia, Chem. Mater. 18, 3764 (2006).
http://dx.doi.org/10.1021/cm0608903
217.
217. H. W. Song, W. S. Han, J. Kim, J. H. Kim, and S. H. KoPark, Electron. Lett. 42, 808 (2006).
http://dx.doi.org/10.1049/el:20061534
218.
218. E. Graugnard, J. S. King, D. P. Gaillot, and C. J. Summers, Adv. Funct. Mater. 16, 1187 (2006).
http://dx.doi.org/10.1002/adfm.200500841
219.
219. H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gösele, and M. Zacharias, Nanotechnology 17, 5157 (2006).
http://dx.doi.org/10.1088/0957-4484/17/20/020
220.
220. F. H. Fabreguette, R. A. Wind, and S. M. George, Appl. Phys. Lett. 88, 013116 (2006).
http://dx.doi.org/10.1063/1.2161117
221.
221. I. Kim, J. Koo, J. Lee, and H. Jeon, Jpn. J. Appl. Phys., Part 1 45, 919 (2006).
http://dx.doi.org/10.1143/JJAP.45.919
222.
222. X. H. Zhang, B. Domercq, X. D. Wang, S. Yoo, T. Kondo, Z. L. Wang, and B. Kippelen, Org. Electron. 8, 718 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.06.009
223.
223. L. Zhang, H. C. Jiang, C. Liu, J. W. Dong, and P. Chow, J. Phys. D: Appl. Phys. 40, 3707 (2007).
http://dx.doi.org/10.1088/0022-3727/40/12/025
224.
224. C. C. Wang, C. C. Kei, Y. W. Yu, and T. P. Perng, Nano Lett. 7, 1566 (2007).
http://dx.doi.org/10.1021/nl070404q
225.
225. C. M. Tanner, M. Sawkar-Mathur, J. Lu, H. O. Blom, M. F. Toney, and J. P. Chang, Appl. Phys. Lett. 90, 061916 (2007).
http://dx.doi.org/10.1063/1.2435978
226.
226. C. M. Tanner, Y. C. Perng, C. Frewin, S. E. Saddow, and J. P. Chang, Appl. Phys. Lett. 91, 203510 (2007).
http://dx.doi.org/10.1063/1.2805742
227.
227. R. H. A. Ras, M. Kemell, J. de Wit, M. Ritala, G. ten Brinke, M. Leskelä, and O. Ikkala, Adv. Mater. 19, 102 (2007).
http://dx.doi.org/10.1002/adma.200600728
228.
228. R. L. Puurunen, J. Saarilahti, and H. Kattelus, ECS Trans. 11, 3 (2007).
http://dx.doi.org/10.1149/1.2779063
229.
229. Q. Peng, X. Y. Sun, J. C. Spagnola, G. K. Hyde, R. J. Spontak, and G. N. Parsons, Nano Lett. 7, 719 (2007).
http://dx.doi.org/10.1021/nl062948i
230.
230. J. A. McCormick, K. P. Rice, D. F. Paul, A. W. Weimer, and S. M. George, Chem. Vap. Deposition 13, 491 (2007).
http://dx.doi.org/10.1002/cvde.200606563
231.
231. J. A. McCormick, B. L. Cloutier, A. W. Weimer, and S. M. George, J. Vac. Sci. Technol. A 25, 67 (2007).
http://dx.doi.org/10.1116/1.2393299
232.
232. X. H. Liang, L. F. Hakim, G. D. Zhan, J. A. McCormick, S. M. George, A. W. Weimer, J. A. Spencer, K. J. Buechler, J. Blackson, C. J. Wood, and J. R. Dorgan, J. Am. Ceram. Soc. 90, 57 (2007).
http://dx.doi.org/10.1111/j.1551-2916.2006.01359.x
233.
233. X. H. Liang, S. M. George, and A. W. Weimer, Chem. Mater. 19, 5388 (2007).
http://dx.doi.org/10.1021/cm071431k
234.
234. D. Lee, T. Seidel, J. Dalton, and T. J. K. Liu, Electrochem. Solid-State Lett. 10, H257 (2007).
http://dx.doi.org/10.1149/1.2749331
235.
235. N. P. Kobayashi, C. L. Donley, S. Y. Wang, and R. S. Williams, J. Cryst. Growth 299, 218 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.11.224
236.
236. C. H. Ko and W. J. Lee, J. Solid State Electrochem. 11, 1391 (2007).
http://dx.doi.org/10.1007/s10008-007-0359-4
237.
237. S. Y. Kim, H. Kwon, S. J. Jo, J. S. Ha, W. T. Park, D. K. Kang, and B. H. Kim, Appl. Phys. Lett. 90, 103104 (2007).
http://dx.doi.org/10.1063/1.2709951
238.
238. I. Jõgi, K. Kukli, M. Kemell, M. Ritala, and M. Leskelä, J. Appl. Phys. 102, 114114 (2007).
http://dx.doi.org/10.1063/1.2822460
239.
239. G. K. Hyde, K. J. Park, S. M. Stewart, J. P. Hinestroza, and G. N. Parsons, Langmuir 23, 9844 (2007).
http://dx.doi.org/10.1021/la701449t
240.
240. C. F. Herrmann, F. W. DelRio, D. C. Miller, S. M. George, V. M. Bright, J. L. Ebel, R. E. Strawser, R. Cortez, and K. D. Leedy, Sens. Actuators, A 135, 262 (2007).
http://dx.doi.org/10.1016/j.sna.2006.07.002
241.
241. H. L. Lu, M. Xu, S. J. Ding, W. Chen, D. W. Zhang, and L. K. Wang, J. Mater. Res. 22, 1214 (2007).
http://dx.doi.org/10.1557/jmr.2007.0184
242.
242. J. L. van Hemmen, S. B. S. Heil, J. H. Klootwijk, F. Roozeboom, C. J. Hodson, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 154, G165 (2007).
http://dx.doi.org/10.1149/1.2737629
243.
243. L. F. Hakim, C. L. Vaughn, H. J. Dunsheath, C. S. Carney, X. Liang, P. Li, and A. W. Weimer, Nanotechnology 18, 345603 (2007).
http://dx.doi.org/10.1088/0957-4484/18/34/345603
244.
244. L. F. Hakim, J. H. Blackson, and A. W. Weimer, Chem. Eng. Sci. 62, 6199 (2007).
http://dx.doi.org/10.1016/j.ces.2007.07.013
245.
245. O. Hahtela, P. Sievilä, N. Chekurov, and I. Tittonen, J. Micromech. Microeng. 17, 737 (2007).
http://dx.doi.org/10.1088/0960-1317/17/4/010
246.
246. K. Y. Gao, F. Speck, K. Emtsev, T. Seyller, and L. Ley, J. Appl. Phys. 102, 094503 (2007).
http://dx.doi.org/10.1063/1.2803727
247.
247. M. M. Frank, Y. Wang, M. T. Ho, R. T. Brewer, N. Moumen, and Y. J. Chabal, J. Electrochem. Soc. 154, G44 (2007).
http://dx.doi.org/10.1149/1.2405839
248.
248. S. Ferrari, F. Perissinotti, E. Peron, L. Fumagalli, D. Natali, and M. Sampietro, Org. Electron. 8, 407 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.02.004
249.
249. F. H. Fabreguette and S. M. George, Thin Solid Films 515, 7177 (2007).
http://dx.doi.org/10.1016/j.tsf.2007.03.044
250.
250. Y. K. Chiou, C. H. Chang, C. C. Wang, K. Y. Lee, T. B. Wu, R. Kwo, and M. H. Hong, J. Electrochem. Soc. 154, G99 (2007).
http://dx.doi.org/10.1149/1.2472562
251.
251. M. J. Chen, Y. T. Shih, M. K. Wu, and F. Y. Tsai, J. Appl. Phys. 101, 033130 (2007).
http://dx.doi.org/10.1063/1.2464190
252.
252. N. Chekurov, M. Koskenvuori, V. M. Airaksinen, and I. Tittonen, J. Micromech. Microeng. 17, 1731 (2007).
http://dx.doi.org/10.1088/0960-1317/17/8/041
253.
253. C. H. Chang, Y. K. Chiou, C. W. Hsu, and T. B. Wu, Electrochem. Solid-State Lett. 10, G5 (2007).
http://dx.doi.org/10.1149/1.2426411
254.
254. K. Tapily, J. E. Jakes, D. S. Stone, P. Shrestha, D. Gu, H. Baumgart, and A. A. Elmustafa, J. Electrochem. Soc. 155, H545 (2008).
http://dx.doi.org/10.1149/1.2919106
255.
255. S. Maikap, P. J. Tzeng, T. Y. Wang, C. H. Lin, L. S. Lee, J. R. Yang, and M. J. Tsai, Electrochem. Solid-State Lett. 11, K50 (2008).
http://dx.doi.org/10.1149/1.2839762
256.
256. C. H. Hou, M. C. Chen, C. H. Chang, T. B. Wu, C. D. Chiang, and J. J. Luo, J. Electrochem. Soc. 155, G180 (2008).
http://dx.doi.org/10.1149/1.2948386
257.
257. Y. Yang, D. S. Kim, R. Scholz, M. Knez, S. M. Lee, U. Gösele, and M. Zacharias, Chem. Mater. 20, 3487 (2008).
http://dx.doi.org/10.1021/cm7034807
258.
258. Y. Yang, D. Kim, M. Knez, R. Scholz, A. Berger, E. Pippel, D. Hesse, U. Gösele, and M. Zacharias, J. Phys. Chem. C 112, 4068 (2008).
http://dx.doi.org/10.1021/jp710948j
259.
259. Y. Xuan, Y. Q. Wu, T. Shen, M. Qi, M. A. Capano, J. A. Cooper, and P. D. Ye, Appl. Phys. Lett. 92, 013101 (2008).
http://dx.doi.org/10.1063/1.2828338
260.
260. J. Sung, K. M. Kosuda, J. Zhao, J. W. Elam, K. G. Spears, and R. P. Van Duyne, J. Phys. Chem. C 112, 5707 (2008).
http://dx.doi.org/10.1021/jp0774140
261.
261. B. Shin, D. Choi, J. S. Harris, and P. C. Mclntyre, Appl. Phys. Lett. 93, 052911 (2008).
http://dx.doi.org/10.1063/1.2966357
262.
262. Y. Qin, S. M. Lee, A. Pan, U. Gösele, and M. Knez, Nano Lett. 8, 114 (2008).
http://dx.doi.org/10.1021/nl0721766
263.
263. M. J. Preiner and N. A. Melosh, Appl. Phys. Lett. 92, 213301 (2008).
http://dx.doi.org/10.1063/1.2917870
264.
264. J. Meyer, P. Görrn, S. Hamwi, H. H. Johannes, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 93, 073308 (2008).
http://dx.doi.org/10.1063/1.2975176
265.
265. Y. Luo, Y. Du, and V. Misra, Nanotechnology 19, 265301 (2008).
http://dx.doi.org/10.1088/0957-4484/19/26/265301
266.
266. X. Liang, G.-D. Zhan, D. M. King, J. A. McCormick, J. Zhang, S. M. George, and A. W. Weimer, Diamond Relat. Mater. 17, 185 (2008).
http://dx.doi.org/10.1016/j.diamond.2007.12.003
267.
267. B. K. Lee, S. Y. Park, H. C. Kim, K. Cho, E. M. Vogel, M. J. Kim, R. M. Wallace, and J. Y. Kim, Appl. Phys. Lett. 92, 203102 (2008).
http://dx.doi.org/10.1063/1.2928228
268.
268. J. Y. Huang, S. Liu, Y. Wang, and Z. Z. Ye, Appl. Surf. Sci. 254, 5917 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.03.150
269.
269. J. Huang, X. Wang, and Z. L. Wang, Nanotechnology 19, 025602 (2008).
http://dx.doi.org/10.1088/0957-4484/19/02/025602
270.
270. K. Grigoras, S. Franssila, and V. M. Airaksinen, Thin Solid Films 516, 5551 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.07.121
271.
271. Y. Ding, S. Xu, Y. Zhang, A. C. Wang, M. H. Wang, Y. H. Xiu, C. P. Wong, and Z. L. Wang, Nanotechnology 19, 355708 (2008).
http://dx.doi.org/10.1088/0957-4484/19/35/355708
272.
272. R. Cooper, H. P. Upadhyaya, T. K. Minton, M. R. Berman, X. Du, and S. M. George, Thin Solid Films 516, 4036 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.07.150
273.
273. C. D. Bae, S. Y. Kim, B. Y. Ahn, J. Y. Kim, M. M. Sung, and H. J. Shin, J. Mater. Chem. 18, 1362 (2008).
http://dx.doi.org/10.1039/b716652d
274.
274. M. Sawkar-Mathur, Y.-C. Perng, J. Lu, H.-O. Blom, J. Bargar, and J. P. Chang, Appl. Phys. Lett. 93, 233501 (2008).
http://dx.doi.org/10.1063/1.3040311
275.
275. M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, H. C. Kim, E. M. Vogel, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 93, 252905 (2008).
http://dx.doi.org/10.1063/1.3054348
276.
276. M. Kemell, M. Ritala, M. Leskelä, R. Groenen, and S. Lindfors, Chem. Vap. Deposition 14, 347 (2008).
http://dx.doi.org/10.1002/cvde.200800710
277.
277. M. C. Kautzky, A. V. Demtchouk, Y. Chen, K. M. Brown, S. E. McKinlay, and J. Xue, IEEE Trans. Magn. 44, 3576 (2008).
http://dx.doi.org/10.1109/TMAG.2008.2001795
278.
278. J.-S. Na, J. A. Ayres, K. L. Chandra, C. B. Gorman, and G. N. Parsons, J. Phys. Chem. C 112, 20510 (2008).
http://dx.doi.org/10.1021/jp8066298
279.
279. Y. Yang, R. Scholz, A. Berger, D. S. Kim, M. Knez, D. Hesse, U. Gösele, and M. Zacharias, Small 4, 2112 (2008).
http://dx.doi.org/10.1002/smll.200800795
280.
280. B. H. Lee, K. H. Lee, S. Im, and M. M. Sung, Org. Electron. 9, 1146 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.08.015
281.
281. N. P. Kobayashi and R. S. Williams, Chem. Mater. 20, 5356 (2008).
http://dx.doi.org/10.1021/cm702848y
282.
282. D. S. Kim, S. M. Lee, R. Scholz, M. Knez, U. Gösele, J. Fallert, H. Kalt, and M. Zacharias, Appl. Phys. Lett. 93, 103108 (2008).
http://dx.doi.org/10.1063/1.2952487
283.
283. E. Ghiraldelli, C. Pelosi, E. Gombia, G. Chiavarotti, and L. Vanzetti, Thin Solid Films 517, 434 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.08.052
284.
284. X. Liang, D. M. King, M. D. Groner, J. H. Blackson, J. D. Harris, S. M. George, and A. W. Weimer, J. Membr. Sci. 322, 105 (2008).
http://dx.doi.org/10.1016/j.memsci.2008.05.037
285.
285. Y. Qin, L. Liu, R. Yang, U. Gösele, and M. Knez, Nano Lett. 8, 3221 (2008).
http://dx.doi.org/10.1021/nl801548h
286.
286. C.-Y. Chang, F.-Y. Tsai, S.-J. Jhuo, and M.-J. Chen, Org. Electron. 9, 667 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.04.009
287.
287. D. S. Finch, T. Oreskovic, K. Ramadurai, C. F. Herrmann, S. M. George, and R. L. Mahajan, J. Biomed. Mater. Res. Part A 87(A), 100 (2008).
http://dx.doi.org/10.1002/jbm.a.31732
288.
288. C.-C. Cheng, C.-H. Chien, G.-L. Luo, J.-C. Liu, C.-C. Kei, D.-R. Liu, C.-N. Hsiao, C.-H. Yang, and C.-Y. Changa, J. Electrochem. Soc. 155, G203 (2008).
http://dx.doi.org/10.1149/1.2965495
289.
289. E. Ghiraldelli, C. Pelosi, E. Gombia, C. Frigeri, L. Vanzetti, and S. Abdullayeva, Jpn. J. Appl. Phys., Part 1 47, 8174 (2008).
http://dx.doi.org/10.1143/JJAP.47.8174
290.
290. Z. H. Liu, G. I. Ng, S. Arulkumaran, Y. K. T. Maung, K. L. Teo, S. C. Foo, and V. Sahmuganathan, Appl. Phys. Lett. 95, 223501 (2009).
http://dx.doi.org/10.1063/1.3268474
291.
291. J.-S. Na, Q. Peng, G. Scarel, and G. N. Parsons, Chem. Mater. 21, 5585 (2009).
http://dx.doi.org/10.1021/cm901404p
292.
292. D. H. Levy, S. F. Nelson, and D. Freeman, J. Disp. Technol. 5, 484 (2009).
http://dx.doi.org/10.1109/JDT.2009.2022770
293.
293. A. Brzezinski, Y.-C. Chen, P. Wiltzius, and P. V. Braun, J. Mater. Chem. 19, 9126 (2009).
http://dx.doi.org/10.1039/b914318a
294.
294. E. J. Kim, E. Chagarov, J. Cagnon, Y. Yuan, A. C. Kummel, P. M. Asbeck, S. Stemmer, K. C. Saraswat, and P. C. McIntyre, J. Appl. Phys. 106, 124508 (2009).
http://dx.doi.org/10.1063/1.3266006
295.
295. C. Henkel, S. Abermann, O. Bethge, and E. Bertagnolli, Semicond. Sci. Technol. 24, 125013 (2009).
http://dx.doi.org/10.1088/0268-1242/24/12/125013
296.
296. Y. Zhao, M. Wei, J. Lu, Z. L. Wang, and X. Duan, ACS Nano 3, 4009 (2009).
http://dx.doi.org/10.1021/nn901055d
297.
297. J.-S. Na, B. Gong, G. Scarel, and G. N. Parsons, ACS Nano 3, 3191 (2009).
http://dx.doi.org/10.1021/nn900702e
298.
298. W. E. Fenwick, N. Li, T. Xu, A. Melton, S. Wang, H. Yu, C. Summers, M. Jamil, and I. T. Ferguson, J. Cryst. Growth 311, 4306 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2009.07.022
299.
299. Y.-J. Chang, J. M. Gray, A. Imtiaz, D. Seghete, T. M. Wallis, S. M. George, P. Kabos, C. T. Rogers, and V. M. Bright, Sens. Actuators, A 154, 229 (2009).
http://dx.doi.org/10.1016/j.sna.2008.11.015
300.
300. E. Sun, F.-H. Su, Y.-T. Shih, H.-L. Tsai, C.-H. Chen, M.-K. Wu, J.-R. Yang, and M.-J. Chen, Nanotechnology 20, 445202 (2009).
http://dx.doi.org/10.1088/0957-4484/20/44/445202
301.
301. X. Liang, A. D. Lynn, D. M. King, S. J. Bryant, and A. W. Weimer, ACS Appl. Mater. Interfaces 1, 1988 (2009).
http://dx.doi.org/10.1021/am9003667
302.
302. R. Beetstra, U. Lafont, J. Nijenhuis, E. M. Kelder, and J. R. van Ommen, Chem. Vap. Deposition 15, 227 (2009).
http://dx.doi.org/10.1002/cvde.200906775
303.
303. P. Kumar, M. K. Wiedmann, C. H. Winter, and I. Avrutsky, Appl. Opt. 48, 5407 (2009).
http://dx.doi.org/10.1364/AO.48.005407
304.
304. L. Qian, W. Shen, B. Das, B. Shen, and G. W. Qin, Chem. Phys. Lett. 479, 259 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.08.031
305.
305. D.-K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, Appl. Phys. Lett. 95, 091101 (2009).
http://dx.doi.org/10.1063/1.3216582
306.
306. Y. Wang, Y. Qin, A. Berger, E. Yau, C. He, L. Zhang, U. Gösele, M. Knez, and M. Steinhart, Adv. Mater. 21, 2763 (2009).
http://dx.doi.org/10.1002/adma.200900136
307.
307. P. F. Carcia, R. S. McLean, M. D. Groner, A. A. Dameron, and S. M. George, J. Appl. Phys. 106, 023533 (2009).
http://dx.doi.org/10.1063/1.3159639
308.
308. E. Graugnard, O. M. Roche, S. N. Dunham, J. S. King, D. N. Sharp, R. G. Denning, A. J. Turberfield, and C. J. Summers, Appl. Phys. Lett. 94, 263109 (2009).
http://dx.doi.org/10.1063/1.3159834
309.
309. R. W. Wind, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, J. Appl. Phys. 105, 074309 (2009).
http://dx.doi.org/10.1063/1.3103254
310.
310. M. Caymax, G. Brammertz, A. Delabie, S. Sioncke, D. Lin, M. Scarrozza, G. Pourtois, W.-E. Wang, M. Meuris, and M. Heyns, Microelectron. Eng. 86, 1529 (2009).
http://dx.doi.org/10.1016/j.mee.2009.03.090
311.
311. O. Bethge, S. Abermann, C. Henkel, and E. Bertagnolli, Thin Solid Films 517, 5543 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.03.190
312.
312. N. T. Gabriel, S. S. Kim, and J. J. Talghader, Opt. Lett. 34, 1958 (2009).
http://dx.doi.org/10.1364/OL.34.001958
313.
313. W.-K. Lee, B.-Y. Oh, J.-H. Lim, H.-g. Park, B.-Y. Kim, H.-J. Na, and D.-S. Seo, Appl. Phys. Lett. 94, 223507 (2009).
http://dx.doi.org/10.1063/1.3126961
314.
314. A. S. Cavanagh, C. A. Wilson, A. W. Weimer, and S. M. George, Nanotechnology 20, 255602 (2009).
http://dx.doi.org/10.1088/0957-4484/20/25/255602
315.
315. J. Meyer, P. Goerrn, F. Bertram, S. Hamwi, T. Winkler, H.-H. Johannes, T. Weimann, P. Hinze, T. Riedl, and W. Kowalsky, Adv. Mater. 21, 1845 (2009).
http://dx.doi.org/10.1002/adma.200803440
316.
316. N. Kim, W. J. Potscavage, Jr., B. Domercq, B. Kippelen, and S. Graham, Appl. Phys. Lett. 94, 163308 (2009).
http://dx.doi.org/10.1063/1.3115144
317.
317. C. Lin, F.-Y. Tsai, M.-H. Lee, C.-H. Lee, T.-C. Tien, L.-P. Wang, and S.-Y. Tsai, J. Mater. Chem. 19, 2999 (2009).
http://dx.doi.org/10.1039/b819337a
318.
318. S.-M. Lee, G. Grass, G.-M. Kim, C. Dresbach, L. Zhang, U. Gösele, and M. Knez, Phys. Chem. Chem. Phys. 11, 3608 (2009).
http://dx.doi.org/10.1039/b820436e
319.
319. P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. W. Rubloff, Nat. Nanotechnol. 4, 292 (2009).
http://dx.doi.org/10.1038/nnano.2009.37
320.
320. O. Bethge, S. Abermann, C. Henkel, C. J. Straif, H. Hutter, and E. Bertagnolli, J. Electrochem. Soc. 156, G168 (2009).
http://dx.doi.org/10.1149/1.3205455
321.
321. N. Avci, J. Musschoot, P. F. Smet, K. Korthout, A. Avci, C. Detavernier, and D. Poelman, J. Electrochem. Soc. 156, J333 (2009).
http://dx.doi.org/10.1149/1.3211959
322.
322. J. B. Kim, C. Fuentes-Hernandez, W. J. Potscavage, Jr., X. H. Zhang, and B. Kippelen, Appl. Phys. Lett. 94, 142107 (2009).
http://dx.doi.org/10.1063/1.3118575
323.
323. Q. Peng, X.-Y. Sun, J. C. Spagnola, C. Saquing, S. A. Khan, R. J. Spontak, and G. N. Parsons, ACS Nano 3, 546 (2009).
http://dx.doi.org/10.1021/nn8006543
324.
324. W. C. Sun, W. L. Chang, C. H. Chen, C. H. Du, T. Y. Wang, T. Wang, and C. W. Lan, Electrochem. Solid-State Lett. 12, H388 (2009).
http://dx.doi.org/10.1149/1.3194252
325.
325. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, Appl. Opt. 48, 1727 (2009).
http://dx.doi.org/10.1364/AO.48.001727
326.
326. O. M. Hahtela, A. F. Satrapinski, P. H. Sievilä, and N. Chekurov, IEEE Trans. Instrum. Meas. 58, 1183 (2009).
http://dx.doi.org/10.1109/TIM.2008.2006964
327.
327. M. J. Preiner and N. A. Melosh, Langmuir 25, 2585 (2009).
http://dx.doi.org/10.1021/la804162a
328.
328. S. D. Standridge, G. C. Schatz, and J. T. Hupp, Langmuir 25, 2596 (2009).
http://dx.doi.org/10.1021/la900113e
329.
329. F. L. Lie, W. Rachmady, and A. J. Muscat, Microelectron. Eng. 86, 122 (2009).
http://dx.doi.org/10.1016/j.mee.2008.07.004
330.
330. S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, Appl. Phys. Lett. 94, 062107 (2009).
http://dx.doi.org/10.1063/1.3077021
331.
331. M. Li, M. Dai, and Y. J. Chabal, Langmuir 25, 1911 (2009).
http://dx.doi.org/10.1021/la803581k
332.
332. J.-M. Moon, D. Akin, Y. Xuan, P. D. Ye, P. Guo, and R. Bashir, Biomed. Microdevices 11, 135 (2009).
http://dx.doi.org/10.1007/s10544-008-9217-0
333.
333. C.-I. Hsieh, T.-M. Pan, J.-C. Lin, Y.-B. Peng, T.-Y. Huang, C.-R. Wu, and S. Shih, Appl. Surf. Sci. 255, 3769 (2009).
http://dx.doi.org/10.1016/j.apsusc.2008.10.048
334.
334. D. M. King, Y. Zhou, L. F. Hakim, X. Liang, P. Li, and A. W. Weimer, Ind. Eng. Chem. Res. 48, 352 (2009).
http://dx.doi.org/10.1021/ie800196h
335.
335. L. Lamagna, G. Scarel, M. Fanciulli, and G. Pavia, J. Vac. Sci. Technol. A 27, 443 (2009).
http://dx.doi.org/10.1116/1.3097849
336.
336. S. Sioncke, A. Delabie, G. Brammertz, T. Conard, A. Franquet, M. Caymax, A. Urbanzcyk, M. Heyns, M. Meuris, J. L. van Hemmen, W. Keuning, and W. M. M. Kessels, J. Electrochem. Soc. 156, H255 (2009).
http://dx.doi.org/10.1149/1.3076143
337.
337. J. Dendooven, D. Deduytsche, J. Musschoot, R. L. Vanmeirhaeghe, and C. Detavernier, J. Electrochem. Soc. 156, P63 (2009).
http://dx.doi.org/10.1149/1.3072694
338.
338. J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, J. Vac. Sci. Technol. B 27, 568 (2009).
http://dx.doi.org/10.1116/1.3079662
339.
339. C.-C. Wang, C.-C. Kei, Y. Tao, and T.-P. Perng, Electrochem. Solid-State Lett. 12, K49 (2009).
http://dx.doi.org/10.1149/1.3118501
340.
340. V. Ganapathy, B. Karunagaran, and S.-W. Rhee, J. Power Sources 195, 5138 (2010).
http://dx.doi.org/10.1016/j.jpowsour.2010.01.085
341.
341. C. Adelmann, D. Pierreux, J. Swerts, D. Dewulf, A. Hardy, H. Tielens, A. Franquet, B. Brijs, A. Moussa, T. Conard, M. K. VanBael, J. W. Maes, M. Jurczak, J. A. Kittl, and S. VanElshocht, Chem. Vap. Deposition 16, 170 (2010).
http://dx.doi.org/10.1002/cvde.200906833
342.
342. T. Hirvikorpi, M. Vähä-Nissi, A. Harlin, and M. Karppinen, Thin Solid Films 518, 5463 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.04.018
343.
343. L. Qian, W. Shen, B. Shen, G. W. Qin, and B. Das, Nanotechnology 21, 305705 (2010).
http://dx.doi.org/10.1088/0957-4484/21/30/305705
344.
344. M. M. Aslan, N. A. Webster, C. L. Byard, M. B. Pereira, C. M. Hayes, R. S. Wiederkehr, and S. B. Mendes, Thin Solid Films 518, 4935 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.03.011
345.
345. R. A. Wind and S. M. George, J. Phys. Chem. A 114, 1281 (2010).
http://dx.doi.org/10.1021/jp9049268
346.
346. J.-S. Na, G. Scarel, and G. N. Parsons, J. Phys. Chem. C 114, 383 (2010).
http://dx.doi.org/10.1021/jp908332q
347.
347. J.-h. Chang, D. Y. Choi, S. Han, and J. J. Pak, Microfluid. Nanofluid. 8, 269 (2010).
http://dx.doi.org/10.1007/s10404-009-0511-9
348.
348. G. K. Hyde, G. Scarel, J. C. Spagnola, Q. Peng, K. Lee, B. Gong, K. G. Roberts, K. M. Roth, C. A. Hanson, C. K. Devine, S. M. Stewart, D. Hojo, J.-S. Na, J. S. Jur, and G. N. Parsons, Langmuir 26, 2550 (2010).
http://dx.doi.org/10.1021/la902830d
349.
349. J. F. John, S. Mahurin, S. Dai, and M. J. Sepaniak, J. Raman Spectrosc. 41, 4 (2010).
http://dx.doi.org/10.1002/jrs.2395
350.
350. D. Gu, H. Baumgart, T. M. Abdel-Fattah, and G. Namkoong, ACS Nano 4, 753 (2010).
http://dx.doi.org/10.1021/nn901250w
351.
351. D. J. Comstock, J. W. Elam, M. J. Pellin, and M. C. Hersam, Anal. Chem. 82, 1270 (2010).
http://dx.doi.org/10.1021/ac902224q
352.
352. Y. S. Jung, A. S. Cavanagh, A. C. Dillon, M. D. Groner, S. M. George, and S.-H. Lee, J. Electrochem. Soc. 157, A75 (2010).
http://dx.doi.org/10.1149/1.3258274
353.
353. X. Liang, X. Lu, M. Yu, A. S. Cavanagh, D. L. Gin, and A. W. Weimer, J. Membr. Sci. 349, 1 (2010).
http://dx.doi.org/10.1016/j.memsci.2009.11.067
354.
354. G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, Electrochem. Solid-State Lett. 13, H76 (2010).
http://dx.doi.org/10.1149/1.3276040
355.
355. I. Seo, D.-J. Lee, Q. Hu, C.-W. Kwon, K. Lim, S.-H. Lee, H.-M. Kim, Y.-S. Kim, H. H. Lee, D. Y. Ryu, K.-B. Kim, and T.-S. Yoon, Electrochem. Solid-State Lett. 13, K19 (2010).
http://dx.doi.org/10.1149/1.3271025
356.
356. S. Swaminathan, M. Shandalov, Y. Oshima, and P. C. McIntyre, Appl. Phys. Lett. 96, 082904 (2010).
http://dx.doi.org/10.1063/1.3313946
357.
357. G. Dingemans, R. Seguin, P. Engelhart, M. C. M. van de Sanden, and W. M. M. Kessels, Phys. Status Solidi (RRL) 4, 10 (2010).
http://dx.doi.org/10.1002/pssr.200903334
358.
358. N. T. Gabriel and J. J. Talghader, Appl. Opt. 49, 1242 (2010).
http://dx.doi.org/10.1364/AO.49.001242
359.
359. H. H. Park, P. S. Kang, G. T. Kim, and J. S. Ha, Appl. Phys. Lett. 96, 102908 (2010).
http://dx.doi.org/10.1063/1.3357432
360.
360. T. C. Li, A. M. Spokoyny, C. She, O. K. Farha, C. A. Mirkin, T. J. Marks, and J. T. Hupp, J. Am. Chem. Soc. 132, 4580 (2010).
http://dx.doi.org/10.1021/ja100396n
361.
361. G. Scarel, J.-S. Na, and G. N. Parsons, J. Phys.: Condens. Matter 22, 155401 (2010).
http://dx.doi.org/10.1088/0953-8984/22/15/155401
362.
362. Y. Qin, Y. Kim, L. Zhang, S.-M. Lee, R. B. Yang, A. Pan, K. Mathwig, M. Alexe, U. Gösele, and M. Knez, Small 6, 910 (2010).
http://dx.doi.org/10.1002/smll.200902159
363.
363. L. J. Antila, M. J. Heikkilä, V. Aumanen, M. Kemell, P. Myllyperkiö, M. Leskelä, and J. E. I. Korppi-Tommola, J. Phys. Chem. Lett. 1, 536 (2010).
http://dx.doi.org/10.1021/jz9003075
364.
364. E. Sun, F.-H. Su, C.-H. Chen, and M.-J. Chen, Appl. Surf. Sci. 256, 5021 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.03.047
365.
365. W. Li, O. Auciello, R. N. Premnath, and B. Kabius, Appl. Phys. Lett. 96, 162907 (2010).
http://dx.doi.org/10.1063/1.3413961
366.
366. B. Shin, J. R. Weber, R. D. Long, P. K. Hurley, C. G. Vande Walle, and P. C. McIntyre, Appl. Phys. Lett. 96, 152908 (2010).
http://dx.doi.org/10.1063/1.3399776
367.
367. J.-T. Lee, F.-M. Wang, C.-S. Cheng, C.-C. Li, and C.-H. Lin, Electrochim. Acta 55, 4002 (2010).
http://dx.doi.org/10.1016/j.electacta.2010.02.043
368.
368. H. Feng, J. W. Elam, J. A. Libera, W. Setthapun, and P. C. Stair, Chem. Mater. 22, 3133 (2010).
http://dx.doi.org/10.1021/cm100061n
369.
369. J. C. Spagnola, B. Gong, S. A. Arvidson, J. S. Jur, S. A. Khan, and G. N. Parsons, J. Mater. Chem. 20, 4213 (2010).
http://dx.doi.org/10.1039/c0jm00355g
370.
370. T.-C. Tien, F.-M. Pan, L.-P. Wang, F.-Y. Tsai, and C. Lin, J. Phys. Chem. C 114, 10048 (2010).
http://dx.doi.org/10.1021/jp1023229
371.
371. F. Mumm, M. Kemell, M. Leskelä, and P. Sikorski, Bioinsp. Biomim. 5, 026005 (2010).
http://dx.doi.org/10.1088/1748-3182/5/2/026005
372.
372. J. Dendooven, D. Deduytsche, J. Musschoot, R. L. Vanmeirhaeghe, and C. Detavernier, J. Electrochem. Soc. 157, G111 (2010).
http://dx.doi.org/10.1149/1.3301664
373.
373. J. S. Jur, J. C. Spagnola, K. Lee, B. Gong, Q. Peng, and G. N. Parsons, Langmuir 26, 8239 (2010).
http://dx.doi.org/10.1021/la904604z
374.
374. J. Malm, E. Sahramo, M. Karppinen, and R. H. A. Ras, Chem. Mater. 22, 3349 (2010).
http://dx.doi.org/10.1021/cm903831c
375.
375. S. E. Potts, W. Keuning, E. Langereis, G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 157, P66 (2010).
http://dx.doi.org/10.1149/1.3428705
376.
376. M. Puttaswamy, K. B. Haugshøj, L. H. Christensen, and P. Kingshott, Chem.–Eur. J. 16, 13925 (2010).
http://dx.doi.org/10.1002/chem.201001888
377.
377. K. Gerasopoulos, M. McCarthy, P. Banerjee, X. Fan, J. N. Culver, and R. Ghodssi, Nanotechnology 21, 055304 (2010).
http://dx.doi.org/10.1088/0957-4484/21/5/055304
378.
378. D. J. Guo, A. I. Abdulagatov, D. M. Rourke, K. A. Bertness, S. M. George, Y. C. Lee, and W. Tan, Langmuir 26, 18382 (2010).
http://dx.doi.org/10.1021/la103337a
379.
379. Q. Peng, Y.-C. Tseng, S. B. Darling, and J. W. Elam, Adv. Mater. 22, 5129 (2010).
http://dx.doi.org/10.1002/adma.201002465
380.
380. A. J. Niskanen, T. Ylinen-Hinkka, M. Pusa, S. Kulmala, and S. Franssila, Thin Solid Films 519, 430 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.07.027
381.
381. S. Sarkar, J. H. Culp, J. T. Whyland, M. Garvan, and V. Misra, Org. Electron. 11, 1896 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.08.020
382.
382. K. M. Roth, K. G. Roberts, and G. K. Hyde, Text. Res. J. 80, 1970 (2010).
http://dx.doi.org/10.1177/0040517510371868
383.
383. F. Werner, B. Veith, V. Tiba, P. Poodt, F. Roozeboom, R. Brendel, and J. Schmidt, Appl. Phys. Lett. 97, 162103 (2010).
http://dx.doi.org/10.1063/1.3505311
384.
384. J. Y. Kim and S. M. George, J. Phys. Chem. C 114, 17597 (2010).
http://dx.doi.org/10.1021/jp9120244
385.
385. J. W. Elam, J. A. Libera, T. H. Huynh, H. Feng, and M. J. Pellin, J. Phys. Chem. C 114, 17286 (2010).
http://dx.doi.org/10.1021/jp1030587
386.
386. M. Laamanen, M. Blomberg, R. Puurunen, A. Miranto, and H. Kattelus, Sens. Actuators, A 162, 210 (2010).
http://dx.doi.org/10.1016/j.sna.2010.02.015
387.
387. D. Hojo and T. Adschiri, Chem. Vap. Deposition 16, 248 (2010).
http://dx.doi.org/10.1002/cvde.201006854
388.
388. G. Gay, T. Baron, C. Agraffeil, B. Salhi, T. Chevolleau, G. Cunge, H. Grampeix, J.-H. Tortai, F. Martin, E. Jalaguier, and B. D. Salvo, Nanotechnology 21, 435301 (2010).
http://dx.doi.org/10.1088/0957-4484/21/43/435301
389.
389. T. Hirvikorpi, M. Vähä-Nissi, A. Harlin, J. Marles, V. Miikkulainen, and M. Karppinen, Appl. Surf. Sci. 257, 736 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.07.051
390.
390. T. K. Minton, B. Wu, J. Zhang, N. F. Lindholm, A. I. Abdulagatov, J. O'Patchen, S. M. George, and M. D. Groner, ACS Appl. Mater. Interfaces 2, 2515 (2010).
http://dx.doi.org/10.1021/am100217m
391.
391. Y. Xu, L. Chen, Q.-Q. Sun, J.-J. Gu, H.-L. Lu, P.-F. Wang, S.-J. Ding, and D. W. Zhang, Solid State Commun. 150, 1690 (2010).
http://dx.doi.org/10.1016/j.ssc.2010.06.023
392.
392. S. Smith, K. McAuliffe, and J. F. Conley, Jr., Solid-State Electron. 54, 1076 (2010).
http://dx.doi.org/10.1016/j.sse.2010.05.007
393.
393. P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, and A. Vermeer, Adv. Mater. 22, 3564 (2010).
http://dx.doi.org/10.1002/adma.201000766
394.
394. J. C. Spagnola, B. Gong, and G. N. Parsons, J. Vac. Sci. Technol. A 28, 1330 (2010).
http://dx.doi.org/10.1116/1.3488604
395.
395. A. Szeghalmi, K. Sklarek, M. Helgert, R. Brunner, W. Erfurth, U. Gösele, and M. Knez, Small 6, 2701 (2010).
http://dx.doi.org/10.1002/smll.201000169
396.
396. J. Lu and P. C. Stair, Angew. Chem., Int. Ed. 49, 2547 (2010).
http://dx.doi.org/10.1002/anie.200907168
397.
397. S. Y. No, D. Eom, C. S. Hwang, and H. J. Kim, J. Electrochem. Soc. 153, F87 (2006).
http://dx.doi.org/10.1149/1.2186179
398.
398. H. J. Kim, S. Y. No, D. Eom, and C. S. Hwang, J. Korean Phys. Soc. 49, 1271 (2006).
http://dx.doi.org/10.3938/jkps.49.1271
399.
399. J.-F. Fan, J. Sugioka, and K. Toyoda, Jpn. J. Appl. Phys., Part 2 30, L1139 (1991).
http://dx.doi.org/10.1143/JJAP.30.L1139
400.
400. J.-F. Fan and K. Toyoda, Appl. Surf. Sci. 60/61, 765 (1992).
http://dx.doi.org/10.1016/0169-4332(92)90510-5
401.
401. J.-F. Fan and K. Toyoda, Jpn. J. Appl. Phys., Part 2 32, L1349 (1993).
http://dx.doi.org/10.1143/JJAP.32.L1349
402.
402. H. Kumagai, K. Toyoda, M. Matsumoto, and M. Obara, Jpn. J. Appl. Phys., Part 1 32, 6137 (1993).
http://dx.doi.org/10.1143/JJAP.32.6137
403.
403. H. Kumagai, M. Matsumoto, and Y. Kawamura, Jpn. J. Appl. Phys., Part 1 33, 7086 (1994).
http://dx.doi.org/10.1143/JJAP.33.7086
404.
404. H. Kumagai and K. Toyoda, Appl. Surf. Sci. 82/83, 481 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90262-3
405.
405. H. Kumagai, K. Toyoda, K. Kobayashi, M. Obara, and Y. Iimura, Appl. Phys. Lett. 70, 2338 (1997).
http://dx.doi.org/10.1063/1.118898
406.
406. A. Szeghalmi, E. B. Kley, and M. Knez, J. Phys. Chem. C 114, 21150 (2010).
http://dx.doi.org/10.1021/jp107540y
407.
407. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, Adv. Funct. Mater. 20, 2053 (2010).
http://dx.doi.org/10.1002/adfm.200902044
408.
408. J. B. Kim, D. R. Kwon, K. Chakrabarti, C. Lee, K. Y. Oh, and J. H. Lee, J. Appl. Phys. 92, 6739 (2002).
http://dx.doi.org/10.1063/1.1515951
409.
409. J. Kim, K. Chakrabarti, J. Lee, K.-Y. Oh, and C. Lee, Mater. Chem. Phys. 78, 733 (2003).
http://dx.doi.org/10.1016/S0254-0584(02)00375-9
410.
410. S. K. Kim and C. S. Hwang, J. Appl. Phys. 96, 2323 (2004).
http://dx.doi.org/10.1063/1.1769090
411.
411. T.-P. Lee, C. Jang, B. Haselden, M. Dong, S. Park, L. Bartholomew, H. Chatham, and Y. Senzaki, J. Vac. Sci. Technol. B 22, 2295 (2004).
http://dx.doi.org/10.1116/1.1781659
412.
412. S. K. Kim, S. W. Lee, C. S. Hwang, Y. S. Min, J. Y. Won, and J. Jeong, J. Electrochem. Soc. 153, F69 (2006).
http://dx.doi.org/10.1149/1.2177047
413.
413. Y. Hwang, K. Heo, C. H. Chang, M. K. Joo, and M. Ree, Thin Solid Films 510, 159 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.12.162
414.
414. M. Y. Li, Y. Y. Chang, H. C. Wu, C. S. Huang, J. C. Chen, J. L. Lue, and S. M. Chang, J. Electrochem. Soc. 154, H967 (2007).
http://dx.doi.org/10.1149/1.2778861
415.
415. J. H. Kwon, M. Dai, M. D. Halls, and Y. J. Chabal, Chem. Mater. 20, 3248 (2008).
http://dx.doi.org/10.1021/cm703667h
416.
416. G. D. Zhan, X. H. Du, D. M. King, L. F. Hakim, X. H. Liang, J. A. McCormick, and A. W. Weimer, J. Am. Ceram. Soc. 91, 831 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2007.02210.x
417.
417. S. Diplas, M. Avice, A. Thøgersen, J. S. Christensen, U. Grossner, B. G. Svensson, O. Nilsen, H. Fjellvåg, S. Hinderc, and J. F. Watts, Surf. Interface Anal. 40, 822 (2008).
http://dx.doi.org/10.1002/sia.2787
418.
418. T. O. Kääriäinen, D. C. Cameron, and M. Tanttari, Plasma Processes Polym. 6, 631 (2009).
http://dx.doi.org/10.1002/ppap.200900038
419.
419. A. J. Niskanen, T. Ylinen-Hinkka, S. Kulmala, and S. Franssila, Thin Solid Films 517, 5779 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.04.014
420.
420. A. Delabie, A. Alian, F. Bellenger, M. Caymax, T. Conard, A. Franquet, S. Sioncke, S. VanElshocht, M. M. Heyns, and M. Meuris, J. Electrochem. Soc. 156, G163 (2009).
http://dx.doi.org/10.1149/1.3200902
421.
421. D. Tahir, H. L. Kwon, H. C. Shin, S. K. Oh, H. J. Kang, S. Heo, J. G. Chung, J. C. Lee, and S. Tougaard, J. Phys. D: Appl. Phys. 43, 255301 (2010).
http://dx.doi.org/10.1088/0022-3727/43/25/255301
422.
422. Y. Chung, B. Murmann, S. Selvarasah, M. R. Dokmeci, and Z. Bao, Appl. Phys. Lett. 96, 133306 (2010).
http://dx.doi.org/10.1063/1.3336009
423.
423. A. Delabie, M. Caymax, S. Gielis, J. W. Maes, L. Nyns, M. Popovici, J. Swerts, H. Tielens, J. Peeters, and S. VanElshocht, Electrochem. Solid-State Lett. 13, H176 (2010).
http://dx.doi.org/10.1149/1.3355207
424.
424. J. Kwon, M. Dai, M. D. Halls, and Y. J. Chabal, Appl. Phys. Lett. 97, 162903 (2010).
http://dx.doi.org/10.1063/1.3500821
425.
425. A. Pirkle, S. McDonnell, B. Lee, J. Kim, L. Colombo, and R. M. Wallace, Appl. Phys. Lett. 97, 082901 (2010).
http://dx.doi.org/10.1063/1.3479908
426.
426. V. R. Rai, V. Vandalon, and S. Agarwal, Langmuir 26, 13732 (2010).
http://dx.doi.org/10.1021/la101485a
427.
427. B. Lee, G. Mordi, M. J. Kim, Y. J. Chabal, E. M. Vogel, R. M. Wallace, K. J. Cho, L. Colombo, and J. Kim, Appl. Phys. Lett. 97, 043107 (2010).
http://dx.doi.org/10.1063/1.3467454
428.
428. M. Rose, J. Niinistö, I. Endler, J. W. Bartha, P. Kücher, and M. Ritala, ACS Appl. Mater. Interfaces 2, 347 (2010).
http://dx.doi.org/10.1021/am900807a
429.
429. S. W. Choi, C. M. Jang, D. Y. Kim, J. S. Ha, H. S. Park, W. Koh, and C. S. Lee, J. Korean Phys. Soc. 42, S975 (2003).
http://dx.doi.org/10.3938/jkps.42.975
430.
430. S. J. Yun, J. W. Lim, and J.-H. Lee, Electrochem. Solid-State Lett. 7, C13 (2004).
http://dx.doi.org/10.1149/1.1628666
431.
431. J. W. Lim and S. J. Yun, Electrochem. Solid-State Lett. 7, F45 (2004).
http://dx.doi.org/10.1149/1.1756541
432.
432. A. Niskanen, K. Arstila, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 152, F90 (2005).
http://dx.doi.org/10.1149/1.1931471
433.
433. J. W. Lim, S. J. Yun, and J. H. Lee, Electrochem. Solid-State Lett. 8, F25 (2005).
http://dx.doi.org/10.1149/1.1960041
434.
434. E. Langereis, M. Creatore, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 89, 081915 (2006).
http://dx.doi.org/10.1063/1.2338776
435.
435. J. Koo, S. Kim, S. Jeon, H. Jeon, Y. Kim, and Y. Won, J. Korean Phys. Soc. 48, 131 (2006).
http://dx.doi.org/10.3938/jkps.48.131
436.
436. B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 89, 042112 (2006).
http://dx.doi.org/10.1063/1.2240736
437.
437. S. B. S. Heil, P. Kudlacek, E. Langereis, R. Engeln, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 89, 131505 (2006).
http://dx.doi.org/10.1063/1.2357886
438.
438. P. K. Park, E. S. Cha, and S. W. Kang, Appl. Phys. Lett. 90, 232906 (2007).
http://dx.doi.org/10.1063/1.2746416
439.
439. J. W. Lim, S. J. Yun, and H. T. Kim, J. Electrochem. Soc. 154, G239 (2007).
http://dx.doi.org/10.1149/1.2776162
440.
440. S. Kim, S. Woo, H. Hong, H. Kim, H. Jeon, and C. Bae, J. Electrochem. Soc. 154, H97 (2007).
http://dx.doi.org/10.1149/1.2401033
441.
441. J. Y. Kim, J. H. Ahn, S. W. Kang, and J. H. Kim, J. Appl. Phys. 101, 073502 (2007).
http://dx.doi.org/10.1063/1.2714685
442.
442. W. J. Jeon, H. S. Chung, D. Joo, and S. W. Kang, Electrochem. Solid-State Lett. 11, H19 (2008).
http://dx.doi.org/10.1149/1.2813881
443.
443. S. J. Yun, A. Efremov, M. Kim, D. W. Kim, J. W. Lim, Y. H. Kim, C. H. Chung, D. J. Park, and K. H. Kwon, Vacuum 82, 1198 (2008).
http://dx.doi.org/10.1016/j.vacuum.2007.12.018
444.
444. E. Langereis, J. Keijmel, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 92, 231904 (2008).
http://dx.doi.org/10.1063/1.2940598
445.
445. S. B. S. Heil, J. L. van Hemmen, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 103, 103302 (2008).
http://dx.doi.org/10.1063/1.2924406
446.
446. M. T. Seman, D. N. Richards, P. Rowlette, and C. A. Wolden, Chem. Vap. Deposition 14, 296 (2008).
http://dx.doi.org/10.1002/cvde.200806701
447.
447. B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 104, 044903 (2008).
http://dx.doi.org/10.1063/1.2963707
448.
448. J. W. Lim, S. J. Yun, and H. T. Kim, Jpn. J. Appl. Phys., Part 1 47, 6934 (2008).
http://dx.doi.org/10.1143/JJAP.47.6934
449.
449. D. Hoogeland, K. B. Jinesh, F. Roozeboom, W. F. A. Besling, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 106, 114107 (2009).
http://dx.doi.org/10.1063/1.3267299
450.
450. T. O. Kääriäinen and D. C. Cameron, Plasma Processes Polym. 6, S237 (2009).
http://dx.doi.org/10.1002/ppap.200930605
451.
451. W.-S. Kim, D.-Y. Moon, B.-W. Kang, J.-W. Park, and J.-G. Park, J. Korean Phys. Soc. 55, 55 (2009).
http://dx.doi.org/10.3938/jkps.55.55
452.
452. H.-S. Yun and K.-H. Kim, J. Korean Phys. Soc. 54, 707 (2009).
http://dx.doi.org/10.3938/jkps.54.707
453.
453. A. J. M. Mackus, S. B. S. Heil, E. Langereis, H. C. M. Knoops, M. C. M. van de Sanden, and W. M. M. Kessels, J. Vac. Sci. Technol. A 28, 77 (2010).
http://dx.doi.org/10.1116/1.3256227
454.
454. D. J. Park, J. W. Lim, and B. O. Park, Solid-State Electron. 54, 323 (2010).
http://dx.doi.org/10.1016/j.sse.2009.10.017
455.
455. H. Kim, S. Woo, J. Lee, H. Lee, and H. Jeon, J. Phys. D: Appl. Phys. 43, 505301 (2010).
http://dx.doi.org/10.1088/0022-3727/43/50/505301
456.
456. S. K. Lee, S. Y. Park, Y. S. Yi, and J. Moon, J. Phys. Chem. C 114, 13890 (2010).
http://dx.doi.org/10.1021/jp105306r
457.
457. D. H. Levy, D. Freeman, S. F. Nelson, P. J. Cowdery-Corvan, and L. M. Irving, Appl. Phys. Lett. 92, 92101 (2008).
http://dx.doi.org/10.1063/1.2924768
458.
458. D. A. Mourey, D. A. Zhao, J. Sun, and T. N. Jackson, IEEE Trans. Electron Devices 57, 530 (2010).
http://dx.doi.org/10.1109/TED.2009.2037178
459.
459. V. E. Drozd and V. B. Aleskovskii, Appl. Surf. Sci. 82/83, 591 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90281-X
460.
460. W.-S. Jeon, S. Yang, C.-S. Lee, and S.-W. Kang, J. Electrochem. Soc. 149, C306 (2002).
http://dx.doi.org/10.1149/1.1470659
461.
461. C. W. Cheng and E. A. Fitzgerald, Appl. Phys. Lett. 93, 031902 (2008).
http://dx.doi.org/10.1063/1.2960574
462.
462. K. Kukli, M. Ritala, M. Leskelä, and J. Jokinen, J. Vac. Sci. Technol. A 15, 2214 (1997).
http://dx.doi.org/10.1116/1.580536
463.
463. R. Matero, A. Rahtu, and M. Ritala, Langmuir 21, 3498 (2005).
http://dx.doi.org/10.1021/la047153a
464.
464. K. S. An, W. T. Cho, K. H. Sung, S. S. Lee, and Y. Kim, Bull. Korean Chem. Soc. 24, 1659 (2003).
http://dx.doi.org/10.5012/bkcs.2003.24.11.1659
465.
465. W. Cho, K. Sung, K. S. An, S. S. Lee, T. M. Chung, and Y. Kim, J. Vac. Sci. Technol. A 21, 1366 (2003).
http://dx.doi.org/10.1116/1.1562184
466.
466. Y.-S. Min, Y. J. Cho, and C. S. Hwang, Chem. Mater. 17, 626 (2005).
http://dx.doi.org/10.1021/cm048649g
467.
467. H. Kim, W. S. Jeon, S. H. Jung, and B. T. Ahn, Electrochem. Solid-State Lett. 8, G294 (2005).
http://dx.doi.org/10.1149/1.2035699
468.
468. R. Katamreddy, R. Inman, G. Jursich, A. Soulet, and C. Takoudis, Appl. Phys. Lett. 89, 262906 (2006).
http://dx.doi.org/10.1063/1.2425023
469.
469. R. Katamreddy, R. Inman, G. Jursich, A. Soulet, and C. Takoudis, J. Electrochem. Soc. 153, C701 (2006).
http://dx.doi.org/10.1149/1.2239258
470.
470. C. R. Wade, C. Silvernail, C. Banerjee, A. Soulet, J. Mcandrew, and J. A. Belot, Mater. Lett. 61, 5079 (2007).
http://dx.doi.org/10.1016/j.matlet.2007.04.009
471.
471. R. Katamreddy, R. Inman, G. Jursich, A. Soulet, A. Nicholls, and C. Takoudis, Thin Solid Films 515, 6931 (2007).
http://dx.doi.org/10.1016/j.tsf.2007.02.001
472.
472. R. Katamreddy, R. Inman, G. Jursich, A. Soulet, and C. Takoudis, J. Mater. Res. 22, 3455 (2007).
http://dx.doi.org/10.1557/JMR.2007.0439
473.
473. P. Majumder, R. Katamreddy, and C. Takoudis, Electrochem. Solid-State Lett. 10, H291 (2007).
http://dx.doi.org/10.1149/1.2756633
474.
474. P. Majumder, R. Katamreddy, and C. Takoudis, J. Cryst. Growth 309, 12 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2007.09.013
475.
475. R. Katamreddy, R. Inman, G. Jursich, A. Soulet, and C. Takoudis, Acta Mater. 56, 710 (2008).
http://dx.doi.org/10.1016/j.actamat.2007.10.017
476.
476. A. L. Brazeau and S. T. Barry, Chem. Mater. 20, 7287 (2008).
http://dx.doi.org/10.1021/cm802195b
477.
477. K.-E. Elers, M. Ritala, M. Leskelä, and L.-S. Johansson, J. Phys. IV France 5, C51021 (1995).
http://dx.doi.org/10.1051/jphyscol:19955120
478.
478. J. Jokinen, P. Haussalo, J. Keinonen, M. Ritala, D. Riihelä, and M. Leskelä, Thin Solid Films 289, 159 (1996).
http://dx.doi.org/10.1016/S0040-6090(96)08927-4
479.
479. Y. J. Lee and S.-W. Kang, Thin Solid Films 446, 227 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.10.004
480.
480. Y. J. Lee, J. Cryst. Growth 266, 568 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2004.03.016
481.
481. T. M. Mayer, J. W. Rogers, Jr., and T. A. Michalske, Chem. Mater. 3, 641 (1991).
http://dx.doi.org/10.1021/cm00016a016
482.
482. M. E. Bartram, T. A. Michalske, J. W. Rogers, Jr., and R. T. Paine, Chem. Mater. 5, 1424 (1993).
http://dx.doi.org/10.1021/cm00034a010
483.
483. H. Liu, D. C. Bertolet, and J. W. Rogers, Jr., Surf. Sci. 340, 88 (1995).
http://dx.doi.org/10.1016/0039-6028(95)00598-6
484.
484. D. Riihelä, M. Ritala, R. Matero, M. Leskelä, J. Jokinen, and P. Haussalo, Chem. Vap. Deposition 2, 277 (1996).
http://dx.doi.org/10.1002/cvde.19960020612
485.
485. F. G. McIntosh, E. L. Piner, J. C. Roberts, M. K. Behbehani, M. E. Aumer, N. A. El-Masry, and S. M. Bedair, Appl. Surf. Sci. 112, 98 (1997).
http://dx.doi.org/10.1016/S0169-4332(96)00992-0
486.
486. R. L. Puurunen, A. Root, P. Sarv, S. Haukka, E. I. Iiskola, M. Lindblad, and A. O. I. Krause, Appl. Surf. Sci. 165, 193 (2000).
http://dx.doi.org/10.1016/S0169-4332(00)00440-2
487.
487. R. L. Puurunen, A. Root, P. Sarv, M. M. Viitanen, H. H. Brongersma, M. Lindblad, and A. O. I. Krause, Chem. Mater. 14, 720 (2002).
http://dx.doi.org/10.1021/cm011176i
488.
488. M. Badylevich, S. Shamuilia, V. V. Afanas’ev, A. Stesmans, Y. G. Fedorenko, and C. Zhao, J. Appl. Phys. 104, 093713 (2008).
http://dx.doi.org/10.1063/1.2966482
489.
489. L. W. Sang, Z. X. Qin, H. Fang, T. Dai, Z. J. Yang, B. Shen, G. Y. Zhang, X. P. Zhang, J. Xu, and D. P. Yu, Appl. Phys. Lett. 93, 122104 (2008).
http://dx.doi.org/10.1063/1.2990048
490.
490. Y. Zhou, D. M. King, J. Li, K. S. Barrett, R. B. Goldfarb, and A. W. Weimer, Ind. Eng. Chem. Res. 49, 6964 (2010).
http://dx.doi.org/10.1021/ie901712q
491.
491. D. Eom, S. Y. No, C. S. Hwang, and H. J. Kim, J. Electrochem. Soc. 153, C229 (2006).
http://dx.doi.org/10.1149/1.2168387
492.
492. M. Bosund, P. Mattila, A. Aierken, T. Hakkarainen, H. Koskenvaara, M. Sopanen, V.-M. Airaksinen, and H. Lipsanen, Appl. Surf. Sci. 256, 7434 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.05.085
493.
493. S. Jeon and S. Park, J. Electrochem. Soc. 157, II1101 (2010).
494.
494. K.-H. Kim, N.-W. Kwak, and S. H. Lee, Electron. Mater. Lett. 5, 83 (2009).
http://dx.doi.org/10.3365/eml.2009.06.083
495.
495. M. A. Khan, J. N. Kuznia, R. A. Skogman, and D. T. Olson, Appl. Phys. Lett. 61, 2539 (1992).
http://dx.doi.org/10.1063/1.108144
496.
496. M. A. Khan, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 3470 (1993).
http://dx.doi.org/10.1063/1.110123
497.
497. H. Liu and J. W. Rogers, Jr., J. Vac. Sci. Technol. A 17, 325 (1999).
http://dx.doi.org/10.1116/1.581591
498.
498. J. N. Kidder, Jr., J. S. Kuo, A. Ludviksson, T. P. Pearsall, J. W. Rogers, Jr., J. M. Grant, L. R. Allen, and S. T. Hsu, J. Vac. Sci. Technol. A 13, 711 (1995).
http://dx.doi.org/10.1116/1.579812
499.
499. A. Ludviksson, D. W. Robinson, and J. W. Rogers, Jr., Thin Solid Films 289, 6 (1996).
http://dx.doi.org/10.1016/S0040-6090(96)08896-7
500.
500. J. N. Kidder, Jr., H. K. Yun, J. W. Rogers, Jr., and T. P. Pearsall, Chem. Mater. 10, 777 (1998).
http://dx.doi.org/10.1021/cm970556u
501.
501. K. H. Kim, R. G. Gordon, A. Ritenour, and D. A. Antoniadis, Appl. Phys. Lett. 90, 212104 (2007).
http://dx.doi.org/10.1063/1.2741609
502.
502. M. Ishii, S. Iwai, H. Kawata, T. Ueki, and Y. Aoyagi, J. Cryst. Growth 180, 15 (1997).
http://dx.doi.org/10.1016/S0022-0248(97)00198-X
503.
503. M. Ishii, S. Iwai, T. Ueki, and Y. Aoyagi, Appl. Phys. Lett. 71, 1044 (1997).
http://dx.doi.org/10.1063/1.119722
504.
504. M. Ishii, S. Iwai, T. Ueki, and Y. Aoyagi, Thin Solid Films 318, 6 (1998).
http://dx.doi.org/10.1016/S0040-6090(97)01128-0
505.
505. S. Hirose, M. Yamaura, and H. Munekata, Appl. Surf. Sci. 150, 89 (1999).
http://dx.doi.org/10.1016/S0169-4332(99)00226-3
506.
506. R. Kobayashi, J. Cryst. Growth 113, 491 (1991).
http://dx.doi.org/10.1016/0022-0248(91)90084-I
507.
507. M. Akamatsu, S. Narahara, T. Kobayashi, and F. Hasegawa, Appl. Surf. Sci. 82/83, 228 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90221-6
508.
508. S. M. Bedair, M. A. Tischler, T. Katsuyama, and N. A. El-Masry, Appl. Phys. Lett. 47, 51 (1985).
http://dx.doi.org/10.1063/1.96401
509.
509. M. Ozeki, K. Mochizuki, N. Ohtsuka, and K. Kodama, J. Vac. Sci. Technol. B 5, 1184 (1987).
http://dx.doi.org/10.1116/1.583708
510.
510. S. P. DenBaars, P. D. Dapkus, C. A. Beyler, A. Hariz, and K. M. Dzurko, J. Cryst. Growth 93, 195 (1988).
http://dx.doi.org/10.1016/0022-0248(88)90527-1
511.
511. M. Ozeki, K. Mochizuki, N. Ohtsuka, and K. Kodama, Thin Solid Films 174, 63 (1989).
http://dx.doi.org/10.1016/0040-6090(89)90870-5
512.
512. T. Meguro, S. Iwai, Y. Aoyagi, K. Ozaki, Y. Yamamoto, T. Suzuki, Y. Okano, and A. Hirata, J. Cryst. Growth 99, 540 (1990).
http://dx.doi.org/10.1016/0022-0248(90)90579-A
513.
513. N. Ohtsuka, K. Kitahara, M. Ozeki, and K. Kodama, J. Cryst. Growth 99, 346 (1990).
http://dx.doi.org/10.1016/0022-0248(90)90541-R
514.
514. Y. Aoyagi, T. Meguro, S. Iwai, and A. Doi, Mater. Sci. Eng. B 10, 121 (1991).
http://dx.doi.org/10.1016/0921-5107(91)90118-F
515.
515. S. Yokoyama, M. Shinohara, and N. Inoue, Appl. Phys. Lett. 60, 377 (1992).
http://dx.doi.org/10.1063/1.106662
516.
516. K. Kitahara, M. Ozeki, and K. Nakajima, Jpn. J. Appl. Phys., Part 1 32, 1051 (1993).
http://dx.doi.org/10.1143/JJAP.32.1051
517.
517. M. Ozeki and N. Ohtsuka, Appl. Surf. Sci. 82/83, 233 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90222-4
518.
518. N. Hayafuji, G. M. Eldallal, A. Dip, P. C. Colter, N. A. El-Masry, and S. M. Bedair, Appl. Surf. Sci. 82/83, 18 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90189-9
519.
519. M. Ishizaki, N. Kano, J. Yoshino, and H. Kukimoto, Jpn. J. Appl. Phys., Part 2 30, L435 (1991).
http://dx.doi.org/10.1143/JJAP.30.L435
520.
520. M. Ishizaki, N. Kano, J. Yoshino, and H. Kukimoto, Thin Solid Films 225, 74 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90129-D
521.
521. H. Isshiki, Y. Aoyagi, T. Sugano, S. Iwai, and T. Meguro, Appl. Surf. Sci. 82/83, 57 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90195-3
522.
522. S. Hirose, N. Kano, M. Deura, K. Hara, H. Munekata, and H. Kukimoto, Jpn. J. Appl. Phys., Part 2 34, L1436 (1995).
http://dx.doi.org/10.1143/JJAP.34.L1436
523.
523. S. Hirose, H. Ibuka, A. Yoshida, N. Kano, K. Hara, H. Munekata, and H. Kukimoto, J. Cryst. Growth 208, 49 (2000).
http://dx.doi.org/10.1016/S0022-0248(99)00464-9
524.
524. D. E. Aspnes, I. Kamiya, H. Tanaka, R. Bhat, L. T. Florez, J. P. Harbison, W. E. Quinn, M. Tamargo, S. Gregory, M. A. A. Pudensi, S. A. Schwarz, M. J. S. P. Brasil, and R. E. Nahory, Thin Solid Films 225, 26 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90121-5
525.
525. K. Kitahara, N. Ohtsuka, T. Ashino, M. Ozeki, and K. Nakajima, Jpn. J. Appl. Phys., Part 2 32, L236 (1993).
http://dx.doi.org/10.1143/JJAP.32.L236
526.
526. K. Fujii, I. Suemune, and M. Yamanishi, Appl. Phys. Lett. 62, 1420 (1993).
http://dx.doi.org/10.1063/1.108698
527.
527. I. Suemune, Appl. Surf. Sci. 82/83, 149 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90211-9
528.
528. M. Nagano, S. Iwai, K. Nemoto, and Y. Aoyagi, Jpn. J. Appl. Phys., Part 2 33, L1289 (1994).
http://dx.doi.org/10.1143/JJAP.33.L1289
529.
529. N. Kano, S. Hirose, K. Hara, J. Yoshino, H. Munekata, and H. Kukimoto, Appl. Phys. Lett. 65, 1115 (1994).
http://dx.doi.org/10.1063/1.112977
530.
530. N. Kano, S. Hirose, K. Hara, J. Yoshino, H. Munekata, and H. Kukimoto, Appl. Surf. Sci. 82/83, 132 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90208-9
531.
531. S. Hirose, N. Kano, K. Hara, H. Munekata, and H. Kukimoto, J. Cryst. Growth 172, 13 (1997).
http://dx.doi.org/10.1016/S0022-0248(96)00743-9
532.
532. S. Hirose, M. Yamaura, A. Yoshida, H. Ibuka, K. Hara, and H. Munekata, J. Cryst. Growth 194, 16 (1998).
http://dx.doi.org/10.1016/S0022-0248(98)00602-2
533.
533. S. Hirose, A. Yoshida, M. Yamaura, N. Kano, and H. Munekata, J. Mater. Sci.: Mater. Electron. 11, 7 (2000).
http://dx.doi.org/10.1023/A:1008991717393
534.
534. V. Pore, K. Knapas, T. Hatanpää, T. Sarnet, M. Kemell, M. Ritala, M. Leskelä, and K. Mizohata, Chem. Mater. 23, 247 (2011).
http://dx.doi.org/10.1021/cm102904f
535.
535. V. V. Brei, V. A. Kasperskii, and A. A. Chuiko, Zh. Prikl. Khim. 69, 378 (1996)
535. V. V. Brei, V. A. Kasperskii, and A. A. Chuiko, [Russ. J. Appl. Chem. 69, 335 (1996)].
536.
536. X. Du, K. Zhang, K. Holland, T. Tombler, and M. Moskovits, Appl. Opt. 48, 6470 (2009).
http://dx.doi.org/10.1364/AO.48.006470
537.
537. L. Velleman, G. Triani, P. J. Evans, J. G. Shapter, and D. Losic, Microporous Mesoporous Mater. 126, 87 (2009).
http://dx.doi.org/10.1016/j.micromeso.2009.05.024
538.
538. V. E. Drozd, A. A. Tulub, V. B. Aleskovskii, and D. V. Korol'kov, Appl. Surf. Sci. 82/83, 587 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90280-1
539.
539. J. M. Gaskell, A. C. Jones, H. C. Aspinall, S. Przybylak, P. R. Chalker, K. Black, H. O. Davies, P. Taechakumput, S. Taylor, and G. W. Critchlow, J. Mater. Chem. 16, 3854 (2006).
http://dx.doi.org/10.1039/b609129f
540.
540. J. M. Gaskell, S. Przybylak, A. C. Jones, H. C. Aspinall, P. R. Chalker, K. Black, R. J. Potter, P. Taechakumput, and S. Taylor, Chem. Mater. 19, 4796 (2007).
http://dx.doi.org/10.1021/cm0707556
541.
541. S. Yokoyama, K. Ohba, and A. Nakajima, Appl. Phys. Lett. 79, 617 (2001).
http://dx.doi.org/10.1063/1.1389508
542.
542. J. Nishizawa, K. Aoki, S. Suzuki, and K. Kikuchi, J. Electrochem. Soc. 137, 1898 (1990).
http://dx.doi.org/10.1149/1.2086827
543.
543. J. Nishizawa, K. Aoki, S. Suzuki, and K. Kikuchi, J. Cryst. Growth 99, 502 (1990).
http://dx.doi.org/10.1016/0022-0248(90)90571-2
544.
544. J. A. Yarmoff, D. K. Shuh, T. D. Durbin, C. W. Lo, D. A. Lapiano-Smith, F. R. McFreely, and F. J. Himpsel, J. Vac. Sci. Technol. A 10, 2303 (1992).
http://dx.doi.org/10.1116/1.577935
545.
545. S. Imai, T. Iizuka, O. Sugiura, and M. Matsumura, Thin Solid Films 225, 168 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90149-J
546.
546. S. Imai and M. Matsumura, Appl. Surf. Sci. 82/83, 322 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90235-6
547.
547. D. D. Koleske and S. M. Gates, Appl. Surf. Sci. 82/83, 344 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90239-9
548.
548. D. D. Koleske and S. M. Gates, J. Appl. Phys. 76, 1615 (1994).
http://dx.doi.org/10.1063/1.357741
549.
549. S. Sugahara, E. Hasunuma, S. Imai, and M. Matsumura, Appl. Surf. Sci. 107, 161 (1996).
http://dx.doi.org/10.1016/S0169-4332(96)00491-6
550.
550. E. Hasunuma, S. Sugahara, S. Hoshino, S. Imai, K. Ikeda, and M. Matsumura, J. Vac. Sci. Technol. A 16, 679 (1998).
http://dx.doi.org/10.1116/1.581018
551.
551. Y. Satoh, K. Ikeda, S. Sugahara, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 39, 5732 (2000).
http://dx.doi.org/10.1143/JJAP.39.5732
552.
552. Y. Takahashi and T. Urisu, Jpn. J. Appl. Phys., Part 2 30, L209 (1991).
http://dx.doi.org/10.1143/JJAP.30.L209
553.
553. H. Akazawa, Phys. Rev. B 54, 10917 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.10917
554.
554. H. Akazawa, J. Appl. Phys. 81, 3320 (1997).
http://dx.doi.org/10.1063/1.364317
555.
555. P. A. Coon, M. L. Wise, A. C. Dillon, M. B. Robinson, and S. M. George, J. Vac. Sci. Technol. B 10, 221 (1992).
http://dx.doi.org/10.1116/1.586305
556.
556. F. Hirose, M. Suemitsu, and N. Miyamoto, Appl. Surf. Sci. 60/61, 592 (1992).
http://dx.doi.org/10.1016/0169-4332(92)90480-L
557.
557. J. Murota, M. Sakuraba, and S. Ono, Appl. Phys. Lett. 62, 2353 (1993).
http://dx.doi.org/10.1063/1.109416
558.
558. M. Sakuraba, J. Murota, T. Watanabe, Y. Sawada, and S. Ono, Appl. Surf. Sci. 82/83, 354 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90241-0
559.
559. D. D. Koleske, S. M. Gates, and D. B. Beach, J. Appl. Phys. 72, 4073 (1992).
http://dx.doi.org/10.1063/1.352261
560.
560. S. M. Gates, D. D. Koleske, J. R. Heath, and M. Copel, Appl. Phys. Lett. 62, 510 (1993).
http://dx.doi.org/10.1063/1.108895
561.
561. D. D. Koleske and S. M. Gates, Appl. Phys. Lett. 64, 884 (1994).
http://dx.doi.org/10.1063/1.110984
562.
562. Y. Suda, D. Lubben, T. Motooka, and J. Greene, J. Vac. Sci. Technol. B 7, 1171 (1989).
http://dx.doi.org/10.1116/1.584568
563.
563. D. Lubben, R. Tsu, T. R. Bramblett, and J. E. Greene, J. Vac. Sci. Technol. A 9, 3003 (1991).
http://dx.doi.org/10.1116/1.577164
564.
564. D. Lin, T. Miller, and T. Chiang, Phys. Rev. B 47, 6543 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.6543
565.
565. Y. Suda, M. Ishida, M. Yamashita, and H. Ikeda, Appl. Surf. Sci. 82/83, 332 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90237-2
566.
566. Y. Suda, Y. Misato, and D. Shiratori, Jpn. J. Appl. Phys., Part 1 38, 2390 (1999).
http://dx.doi.org/10.1143/JJAP.38.2390
567.
567. J. Nishizawa, A. Murai, T. Ohizumi, T. Kurabayashi, K. Ohtsuka, and T. Yoshida, J. Cryst. Growth 209, 327 (2000).
http://dx.doi.org/10.1016/S0022-0248(99)00564-3
568.
568. J. Nishizawa, A. Murai, T. Oizumi, T. Kurabayashi, K. Kanamoto, and T. Yoshida, J. Cryst. Growth 233, 161 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)01517-2
569.
569. J. Nishizawa, A. Murai, T. Oizumi, T. Kurabayashi, K. Kanamoto, and T. Yoshida, J. Cryst. Growth 226, 39 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)01361-6
570.
570. Y. Suda, N. Hosoya, and K. Miki, Appl. Surf. Sci. 216, 424 (2003).
http://dx.doi.org/10.1016/S0169-4332(03)00387-8
571.
571. H. Akazawa, Y. Utsumi, T. Urisu, and M. Nagase, Phys. Rev. B 47, 15946 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.15946
572.
572. H. Akazawa, Appl. Surf. Sci. 82/83, 394 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90247-X
573.
573. H. Akazawa and Y. Utsumi, J. Appl. Phys. 78, 2725 (1995).
http://dx.doi.org/10.1063/1.360070
574.
574. M. Ishida, M. Yamashita, Y. Nagata, and Y. Suda, Jpn. J. Appl. Phys., Part 1 35, 4011 (1996).
http://dx.doi.org/10.1143/JJAP.35.4011
575.
575. H. Akazawa, J. Cryst. Growth 173, 343 (1997).
http://dx.doi.org/10.1016/S0022-0248(96)01042-1
576.
576. Y. Suda, N. Hosoya, and D. Shiratori, J. Cryst. Growth 237, 1404 (2002).
http://dx.doi.org/10.1016/S0022-0248(01)02225-4
577.
577. A. Mahajan, J. Irby, D. Kinosky, R. Qian, S. Thomas, S. Banerjee, A. Tasch, and T. Picraux, Thin Solid Films 225, 177 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90151-E
578.
578. S. Imai, S. Takagi, O. Sugiura, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 30, 3646 (1991).
http://dx.doi.org/10.1143/JJAP.30.3646
579.
579. G. V. Sveshnikova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. 43, 1150 (1970)
579. G. V. Sveshnikova, S. I. Kol'tsov, and V. B. Aleskovskii, [J. Appl. Chem. USSR 43, 1155 (1970)].
580.
580. M. A. Eremeeva, A. P. Nechiporenko, G. N. Kuznetsova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. 47, 2332 (1974)
580. M. A. Eremeeva, A. P. Nechiporenko, G. N. Kuznetsova, S. I. Kol'tsov, and V. B. Aleskovskii, [J. Appl. Chem. USSR 47, 2390 (1974)].
581.
581. L. V. Miroshnichenko, A. A. Malygin, and S. I. Kol'tsov, Ogneupory 26, 22 (1985)
581. L. V. Miroshnichenko, A. A. Malygin, and S. I. Kol'tsov, [Refractories 26, 82 (1985)].
http://dx.doi.org/10.1007/BF01398622
582.
582. O. Sneh, M. L. Wise, A. W. Ott, L. A. Okada, and S. M. George, Surf. Sci. 334, 135 (1995).
http://dx.doi.org/10.1016/0039-6028(95)00471-8
583.
583. J. W. Klaus, A. W. Ott, J. M. Johnson, and S. M. George, Appl. Phys. Lett. 70, 1092 (1997).
http://dx.doi.org/10.1063/1.118494
584.
584. J. W. Klaus, A. W. Ott, and S. M. George, Surf. Rev. Lett. 6, 435 (1999).
http://dx.doi.org/10.1142/S0218625X99000433
585.
585. M. A. Cameron, I. P. Gartland, J. A. Smith, S. F. Diaz, and S. M. George, Langmuir 16, 7435 (2000).
http://dx.doi.org/10.1021/la9916981
586.
586. J. D. Ferguson, A. W. Weimer, and S. M. George, Chem. Mater. 12, 3472 (2000).
http://dx.doi.org/10.1021/cm000313t
587.
587. Y. Fedorenko, J. Swerts, J. W. Maes, E. Tois, S. Haukka, C. G. Wang, G. Wilk, A. Delabie, W. Deweerd, and S. De Gendt, Electrochem. Solid-State Lett. 10, H149 (2007).
http://dx.doi.org/10.1149/1.2712051
588.
588. J. W. Klaus, O. Sneh, and S. M. George, Science 278, 1934 (1997).
http://dx.doi.org/10.1126/science.278.5345.1934
589.
589. J. W. Klaus and S. M. George, Surf. Sci. 447, 81 (2000).
http://dx.doi.org/10.1016/S0039-6028(99)01119-X
590.
590. B. A. McCool and W. J. DeSisto, Ind. Eng. Chem. Res. 43, 2478 (2004).
http://dx.doi.org/10.1021/ie030829x
591.
591. B. A. McCool and W. J. DeSisto, Chem. Vap. Deposition 10, 190 (2004).
http://dx.doi.org/10.1002/cvde.200304172
592.
592. Y. Du, X. Du, and S. M. George, Thin Solid Films 491, 43 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.05.051
593.
593. L. K. Tan, A. S. M. Chong, X. S. E. Tang, and H. Gao, J. Phys. Chem. C 111, 4964 (2007).
http://dx.doi.org/10.1021/jp066841v
594.
594. Y. Du, X. Du, and S. M. George, J. Phys. Chem. C 111, 219 (2007).
http://dx.doi.org/10.1021/jp0638484
595.
595. S. W. Lee, K. Park, B. Han, S. H. Son, S. K. Rha, C. O. Park, and W. J. Lee, Electrochem. Solid-State Lett. 11, G23 (2008).
http://dx.doi.org/10.1149/1.2908201
596.
596. S. I. Kol'tsov, Zh. Prikl. Khim. 38, 1384 (1965)
596. S. I. Kol'tsov, [J. Appl. Chem. USSR 38, 1352 (1965)].
597.
597. S. I. Kol'tsov, G. N. Kuznetsova, and V. B. Aleskovskii, Zh. Prikl. Khim. 40, 2774 (1967)
597. S. I. Kol'tsov, G. N. Kuznetsova, and V. B. Aleskovskii, [J. Appl. Chem. USSR 40, 2644 (1967)].
598.
598. S. I. Kol'tsov, Zh. Obshch. Khim. 71, 1616 (2001)
598. S. I. Kol'tsov, [Russ. J. Gen. Chem. 71, 1531 (2001)].
http://dx.doi.org/10.1023/A:1013926330840
599.
599. J.-H. Lee, U.-J. Kim, C.-H. Han, S.-K. Rha, W.-J. Lee, and C.-O. Park, Jpn. J. Appl. Phys., Part 2 43, L328 (2004).
http://dx.doi.org/10.1143/JJAP.43.L328
600.
600. W.-J. Lee, C.-H. Han, J.-K. Park, Y.-S. Lee, and S.-K. Rha, Jpn. J. Appl. Phys., Part 1 49, 071504 (2010).
http://dx.doi.org/10.1143/JJAP.49.071504
601.
601. T. Murata, Y. Miyagawa, Y. Nishida, Y. Yamamoto, T. Yamashita, M. Matsuura, K. Asai, and H. Miyatake, Jpn. J. Appl. Phys., Part 1 49, 04DB11 (2010).
http://dx.doi.org/10.1143/JJAP.49.04DB11
602.
602. Z. Ma, S. Brown, J. Y. Howe, S. H. Overbury, and S. Dai, J. Phys. Chem. C 112, 9448 (2008).
http://dx.doi.org/10.1021/jp801484h
603.
603. B. Hatton, V. Kitaev, D. Perovic, G. Ozin, and J. Aizenberg, J. Mater. Chem. 20, 6009 (2010).
http://dx.doi.org/10.1039/c0jm00696c
604.
604. J. D. Ferguson, E. R. Smith, A. W. Weimer, and S. M. George, J. Electrochem. Soc. 151, G528 (2004).
http://dx.doi.org/10.1149/1.1768548
605.
605. Y. K. Jeong, H.-J. Kim, H. G. Kim, and B.-H. Choi, Curr. Appl. Phys. 9, S249 (2009).
http://dx.doi.org/10.1016/j.cap.2009.01.028
606.
606. Y. B. Jiang, N. G. Liu, H. Gerung, J. L. Cecchi, and C. J. Brinker, J. Am. Chem. Soc. 128, 11018 (2006).
http://dx.doi.org/10.1021/ja061097d
607.
607. J. W. Lim, S. J. Yun, and J. H. Kim, ETRI J. 31, 675 (2009).
http://dx.doi.org/10.4218/etrij.09.1209.0033
608.
608. J. Bachmann, R. Zierold, Y. T. Chong, R. Hauert, C. Sturm, R. Schmidt-Grund, B. Rheinländer, M. Grundmann, U. Gösele, and K. Nielsch, Angew. Chem., Int. Ed. 47, 6177 (2008).
http://dx.doi.org/10.1002/anie.200800245
609.
609. K. Pitzschel, J. M. M. Moreno, J. Escrig, O. Albrecht, K. Nielsch, and J. Bachmann, ACS Nano 3, 3463 (2009).
http://dx.doi.org/10.1021/nn900909q
610.
610. J. Lee, S. Farhangfar, R. Yang, R. Scholz, M. Alexe, U. Gösele, J. Lee, and K. Nielsch, J. Mater. Chem. 19, 7050 (2009).
http://dx.doi.org/10.1039/b908615c
611.
611. D. Hiller, R. Zierold, J. Bachmann, M. Alexe, Y. Yang, J. W. Gerlach, A. Stesmans, M. Jivanescu, U. Müller, J. Vogt, H. Hilmer, P. Löper, M. Künle, F. Munnik, K. Nielsch, and M. Zacharias, J. Appl. Phys. 107, 064314 (2010).
http://dx.doi.org/10.1063/1.3327430
612.
612. O. Albrecht, R. Zierold, C. Patzig, J. Bachmann, C. Sturm, B. Rheinländer, M. Grundmann, D. Görlitz, B. Rauschenbach, and K. Nielsch, Phys. Status Solidi B 247, 1365 (2010).
http://dx.doi.org/10.1002/pssb.200945560
613.
613. B. B. Burton, M. P. Boleslawski, A. T. Desombre, and S. M. George, Chem. Mater. 20, 7031 (2008).
http://dx.doi.org/10.1021/cm801738z
614.
614. X. Liang, K. S. Barrett, Y.-B. Jiang, and A. W. Weimer, ACS Appl. Mater. Interfaces 2, 2248 (2010).
http://dx.doi.org/10.1021/am100279v
615.
615. M. Lindblad and A. Root, in Preparation of Catalysts VII, Proceedings of the 7th International Symposium on Scientific Bases for the Preparation of Heterogeneous Catalysts, Louvain-la-Neuve, Belgium, September 1–4, 1998, Stud. Surf. Sci. Catal., edited by B. Delmon, P. A. Jacobs, R. Maggi, J. A. Martens, P. Grange, and G. Poncelet (Elsevier, Amsterdam, 1998), Vol. 118, pp. 817826.
616.
616. S. Kamiyama, T. Miura, and Y. Nara, Electrochem. Solid-State Lett. 8, F37 (2005).
http://dx.doi.org/10.1149/1.2012273
617.
617. S. Kamiyama, T. Miura, and Y. Nara, Thin Solid Films 515, 1517 (2006).
http://dx.doi.org/10.1016/j.tsf.2006.04.033
618.
618. P. S. Waggoner, C. P. Tan, and H. G. Craighead, J. Appl. Phys. 107, 114505 (2010).
http://dx.doi.org/10.1063/1.3431349
619.
619. S.-J. Won, S. Suh, M. S. Huh, and H. J. Kim, IEEE Electron Device Lett. 31, 857 (2010).
http://dx.doi.org/10.1109/LED.2010.2049978
620.
620. S. Kamiyama, T. Miura, Y. Nara, and T. Arikado, Electrochem. Solid-State Lett. 8, G215 (2005).
http://dx.doi.org/10.1149/1.1951205
621.
621. Y. Kinoshita, F. Hirose, H. Miya, K. Hirahara, Y. Kimura, and M. Niwano, Electrochem. Solid-State Lett. 10, G80 (2007).
http://dx.doi.org/10.1149/1.2763959
622.
622. F. Hirose, Y. Kinoshita, S. Shibuya, Y. Narita, Y. Takahashi, H. Miya, K. Hirahara, Y. Kimura, and M. Niwano, Thin Solid Films 519, 270 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.07.107
623.
623. B. B. Burton, S. W. Kang, S. W. Rhee, and S. M. George, J. Phys. Chem. C 113, 8249 (2009).
http://dx.doi.org/10.1021/jp806638e
624.
624. D. M. King, X. H. Liang, B. B. Burton, M. K. Akhtar, and A. W. Weimer, Nanotechnology 19, 255604 (2008).
http://dx.doi.org/10.1088/0957-4484/19/25/255604
625.
625. W. Gasser, Y. Uchida, and M. Matsumura, Thin Solid Films 250, 213 (1994).
http://dx.doi.org/10.1016/0040-6090(94)90188-0
626.
626. K. Yamaguchi, S. Imai, N. Ishitobi, M. Takemoto, H. Miki, and M. Matsumura, Appl. Surf. Sci. 130–132, 202 (1998).
http://dx.doi.org/10.1016/S0169-4332(98)00051-8
627.
627. S. Morishita, Y. Uchida, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 34, 5738 (1995).
http://dx.doi.org/10.1143/JJAP.34.5738
628.
628. S. Morishita, W. Gasser, K. Usami, and M. Matsumura, J. Non-Cryst. Solids 187, 66 (1995).
http://dx.doi.org/10.1016/0022-3093(95)00113-1
629.
629. J. W. Klaus, A. W. Ott, A. C. Dillon, and S. M. George, Surf. Sci. 418, L14 (1998).
http://dx.doi.org/10.1016/S0039-6028(98)00705-5
630.
630. M. Yokoyama, J. Korean Phys. Soc. 35, S71 (1999).
http://dx.doi.org/10.3938/jkps.35.71
631.
631. A. Nakajima, T. Yoshimoto, T. Kidera, and S. Yokoyama, Appl. Phys. Lett. 79, 665 (2001).
http://dx.doi.org/10.1063/1.1388026
632.
632. W. J. Lee, J. H. Lee, C. O. Park, Y. S. Lee, S. J. Shin, and S. K. Rha, J. Korean Phys. Soc. 45, 1352 (2004).
http://dx.doi.org/10.3938/jkps.45.1352
633.
633. S. Zhu and A. Nakajima, Jpn. J. Appl. Phys., Part 1 46, 7699 (2007).
http://dx.doi.org/10.1143/JJAP.46.7699
634.
634. W. J. Lee, U. J. Kim, C. H. Han, M. H. Chun, and S. K. Rha, J. Korean Phys. Soc. 47, S598 (2005).
http://dx.doi.org/10.3938/jkps.47.598
635.
635. H. Goto, K. Shibahara, and S. Yokoyama, Appl. Phys. Lett. 68, 3257 (1996).
http://dx.doi.org/10.1063/1.116566
636.
636. S. Yokoyama, H. Goto, T. Miyamoto, N. Ikeda, and J. Shibahara, Appl. Surf. Sci. 112, 75 (1997).
http://dx.doi.org/10.1016/S0169-4332(96)01020-3
637.
637. S. Yokoyama, N. Ikeda, K. Kajikawa, and Y. Nakashima, Appl. Surf. Sci. 130–132, 352 (1998).
http://dx.doi.org/10.1016/S0169-4332(98)00083-X
638.
638. S. Morishita, S. Sugahara, and M. Matsumura, Appl. Surf. Sci. 112, 198 (1997).
http://dx.doi.org/10.1016/S0169-4332(96)01006-9
639.
639. K. Park, W.-D. Yun, B.-J. Choi, H.-D. Kim, W.-J. Lee, S.-K. Rha, and C. O. Park, Thin Solid Films 517, 3975 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.01.118
640.
640. H. Nagasawa and Y. Yamaguchi, Thin Solid Films 225, 230 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90160-Q
641.
641. H. Nagasawa and Y. Yamaguchi, Appl. Surf. Sci. 82/83, 405 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90249-6
642.
642. E. Sadayuki, S. Imai, and M. Matsumura, Jpn. J. Appl. Phys., Part 1 34, 6166 (1996).
http://dx.doi.org/10.1143/JJAP.34.6166
643.
643. J. Sumakeris, L. B. Rowland, R. S. Kern, S. Tanaka, and R. F. Davis, Thin Solid Films 225, 219 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90158-L
644.
644. T. Fuyuki, M. Nakayama, T. Yoshinobu, H. Shiomi, and H. Matsunami, J. Cryst. Growth 95, 461 (1989).
http://dx.doi.org/10.1016/0022-0248(89)90442-9
645.
645. S. Hara, Y. Aoyagi, M. Kawai, S. Misakawa, E. Sakuma, and S. Yoshida, Surf. Sci. 273, 437 (1992).
http://dx.doi.org/10.1016/0039-6028(92)90080-P
646.
646. T. Fuyuki, T. Yoshinobu, and H. Matsunami, Thin Solid Films 125, 225 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90159-M
647.
647. S. Hara, T. Meguro, Y. Aoyagi, and M. Kawai, Thin Solid Films 225, 240 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90162-I
648.
648. S. Lee and K. Yong, Jpn. J. Appl. Phys., Part 1 46, 5259 (2007).
http://dx.doi.org/10.1143/JJAP.46.5259
649.
649. S. Lee, J. Kim, and K. Yong, J. Nanosci. Nanotechnol. 8, 577 (2008).
http://dx.doi.org/10.1166/jnn.2008.A206
650.
650. W. K. Kim, S. W. Kang, and S. W. Rhee, J. Vac. Sci. Technol. A 21, L16 (2003).
http://dx.doi.org/10.1116/1.1595107
651.
651. W. K. Kim, S. W. Kang, S. W. Rhee, N. I. Lee, J. H. Lee, and H. K. Kang, J. Vac. Sci. Technol. A 20, 2096 (2002).
http://dx.doi.org/10.1116/1.1517998
652.
652. J. Kim and K. Yong, Electrochem. Solid-State Lett. 7, F35 (2004).
http://dx.doi.org/10.1149/1.1676114
653.
653. K. Kukli, M. Ritala, M. Leskelä, T. Sajavaara, J. Keinonen, R. I. Hegde, D. C. Gilmer, and P. J. Tobin, J. Electrochem. Soc. 151, F98 (2004).
http://dx.doi.org/10.1149/1.1668925
654.
654. R. G. Gordon, J. Becker, D. Hausmann, and S. Suh, Chem. Mater. 13, 2463 (2001).
http://dx.doi.org/10.1021/cm010145k
655.
655. J. Kim and K. Yong, J. Electrochem. Soc. 152, F153 (2005).
http://dx.doi.org/10.1149/1.2007127
656.
656. J. Kim and K. Yong, J. Electrochem. Soc. 152, F45 (2005).
http://dx.doi.org/10.1149/1.1869977
657.
657. J. Kim, S. Lee, and K. Yong, Jpn. J. Appl. Phys., Part 1 45, 7080 (2006).
http://dx.doi.org/10.1143/JJAP.45.7080
658.
658. J. Kim and K. J. Yong, J. Vac. Sci. Technol. B 24, 1147 (2006).
http://dx.doi.org/10.1116/1.2190656
659.
659. J. Kim and K. Yong, J. Appl. Phys. 100, 044106 (2006).
http://dx.doi.org/10.1063/1.2234823
660.
660. J. Liu, W. N. Lennard, L. V. Goncharova, D. Landheer, X. Wu, S. A. Rushworth, and A. C. Jones, J. Electrochem. Soc. 156, G89 (2009).
http://dx.doi.org/10.1149/1.3137053
661.
661. S. Lee, D.-J. Yun, S.-W. Rhee, and K. Yong, J. Mater. Chem. 19, 6857 (2009).
http://dx.doi.org/10.1039/b908216f
662.
662. J. Harjuoja, T. Hatanpää, M. Vehkamäki, S. Väyrynen, M. Putkonen, L. Niinistö, M. Ritala, M. Leskelä, and E. Rauhala, Chem. Vap. Deposition 11, 362 (2005).
http://dx.doi.org/10.1002/cvde.200506378
663.
663. J. Harjuoja, S. Väyrynen, M. Putkonen, L. Niinistö, and E. Rauhala, J. Cryst. Growth 286, 376 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.10.020
664.
664. S. I. Kol'tsov, A. N. Volkova, and V. B. Aleskovskii, Zh. Prikl. Khim. 42, 1028 (1969)
664. S. I. Kol'tsov, A. N. Volkova, and V. B. Aleskovskii, [J. Appl. Chem. USSR 42, 980 (1969)].
665.
665. S. I. Kol'tsov, A. N. Volkova, and V. B. Aleskovskii, Zh. Fiz. Kihm. 46, 1292 (1972)
665. S. I. Kol'tsov, A. N. Volkova, and V. B. Aleskovskii, [Russ. J. Phys. Chem. 46, 742 (1972)].
666.
666. S. I. Kol'tsov, V. B. Aleskovskii, A. N. Volkova, and V. M. Smirnov, Zh. Prikl. Khim. 47, 1254 (1974)
666. S. I. Kol'tsov, V. B. Aleskovskii, A. N. Volkova, and V. M. Smirnov, [J. Appl. Chem. USSR 47, 1292 (1974)].
667.
667. A. N. Volkova, A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. 45, 3 (1975)
667. A. N. Volkova, A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, [J. Gen. Chem. USSR 45, 1 (1975)].
668.
668. S. A. Trifonov, V. A. Lapikov, and A. A. Malygin, Zh. Prikl. Khim. 75, 986 (2002)
668. S. A. Trifonov, V. A. Lapikov, and A. A. Malygin, [Russ. J. Appl. Chem. 75, 969 (2002)].
http://dx.doi.org/10.1023/A:1020301216385
669.
669. A. N. Volkova, A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. 43, 724 (1973)
669. A. N. Volkova, A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, [J. Gen. Chem. USSR 43, 723 (1973)].
670.
670. A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Obshch. Khim. 50, 2633 (1980)
670. A. A. Malygin, S. I. Kol'tsov, and V. B. Aleskovskii, [J. Gen. Chem. USSR 50, 2121 (1980)].
671.
671. J. Aarik, A. Aidla, A. Jaek, M. Leskelä, and L. Niinistö, Appl. Surf. Sci. 75, 33 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90132-5
672.
672. O. Nilsen, H. Fjellvåg, and A. Kjekshus, Thin Solid Films 450, 240 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.10.152
673.
673. M. Putkonen, T. Sajavaara, P. Rahkila, L. Xu, S. Cheng, L. Niinistö, and H. J. Whitlow, Thin Solid Films 517, 5819 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.03.013
674.
674. K. Kukli, M. Ritala, T. Sajavaara, T. Hänninen, and M. Leskelä, Thin Solid Films 500, 322 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.10.082
675.
675. M. Tammenmaa, H. Antson, M. Asplund, L. Hiltunen, M. Leskelä, L. Niinistö, and E. Ristolainen, J. Cryst. Growth 84, 151 (1987).
http://dx.doi.org/10.1016/0022-0248(87)90122-9
676.
676. J. Rautanen, M. Leskelä, L. Niinistö, E. Nykänen, P. Soininen, and M. Utriainen, Appl. Surf. Sci. 82/83, 553 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90274-7
677.
677. P. Soininen, L. Niinistö, E. Nykänen, and M. Leskelä, Appl. Surf. Sci. 75, 99 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90143-0
678.
678. T. Hänninen, I. Mutikainen, V. Saanila, M. Ritala, M. Leskelä, and J. C. Hanson, Chem. Mater. 9, 1234 (1997).
http://dx.doi.org/10.1021/cm9606078
679.
679. S. Dey and S. J. Yun, Appl. Surf. Sci. 143, 191 (1999).
http://dx.doi.org/10.1016/S0169-4332(98)00624-2
680.
680. M. Ylilammi and T. Ranta-aho, J. Electrochem. Soc. 141, 1278 (1994).
http://dx.doi.org/10.1149/1.2054910
681.
681. T. Pilvi, K. Arstila, M. Leskelä, and M. Ritala, Chem. Mater. 19, 3387 (2007).
http://dx.doi.org/10.1021/cm0629412
682.
682. M. Putkonen, M. Nieminen, J. Niinistö, and L. Niinistö, Chem. Mater. 13, 4701 (2001).
http://dx.doi.org/10.1021/cm011138z
683.
683. P. de Rouffignac, A. P. Yousef, K. H. Kim, and R. G. Gordon, Electrochem. Solid-State Lett. 9, F45 (2006).
http://dx.doi.org/10.1149/1.2191131
684.
684. A. Hardy, C. Adelmann, S. Van Elshocht, H. Van den Rul, M. K. Van Bael, S. De Gendt, M. D'Olieslaeger, M. Heyns, J. A. Kittl, and J. Mullens, Appl. Surf. Sci. 255, 7812 (2009).
http://dx.doi.org/10.1016/j.apsusc.2009.04.184
685.
685. S. M. Rossnagel, A. Sherman, and F. Turner, J. Vac. Sci. Technol. B 18, 2016 (2000).
http://dx.doi.org/10.1116/1.1305809
686.
686. H. Kim and S. M. Rossnagel, J. Vac. Sci. Technol. A 20, 802 (2002).
http://dx.doi.org/10.1116/1.1469009
687.
687. V. Pore, T. Kivelä, M. Ritala, and M. Leskelä, Dalton Trans. 2008, 6467.
688.
688. S. I. Kol'tsov and V. B. Aleskovskii, Zh. Prikl. Khim. 40, 907 (1967)
688. S. I. Kol'tsov and V. B. Aleskovskii, [J. Appl. Chem. USSR 40, 872 (1967)].
689.
689. A. M. Shevjakov, G. N. Kuznetsova, and V. B. Aleskovskii, in Chemistry of High Temperature Materials, Proceedings of 2nd USSR Conference on High Temperature Chemistry of Oxides, Leningrad, USSR, 26-29 November 1965, (Nauka, Leningrad, USSR, 1967), pp. 149155 (in Russian).
690.
690. S. I. Kol'tsov and V. B. Aleskovskii, Zh. Fiz. Khim. 42, 1210 (1968)
690. S. I. Kol'tsov and V. B. Aleskovskii, [Russ. J. Phys. Chem. 42, 630 (1968)].
691.
691. S. I. Kol'tsov, Zh. Prikl. Khim. 42, 1023 (1969)
691. S. I. Kol'tsov, [J. Appl. Chem. USSR 42, 975 (1969)].
692.
692. S. I. Kol'tsov, Zh. Prikl. Khim. 43, 1956 (1970)
692. S. I. Kol'tsov, [J. Appl. Chem. USSR 43, 1976 (1970)].
693.
693. G. V. Sveshnikova, S. I. Kol'tsov, and V. B. Aleskovskii, Zh. Prikl. Khim. 43, 430 (1970)
693. G. V. Sveshnikova, S. I. Kol'tsov, and V. B. Aleskovskii, [J. Appl. Chem. USSR 43, 432 (1970)].
694.
694. V. N. Pak, Yu. P. Kostikov, S. I. Kol'tsov, and V. B. Aleskovskii, Kinet. Katal. 15, 1358 (1974)
694. V. N. Pak, Yu. P. Kostikov, S. I. Kol'tsov, and V. B. Aleskovskii, [Kinet. Catal. 15, 1205 (1974)].
695.
695. V. N. Pak, Zh. Fiz. Khim. 50, 1266 (1976)
695. V. N. Pak, [Russ. J. Phys. Chem. 50, 758 (1976)].
696.
696. S. I. Kol'tsov, V. E. Drozd, and V. B. Aleskovskii, Dokl. Akad. Nauk SSSR 229, 1145 (1976)
696. S. I. Kol'tsov, V. E. Drozd, and V. B. Aleskovskii, [Dokl. Phys. Chem. 229, 718 (1976)].
697.
697. S. I. Kol'tsov, V. E. Drozd, T. A. Redova, and V. B. Aleskovskii, Dokl. Akad. Nauk SSSR 235, 1090 (1977)
697. S. I. Kol'tsov, V. E. Drozd, T. A. Redova, and V. B. Aleskovskii, [Dokl. Phys. Chem. 235, 794 (1977)].
698.
698. V. B. Aleskovskii, V. E. Drozd, V. F. Kiselev, S. N. Kozlov, S. I. Kol'tsov, A. S. Petrov, and G. S. Plotnikov, Fiz. Tekh. Poluprovodn. 13, 1397 (1979)
698. V. B. Aleskovskii, V. E. Drozd, V. F. Kiselev, S. N. Kozlov, S. I. Kol'tsov, A. S. Petrov, and G. S. Plotnikov, [Sov. Phys. Semicond. 13, 817 (1979)].
699.
699. M. N. Tsvetkova, I. M. Yur'evskaya, A. A. Malygin, S. I. Kol'tsov, and Yu. I. Skorik, Zh. Prikl. Khim. 55, 256 (1982)
699. M. N. Tsvetkova, I. M. Yur'evskaya, A. A. Malygin, S. I. Kol'tsov, and Yu. I. Skorik, [J. Appl. Chem. USSR 55, 229 (1982)].
700.
700. S. K. Gordeev, E. P. Smirnov, and S. I. Kol'tsov, Zh. Obshch. Khim. 52, 1468 (1982)
700. S. K. Gordeev, E. P. Smirnov, and S. I. Kol'tsov, [J. Gen. Chem. USSR 52, 1298 (1982)].
701.
701. S. K. Gordeev and E. P. Smirnov, Zh. Obshch. Khim. 52, 1464 (1982)
701. S. K. Gordeev and E. P. Smirnov, [J. Gen. Chem. USSR 52, 1294 (1982)].
702.
702. V. A. Tolmachev, Zh. Prikl. Khim. 55, 1410 (1982)
702. V. A. Tolmachev, [J. Appl. Chem. USSR 55, 1298 (1982)].
703.
703. V. A. Tolmachev and M. A. Okatov, Opt. Mekh. Prom-st. 50, 38 (1983)
703. V. A. Tolmachev and M. A. Okatov, [Sov. J. Opt. Techol. 50, 706 (1983)].
704.
704. V. A. Tolmachev, M. A. Okatov, and V. V. Pal'chevskii, Opt. Mekh. Prom-st. 51, 57 (1984)
704. V. A. Tolmachev, M. A. Okatov, and V. V. Pal'chevskii, [Sov. J. Opt. Technol. 51, 368 (1984)].
705.
705. M. N. Tsvetkova, V. N. Pak, A. A. Malygin, and S. I. Kol'tsov, Neorg. Mater. 20, 144 (1984)
705. M. N. Tsvetkova, V. N. Pak, A. A. Malygin, and S. I. Kol'tsov, [Inorg. Mater. 20, 121 (1984)].
706.
706. A. L. Egorov, K. Ezhovskii, S. I. Kol'tsov, and G. V. Anikeev, Zh. Prikl. Khim. 57, 2593 (1984)
706. A. L. Egorov,. K. Ezhovskii, S. I. Kol'tsov, and G. V. Anikeev, [J. Appl. Chem. USSR 57, 2395 (1984)].
707.
707. A. A. Seitmagzimov, V. N. Pak, and S. I. Kol'tsov, Zh. Prikl. Khim. 58, 92 (1985)
707. A. A. Seitmagzimov, V. N. Pak, and S. I. Kol'tsov, [J. Appl. Chem. USSR 58, 85 (1985)].
708.
708. L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. 59, 1224 (1986)
708. L. I. Petrova, A. A. Malkov, and A. A. Malygin, [J. Appl. Chem. USSR 59, 1131 (1986)].
709.
709. L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. 59, 2277 (1986)
709. L. I. Petrova, A. A. Malkov, and A. A. Malygin, [J. Appl. Chem. USSR 59, 2093 (1986)].
710.
710. A. B. Zhidkov and E. P. Smirnov, Kinet. Katal. 29, 946 (1988)
710. A. B. Zhidkov and E. P. Smirnov, [Kinet. Catal. 29, 813 (1988)].
711.
711. L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. 64, 763 (1991)
711. L. I. Petrova, A. A. Malkov, and A. A. Malygin, [J. Appl. Chem. USSR 64, 679 (1991)].
712.
712. L. I. Petrova, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. 64, 1435 (1991)
712. L. I. Petrova, A. A. Malkov, and A. A. Malygin, [J. Appl. Chem. USSR 64, 1290 (1991)].
713.
713. N. V. Dolgushev, A. A. Malkov, A. A. Malygin, S. A. Suvorov, A. V. Shchukarev, A. V. Beljaev, and V. A. Bykov, Zh. Prikl. Khim. 65, 1117 (1992)
713. N. V. Dolgushev, A. A. Malkov, A. A. Malygin, S. A. Suvorov, A. V. Shchukarev, A. V. Beljaev, and V. A. Bykov, [J. Appl. Chem. USSR 65, 921 (1992)].
714.
714. V. M. Smirnov, A. A. Malkov, and R. R. Rachovskii, Zh. Prikl. Khim. 65, 2666 (1992)
714. V. M. Smirnov, A. A. Malkov, and R. R. Rachovskii, [J. Appl. Chem. USSR 65, 2213 (1992)].
715.
715. N. V. Dolgushev, A. A. Malkov, A. A. Malygin, S. A. Suvorov, A. V. Shchukarev, A. V. Beljaev, and V. A. Bykov, Thin Solid Films 293, 91 (1997).
http://dx.doi.org/10.1016/S0040-6090(96)08985-7
716.
716. V. N. Pak, I. Yu. Tikhomirova, T. M. Burkat, and B. I. Lobov, Zh. Fiz. Khim. 73, 2024 (1999)
716. V. N. Pak, I. Yu. Tikhomirova, T. M. Burkat, and B. I. Lobov, [Russ. J. Phys. Chem. 73, 1824 (1999)].
717.
717. S. I. Kol'tsov and G. N. Kuznetsova, Zh. Prikl. Khim. 72, 900 (1999)
717. S. I. Kol'tsov and G. N. Kuznetsova, [Russ. J. Appl. Chem. 72, 942 (1999)].
718.
718. S. A. Morozov, A. A. Malkov, and A. A. Malygin, Zh. Prikl. Khim. 76, 9 (2003)
718. S. A. Morozov, A. A. Malkov, and A. A. Malygin, [Russ. J. Appl. Chem. 76, 7 (2003)].
http://dx.doi.org/10.1023/A:1023315110555
719.
719. S. B. Desu, Mater. Sci. Eng. B 13, 299 (1992).
http://dx.doi.org/10.1016/0921-5107(92)90132-S
720.
720. E.-L. Lakomaa, S. Haukka, and T. Suntola, Appl. Surf. Sci. 60/61, 742 (1992).
http://dx.doi.org/10.1016/0169-4332(92)90506-S
721.
721. S. Haukka, E.-L. Lakomaa, and A. Root, J. Phys. Chem. 97, 5085 (1993).
http://dx.doi.org/10.1021/j100121a040
722.
722. S. Haukka, E.-L. Lakomaa, and T. Suntola, Thin Solid Films 225, 280 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90170-T
723.
723. S. Haukka, E.-L. Lakomaa, O. Jylhä, J. Vilhunen, and S. Hornytzkyj, Langmuir 9, 3497 (1993).
http://dx.doi.org/10.1021/la00036a026
724.
724. M. Ritala and M. Leskelä, Thin Solid Films 225, 288 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90172-L
725.
725. M. Ritala, M. Leskelä, L.-S. Johansson, and L. Niinistö, Thin Solid Films 228, 32 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90557-6
726.
726. S. Haukka, E.-L. Lakomaa, and T. Suntola, Appl. Surf. Sci. 82/83, 548 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90273-9
727.
727. J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, J. Cryst. Growth 148, 268 (1995).
http://dx.doi.org/10.1016/0022-0248(94)00874-4
728.
728. J. Aarik, A. Aidla, V. Sammelselg, H. Siimon, and T. Uustare, J. Cryst. Growth 169, 496 (1996).
http://dx.doi.org/10.1016/S0022-0248(96)00423-X
729.
729. J. Aarik, A. Aidla, and T. Uustare, Philos. Mag. Lett. 73, 115 (1996).
http://dx.doi.org/10.1080/095008396180911
730.
730. A. Rosental, P. Adamson, A. Gerst, and A. Niilisk, Appl. Surf. Sci. 107, 178 (1996).
http://dx.doi.org/10.1016/S0169-4332(96)00483-7
731.
731. V. E. Drozd, N. N. Kopilov, and V. B. Aleskovski, Appl. Surf. Sci. 112, 258 (1997).
http://dx.doi.org/10.1016/S0169-4332(96)00976-2
732.
732. J. Aarik, A. Aidla, V. Sammelselg, and T. Uustare, J. Cryst. Growth 181, 259 (1997).
http://dx.doi.org/10.1016/S0022-0248(97)00279-0
733.
733. J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, and V. Sammelselg, Thin Solid Films 305, 270 (1997).
http://dx.doi.org/10.1016/S0040-6090(97)00135-1
734.
734. H. Siimon and J. Aarik, J. Phys. D: Appl. Phys. 30, 1725 (1997).
http://dx.doi.org/10.1088/0022-3727/30/12/006
735.
735. H. Siimon, J. Aarik, and T. Uustare, in Proceedings of the Fourteenth International Conference of Chemical Vapor Deposition and EUROCVD-11, Electrochem. Soc. Proceedings, edited by M. D. Allendorf and C. Bernard (Electrochemical Society, Pennington, New Jersey, USA, 1997), Vol. 97–25, pp. 131138.
736.
736. M. Lindblad, S. Haukka, A. Kytökivi, E.-L. Lakomaa, A. Rautiainen, and T. Suntola, Appl. Surf. Sci. 121/122, 286 (1997).
http://dx.doi.org/10.1016/S0169-4332(97)00307-3
737.
737. A. Rosental, P. Adamson, A. Gerst, H. Koppel, and A. Tarre, Appl. Surf. Sci. 112, 82 (1997).
http://dx.doi.org/10.1016/S0169-4332(96)01003-3
738.
738. V. Sammelselg, A. Rosental, A. Tarre, L. Niinistö, K. Heiskanen, K. Ilmonen, L.-S. Johansson, and T. Uustare, Appl. Surf. Sci. 134, 78 (1998).
http://dx.doi.org/10.1016/S0169-4332(98)00224-4
739.
739. A. Suisalu, J. Aarik, H. Mändar, and I. Sildos, Thin Solid Films 336, 295 (1998).
http://dx.doi.org/10.1016/S0040-6090(98)01314-5
740.
740. A. Rosental, A. Tarre, P. Adamson, A. Gerst, A. Kasikov, and A. Niilisk, Appl. Surf. Sci. 142, 204 (1999).
http://dx.doi.org/10.1016/S0169-4332(98)00706-5
741.
741. V. Sammelselg, J. Aarik, A. Aidla, A. Kasikov, E. Heikinheimo, M. Peussa, and L. Niinistö, J. Anal. At. Spectrom. 14, 523 (1999).
http://dx.doi.org/10.1039/a806762g
742.
742. K. Schrijnemakers, N. R. E. N. Impens, and E. F. Vansant, Langmuir 15, 5807 (1999).
http://dx.doi.org/10.1021/la9812469
743.
743. A. Turković, Mater. Sci. Eng. B 75, 85 (2000).
http://dx.doi.org/10.1016/S0921-5107(00)00421-9
744.
744. J. Aarik, A. Aidla, H. Mändar, and V. Sammelselg, J. Cryst. Growth 220, 531 (2000).
http://dx.doi.org/10.1016/S0022-0248(00)00897-6
745.
745. R. Matero, A. Rahtu, and M. Ritala, Chem. Mater. 13, 4506 (2001).
http://dx.doi.org/10.1021/cm011046+
746.
746. J. Aarik, A. Aidla, H. Mändar, and T. Uustare, Appl. Surf. Sci. 172, 148 (2001).
http://dx.doi.org/10.1016/S0169-4332(00)00842-4
747.
747. A. Tarre, A. Rosental, V. Sammelselg, and T. Uustare, Appl. Surf. Sci. 175/176, 111 (2001).
http://dx.doi.org/10.1016/S0169-4332(01)00051-4
748.
748. J. Aarik, A. Aidla, H. Mändar, T. Uustare, M. Schuisky, and A. Hårsta, J. Cryst. Growth 242, 189 (2002).
http://dx.doi.org/10.1016/S0022-0248(02)01426-4
749.
749. B. J. Ninness, D. W. Bousfield, and C. P. Tripp, Colloids Surf., A 214, 195 (2003).
http://dx.doi.org/10.1016/S0927-7757(02)00390-4
750.
750. K. S. Finnie, G. Triani, K. T. Short, D. R. G. Mitchell, D. J. Attard, J. R. Bartlett, and C. J. Barbé, Thin Solid Films 440, 109 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00818-6
751.
751. D. R. G. Mitchell, D. J. Attard, and G. Triani, Thin Solid Films 441, 85 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00877-0
752.
752. J. D. Ferguson, A. R. Yoder, A. W. Weimer, and S. M. George, Appl. Surf. Sci. 226, 393 (2004).
http://dx.doi.org/10.1016/j.apsusc.2003.10.053
753.
753. X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, Nano Lett. 4, 2223 (2004).
http://dx.doi.org/10.1021/nl048589d
754.
754. M. S. Sander, M. J. Côté, W. Gu, B. M. Kile, and C. P. Tripp, Adv. Mater. 16, 2052 (2004).
http://dx.doi.org/10.1002/adma.200400446
755.
755. W. Gu and C. P. Tripp, Langmuir 21, 211 (2005).
http://dx.doi.org/10.1021/la047811r
756.
756. X. D. Wang, C. Neff, E. Graugnard, Y. Ding, J. S. King, L. A. Pranger, R. Tannenbaum, Z. L. Wang, and C. J. Summers, Adv. Mater. 17, 2103 (2005).
http://dx.doi.org/10.1002/adma.200500546
757.
757. D. R. G. Mitchell, D. J. Attard, and G. Triani, J. Cryst. Growth 285, 208 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2005.08.003
758.
758. J. S. King, D. Heineman, E. Graugnard, and C. J. Summers, Appl. Surf. Sci. 244, 511 (2005).
http://dx.doi.org/10.1016/j.apsusc.2004.10.110
759.
759. J. S. King, E. Graugnard, and C. J. Summers, Adv. Mater. 17, 1010 (2005).
http://dx.doi.org/10.1002/adma.200400648
760.
760. S. Dueñas, H. Castán, H. García, E. San Andrés, M. Toledano-Luque, I. Mártil, G. González-Díaz, K. Kukli, T. Uustare, and J. Aarik, Semicond. Sci. Technol. 20, 1044 (2005).
http://dx.doi.org/10.1088/0268-1242/20/10/011
761.
761. D. H. Triyoso, R. I. Hegde, X. D. Wang, M. W. Stoker, R. Rai, M. E. Ramon, B. E. White, and P. J. Tobin, J. Electrochem. Soc. 153, G834 (2006).
http://dx.doi.org/10.1149/1.2216528
762.
762. G. Triani, P. J. Evans, D. J. Attard, K. E. Prince, J. Bartlett, S. Tan, and R. P. Burford, J. Mater. Chem. 16, 1355 (2006).
http://dx.doi.org/10.1039/b516499k
763.
763. A. Sinha, D. W. Hess, and C. L. Henderson, J. Electrochem. Soc. 153, G465 (2006).
http://dx.doi.org/10.1149/1.2184068
764.
764. A. Sinha, D. W. Hess, and C. L. Henderson, J. Vac. Sci. Technol. B 24, 2523 (2006).
http://dx.doi.org/10.1116/1.2359728
765.
765. M. Ritala, M. Kemell, M. Lautala, A. Niskanen, M. Leskelä, and S. Lindfors, Chem. Vap. Deposition 12, 655 (2006).
http://dx.doi.org/10.1002/cvde.200604228
766.
766. V. Pore, M. Heikkilä, M. Ritala, M. Leskelä, and S. Areva, J. Photochem. Photobiol., A 177, 68 (2006).
http://dx.doi.org/10.1016/j.jphotochem.2005.05.013
767.
767. A. Niilisk, M. Moppel, M. Pärs, I. Sildos, T. Jantson, T. Avarmaa, R. Jaaniso, and J. Aarik, Cent. Eur. J. Phys. 4, 105 (2006).
http://dx.doi.org/10.1007/s11534-005-0009-3
768.
768. S. Mahurin, L. L. Bao, W. F. Yan, C. D. Liang, and S. Dai, J. Non-Cryst. Solids 352, 3280 (2006).
http://dx.doi.org/10.1016/j.jnoncrysol.2006.05.008
769.
769. D. Losic, G. Triani, P. J. Evans, A. Atanacio, J. G. Mitchell, and N. H. Voelcker, J. Mater. Chem. 16, 4029 (2006).
http://dx.doi.org/10.1039/b610188g
770.
770. M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. D. Yang, J. Phys. Chem. B 110, 22652 (2006).
http://dx.doi.org/10.1021/jp0648644
771.
771. J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, Adv. Mater. 18, 1561 (2006).
http://dx.doi.org/10.1002/adma.200502287
772.
772. A. Kasikov, J. Aarik, H. Mändar, M. Moppel, M. Pärs, and T. Uustare, J. Phys. D: Appl. Phys. 39, 54 (2006).
http://dx.doi.org/10.1088/0022-3727/39/1/010
773.
773. I. Jõgi, J. Aarik, M. Laan, J. Lu, K. Kukli, H. Käämbre, T. Sajavaara, and T. Uustare, Thin Solid Films 510, 39 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.12.158
774.
774. E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, and C. J. Summers, Appl. Phys. Lett. 89, 181108 (2006).
http://dx.doi.org/10.1063/1.2360236
775.
775. V. Pore, M. Ritala, M. Leskelä, S. Areva, M. Järn, and J. Järnström, J. Mater. Chem. 17, 1361 (2007).
http://dx.doi.org/10.1039/b617307a
776.
776. B. A. Latella, G. Triani, Z. Zhang, K. T. Short, J. R. Bartlett, and M. Ignat, Thin Solid Films 515, 3138 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.08.022
777.
777. L. E. Greene, M. Law, B. D. Yuhas, and P. D. Yang, J. Phys. Chem. C 111, 18451 (2007).
http://dx.doi.org/10.1021/jp077593l
778.
778. H. E. Cheng and C. C. Chen, J. Electrochem. Soc. 155, D604 (2008).
http://dx.doi.org/10.1149/1.2952659
779.
779. H. Kawakami, R. Ilola, L. Straka, S. Papula, J. Romu, H. Hänninen, R. Mahlberg, and M. Heikkilä, J. Electrochem. Soc. 155, C62 (2008).
http://dx.doi.org/10.1149/1.2815484
780.
780. K. Fröhlich, M. Ťapajna, A. Rosová, E. Dobročka, K. Hušeková, J. Aarik, and A. Aidla, Electrochem. Solid-State Lett. 11, G19 (2008).
http://dx.doi.org/10.1149/1.2898184
781.
781. L. K. Tan, M. A. S. Chong, and H. Gao, J. Phys. Chem. C 112, 69 (2008).
http://dx.doi.org/10.1021/jp076949q
782.
782. I. Jõgi, M. Pärs, J. Aarik, A. Aidla, M. Laan, J. Sundqvist, L. Oberbeck, J. Heitmann, and K. Kukli, Thin Solid Films 516, 4855 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.09.008
783.
783. S. Dueñas, H. Castán, H. García, L. Bailón, K. Kukli, J. Lu, M. Ritala, and M. Leskelä, J. Non-Cryst. Solids 354, 404 (2008).
http://dx.doi.org/10.1016/j.jnoncrysol.2007.07.051
784.
784. L. K. Tan, H. Gao, Y. Zong, and W. Knoll, J. Phys. Chem. C 112, 17576 (2008).
http://dx.doi.org/10.1021/jp8070794
785.
785. C. J. W. Ng, H. Gao, and T. T. Y. Tan, Nanotechnology 19, 445604 (2008).
http://dx.doi.org/10.1088/0957-4484/19/44/445604
786.
786. D. Mitchell, G. Triani, and Z. Zhang, Thin Solid Films 516, 8414 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.04.052
787.
787. A. B. F. Martinson, J. W. Elam, J. Liu, M. J. Pellin, T. J. Marks, and J. T. Hupp, Nano Lett. 8, 2862 (2008).
http://dx.doi.org/10.1021/nl8015285
788.
788. Z. Zhang, G. Triani, and L.-J. Fan, J. Mater. Res. 23, 2472 (2008).
http://dx.doi.org/10.1557/jmr.2008.0297
789.
789. V. V. Antipov, A. P. Belyaev, A. A. Malygin, V. P. Rubets, and E. A. Sosnov, Russ. J. Appl. Chem. 81, 2051 (2008).
http://dx.doi.org/10.1134/S107042720812001X
790.
790. M.-L. Kääriäinen, T. O. Kääriäinen, and D. C. Cameron, Thin Solid Films 517, 6666 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.05.001
791.
791. J. Lu, K. M. Kosuda, R. P. Van Duyne, and P. C. Stair, J. Phys. Chem. C 113, 12412 (2009).
http://dx.doi.org/10.1021/jp902200c
792.
792. R. J. Narayan, N. A. Monteiro-Riviere, R. L. Brigmon, M. J. Pellin, and J. W. Elam, JOM 61, 12 (2009).
http://dx.doi.org/10.1007/s11837-009-0081-z
793.
793. S. Ghosal, T. F. Baumann, J. S. King, S. O. Kucheyev, Y. Wang, M. A. Worsley, J. Biener, S. F. Bent, and A. V. Hamza, Chem. Mater. 21, 1989 (2009).
http://dx.doi.org/10.1021/cm900636s
794.
794. M. K. Kumar, L. K. Tan, N. N. Gosvami, and H. Gao, J. Phys. Chem. C 113, 6381 (2009).
http://dx.doi.org/10.1021/jp809183y
795.
795. H.-E. Cheng, C.-M. Hsu, and Y.-C. Chen, J. Electrochem. Soc. 156, D275 (2009).
http://dx.doi.org/10.1149/1.3138723
796.
796. K. Nevalainen, R. Suihkonen, P. Eteläaho, J. Vuorinen, P. Järvelä, N. Isomäki, C. Hintze, and M. Leskelä, J. Vac. Sci. Technol. A 27, 929 (2009).
http://dx.doi.org/10.1116/1.3072920
797.
797. S. Vilhunen, M. Bosund, M.-L. Kääriäinen, D. Cameron, and M. Sillanpää, Sep. Purif. Technol. 66, 130 (2009).
http://dx.doi.org/10.1016/j.seppur.2008.11.004
798.
798. E. Santala, M. Kemell, M. Leskelä, and M. Ritala, Nanotechnology 20, 035602 (2009).
http://dx.doi.org/10.1088/0957-4484/20/3/035602
799.
799. K. Fröhlich, J. Aarik, M. Ťapajna, A. Rosová, A. Aidla, E. Dobročka, and K. Hušková, J. Vac. Sci. Technol. B 27, 266 (2009).
http://dx.doi.org/10.1116/1.3021030
800.
800. A. P. Belyaev, A. A. Malygin, V. V. Antipov, and V. P. Rubets, Phys. Solid State 51, 495 (2009).
http://dx.doi.org/10.1134/S1063783409030093
801.
801. S.-Y. Lu, C.-W. Tang, Y.-H. Lin, H.-F. Kuo, Y.-C. Lai, M.-Y. Tsai, H. Ouyang, and W.-K. Hsu, Appl. Phys. Lett. 96, 231915 (2010).
http://dx.doi.org/10.1063/1.3454908
802.
802. R. Methaapanon and S. F. Bent, J. Phys. Chem. C 114, 10498 (2010).
http://dx.doi.org/10.1021/jp1013303
803.
803. M. Kemell, E. Härkönen, V. Pore, M. Ritala, and M. Leskelä, Nanotechnology 21, 035301 (2010).
http://dx.doi.org/10.1088/0957-4484/21/3/035301
804.
804. G. Testa, Y. Huang, L. Zeni, P. M. Sarro, and R. Bernini, IEEE Photon. Technol. Lett. 22, 616 (2010).
http://dx.doi.org/10.1109/LPT.2010.2043352
805.
805. G. Triani, J. A. Campbell, P. J. Evans, J. Davis, B. A. Latella, and R. P. Burford, Thin Solid Films 518, 3182 (2010).
http://dx.doi.org/10.1016/j.tsf.2009.09.010
806.
806. W.-J. Lee and M.-H. Hon, J. Phys. Chem. C 114, 6917 (2010).
http://dx.doi.org/10.1021/jp911210q
807.
807. H. Guo, M. Kemell, M. Heikkilä, and M. Leskelä, Appl. Catal. B 95, 358 (2010).
http://dx.doi.org/10.1016/j.apcatb.2010.01.014
808.
808. Y.-H. Chang, C.-M. Liu, Y.-C. Tseng, C. Chen, C.-C. Chen, and H.-E. Cheng, Nanotechnology 21, 225602 (2010).
http://dx.doi.org/10.1088/0957-4484/21/22/225602
809.
809. H.-E. Cheng, S. H. Hsiao, and D.-M. Lu, Electrochem. Solid-State Lett. 13, D19 (2010).
http://dx.doi.org/10.1149/1.3313344
810.
810. A. A. Malkov, E. A. Sosnov, and A. A. Malygin, Russ. J. Appl. Chem. 83, 1511 (2010).
http://dx.doi.org/10.1134/S1070427210090016
811.
811. S. K. Karuturi, L. Liu, L. T. Su, Y. Zhao, H. J. Fan, X. Ge, S. He, and A. T. I. Yoong, J. Phys. Chem. C 114, 14843 (2010).
http://dx.doi.org/10.1021/jp1053748
812.
812. H. Kumagai, Y. Tanaka, M. Murata, Y. Masuda, and T. Shinagawa, J. Phys.: Condens. Matter 22, 474008 (2010).
http://dx.doi.org/10.1088/0953-8984/22/47/474008
813.
813. L. K. Tan, M. K. Kumar, W. W. An, and H. Gao, ACS Appl. Mater. Interfaces 2, 498 (2010).
http://dx.doi.org/10.1021/am900726k
814.
814. R. L. Puurunen, T. Sajavaara, E. Santala, V. Miikkulainen, T. Saukkonen, M. Laitinen, and M. Leskelä, J. Nanosci. Nanotechnol. 11, 8101 (2011).
http://dx.doi.org/10.1166/jnn.2011.5060
815.
815. H. Kumagai, M. Matsumoto, K. Toyoda, M. Obara, and M. Suzuki, Thin Solid Films 263, 47 (1995).
http://dx.doi.org/10.1016/0040-6090(95)06555-5
816.
816. D. M. King, X. Du, A. S. Cavanagh, and A. Weimer, Nanotechnology 19, 445401 (2008).
http://dx.doi.org/10.1088/0957-4484/19/44/445401
817.
817. V. Sammelselg, A. Tarre, J. Lu, J. Aarik, A. Niilisk, T. Uustare, I. Netšipailo, R. Rammula, R. Pärna, and A. Rosental, Surf. Coat. Technol. 204, 2015 (2010).
http://dx.doi.org/10.1016/j.surfcoat.2009.11.039
818.
818. N. G. Kubala, P. C. Rowlette, and C. A. Wolden, J. Phys. Chem. C 113, 16307 (2009).
http://dx.doi.org/10.1021/jp907266c
819.
819. N. G. Kubala and C. A. Wolden, Thin Solid Films 518, 6733 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.05.128
820.
820. J. Aarik, A. Aidla, T. Uustare, K. Kukli, V. Sammelselg, M. Ritala, and M. Leskelä, Appl. Surf. Sci. 193, 277 (2002).
http://dx.doi.org/10.1016/S0169-4332(02)00497-X
821.
821. I. L. Soroka, M. Rooth, J. Lu, M. Boman, P. Svedlindh, J. O. Carlsson, and A. Hårsta, J. Appl. Phys. 106, 084313 (2009).
http://dx.doi.org/10.1063/1.3245395
822.
822. M. Rooth, R. A. Quinlan, E. Widenkvist, J. Lu, H. Grennberg, B. C. Holloway, A. Hårsta, and U. Jansson, J. Cryst. Growth 311, 373 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.10.035
823.
823. K. Kukli, M. Ritala, M. Schusky, M. Leskelä, T. Sajavaara, J. Keinonen, T. Uustare, and A. Hårsta, Chem. Vap. Deposition 6, 303 (2000).
http://dx.doi.org/10.1002/1521-3862(200011)6:6<303::AID-CVDE303>3.0.CO;2-J
824.
824. K. Kukli, A. Aidla, J. Aarik, M. Schuisky, A. Hårsta, M. Ritala, and M. Leskelä, Langmuir 16, 8122 (2000).
http://dx.doi.org/10.1021/la0004451
825.
825. M. Schuisky, A. Hårsta, A. Aidla, K. Kukli, A.-A. Kiisler, and J. Aarik, J. Electrochem. Soc. 147, 3319 (2000).
http://dx.doi.org/10.1149/1.1393901
826.
826. M. Schuisky, J. Aarik, K. Kukli, A. Aidla, and A. Hårsta, Langmuir 17, 5508 (2001).
http://dx.doi.org/10.1021/la010174+
827.
827. M. Schuisky, K. Kukli, J. Aarik, J. Lu, and A. Hårsta, J. Cryst. Growth 235, 293 (2002).
http://dx.doi.org/10.1016/S0022-0248(01)01804-8
828.
828. M. Rose, J. Niinistö, P. Michalowski, L. Gerlich, L. Wilde, I. Endler, and J. W. Bartha, J. Phys. Chem. C 113, 21825 (2009).
http://dx.doi.org/10.1021/jp907940u
829.
829. M. Rose, J. W. Bartha, and I. Endler, Appl. Surf. Sci. 256, 3778 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.01.025
830.
830. V. Pore, A. Rahtu, M. Leskelä, M. Ritala, T. Sajavaara, and J. Keinonen, Chem. Vap. Deposition 10, 143 (2004).
http://dx.doi.org/10.1002/cvde.200306289
831.
831. M. Kemell, V. Pore, M. Ritala, M. Leskelä, and M. Lindén, J. Am. Chem. Soc. 127, 14178 (2005).
http://dx.doi.org/10.1021/ja0532887
832.
832. M. Kemell, V. Pore, M. Ritala, and M. Leskelä, Chem. Vap. Deposition 12, 419 (2006).
http://dx.doi.org/10.1002/cvde.200604224
833.
833. P. Alén, M. Vehkamäki, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 153, G304 (2006).
http://dx.doi.org/10.1149/1.2168389
834.
834. M. Kemell, V. Pore, J. Tupala, M. Ritala, and M. Leskelä, Chem. Mater. 19, 1816 (2007).
http://dx.doi.org/10.1021/cm062576e
835.
835. E. Färm, M. Kemell, M. Ritala, and M. Leskelä, Thin Solid Films 517, 972 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.08.191
836.
836. M. Heikkilä, E. Puukilainen, M. Ritala, and M. Leskelä, J. Photochem. Photobiol., A 204, 200 (2009).
http://dx.doi.org/10.1016/j.jphotochem.2009.03.019
837.
837. A. Alekhin, S. Gudkova, A. Markeev, A. Mitiaev, A. Sigarev, and V. Toknova, Appl. Surf. Sci. 257, 186 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.06.061
838.
838. M. Popovici, S. Van Elshocht, N. Menou, J. Swerts, D. Pierreux, A. Delabie, B. Brijs, T. Conard, K. Opsomer, J. W. Maes, D. J. Wouters, and J. A. Kittl, J. Electrochem. Soc. 157, G1 (2010).
http://dx.doi.org/10.1149/1.3244213
839.
839. M. Ritala, M. Leskelä, and E. Rauhala, Chem. Mater. 6, 556 (1994).
http://dx.doi.org/10.1021/cm00040a035
840.
840. J. Aarik, A. Aidla, V. Sammelselg, T. Uustare, M. Ritala, and M. Leskelä, Thin Solid Films 370, 163 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)00911-1
841.
841. J. Aarik, J. Karlis, H. Mändar, T. Uustare, and V. Sammelselg, Appl. Surf. Sci. 181, 339 (2001).
http://dx.doi.org/10.1016/S0169-4332(01)00430-5
842.
842. A. Rahtu, K. Kukli, and M. Ritala, Chem. Mater. 13, 817 (2001).
http://dx.doi.org/10.1021/cm0011110
843.
843. I.-D. Kim, H. L. Tuller, H.-S. Kim, and J.-S. Park, Appl. Phys. Lett. 85, 4705 (2004).
http://dx.doi.org/10.1063/1.1821656
844.
844. J. J. Wang, X. G. Deng, R. Varghese, A. Nikolov, P. Sciortino, F. Liu, and L. Chen, Opt. Lett. 30, 1864 (2005).
http://dx.doi.org/10.1364/OL.30.001864
845.
845. A. P. Alekhin, G. I. Lapushkin, A. M. Markeev, A. A. Sigarev, and V. F. Toknova, J. Surf. Invest. 4, 379 (2010).
http://dx.doi.org/10.1134/S1027451010030043
846.
846. H. Döring, K. Hashimoto, and A. Fujushima, Ber. Bunsen-Ges. Phys. Chem. 96, 620 (1992).
http://dx.doi.org/10.1002/bbpc.19920960416
847.
847. M. Ritala, M. Leskelä, L. Niinistö, and P. Haussalo, Chem. Mater. 5, 1174 (1993).
http://dx.doi.org/10.1021/cm00032a023
848.
848. J. Aarik, A. Aidla, T. Uustare, M. Ritala, and M. Leskelä, Appl. Surf. Sci. 161, 385 (2000).
http://dx.doi.org/10.1016/S0169-4332(00)00274-9
849.
849. A. Rahtu and M. Ritala, Chem. Vap. Deposition 8, 21 (2002).
http://dx.doi.org/10.1002/1521-3862(20020116)8:1<21::AID-CVDE21>3.0.CO;2-0
850.
850. H. Shin, D.-K. Jeong, J. Lee, M. M. Sung, and J. Kim, Adv. Mater. 16, 1197 (2004).
http://dx.doi.org/10.1002/adma.200306296
851.
851. J. W. Lim and S. J. Yun, Electrochem. Solid-State Lett. 7, H33 (2004).
http://dx.doi.org/10.1149/1.1773754
852.
852. D. K. Jeong, N. H. Park, S. H. Jung, W. G. Jung, H. Shin, J. G. Lee, and J. Y. Kim, Mater. Sci. Forum 449–452, 1165 (2004).
http://dx.doi.org/10.4028/www.scientific.net/MSF.449-452.1165
853.
853. D. Jeong, J. Lee, H. Shin, J. Lee, J. Kim, and M. Sung, J. Korean Phys. Soc. 45, 1249 (2004).
http://dx.doi.org/10.3938/jkps.45.1249
854.
854. J. W. Lim, S. J. Yun, and J. H. Lee, Electrochem. Solid-State Lett. 7, F73 (2004).
http://dx.doi.org/10.1149/1.1805502
855.
855. E. Seo, J. Lee, H. Sung-Suh, and M. Sung, Chem. Mater. 16, 1878 (2004).
http://dx.doi.org/10.1021/cm035140x
856.
856. W. D. Kim, G. W. Hwang, O. S. Kwon, S. K. Kim, M. Cho, D. S. Jeong, S. W. Lee, M. H. Seo, C. S. Hwang, Y. S. Min, and Y. J. Cho, J. Electrochem. Soc. 152, C552 (2005).
http://dx.doi.org/10.1149/1.1943589
857.
857. A. Sinha, D. W. Hess, and C. L. Henderson, Electrochem. Solid-State Lett. 9, G330 (2006).
http://dx.doi.org/10.1149/1.2335939
858.
858. K. S. Park, E. K. Seo, Y. R. Do, K. Kim, and M. M. Sung, J. Am. Chem. Soc. 128, 858 (2006).
http://dx.doi.org/10.1021/ja055377p
859.
859. S. K. Kim, G. W. Hwang, W. D. Kim, and C. S. Hwang, Electrochem. Solid-State Lett. 9, F5 (2006).
http://dx.doi.org/10.1149/1.2131241
860.
860. T. Watanabe, S. Hoffmann-Eifert, L. Yang, A. Rudiger, C. Kugeler, C. S. Hwang, and R. Waser, J. Electrochem. Soc. 154, G134 (2007).
http://dx.doi.org/10.1149/1.2724126
861.
861. S. H. Qiu and T. L. Starr, J. Electrochem. Soc. 154, H472 (2007).
http://dx.doi.org/10.1149/1.2718475
862.
862. B. H. Lee, M. K. Ryu, S. Y. Choi, K. H. Lee, S. Im, and M. M. Sung, J. Am. Chem. Soc. 129, 16034 (2007).
http://dx.doi.org/10.1021/ja075664o
863.
863. X. Chen, M. Knez, A. Berger, K. Nielsch, U. Gösele, and M. Steinhart, Angew. Chem., Int. Ed. 46, 6829 (2007).
http://dx.doi.org/10.1002/anie.200700923
864.
864. Q. Xie, J. Musschoot, D. Deduytsche, R. L. Van Meirhaeghe, C. Detavernier, S. Van den Berghe, Y. L. Jiang, G. P. Ru, B. Z. Li, and X. P. Qu, J. Electrochem. Soc. 155, H688 (2008).
http://dx.doi.org/10.1149/1.2955724
865.
865. C. Shan, X. Hou, K.-L. Choy, and P. Choquet, Surf. Coat. Technol. 202, 21472151 (2008).
http://dx.doi.org/10.1016/j.surfcoat.2007.08.078
866.
866. C. Shan, X. Hou, and K.-L. Choy, Surf. Coat. Technol. 202, 23992402 (2008).
http://dx.doi.org/10.1016/j.surfcoat.2007.08.066
867.
867. D. M. King, X. Liang, Y. Zhou, C. S. Carney, L. F. Hakim, P. Li, and A. W. Weimer, Powder Technol. 183, 356 (2008).
http://dx.doi.org/10.1016/j.powtec.2008.01.025
868.
868. G.-M. Kim, S.-M. Lee, G. H. Michler, H. Roggendorf, U. Gösele, and M. Knez, Chem. Mater. 20, 3085 (2008).
http://dx.doi.org/10.1021/cm703398b
869.
869. Y. M. Hua, W. P. King, and C. L. Henderson, Microelectron. Eng. 85, 934 (2008).
http://dx.doi.org/10.1016/j.mee.2008.01.105
870.
870. T. W. Hamann, A. B. F. Martinson, J. W. Elam, M. J. Pellin, and J. T. Hupp, J. Phys. Chem. C 112, 10303 (2008).
http://dx.doi.org/10.1021/jp802216p
871.
871. T. W. Hamann, O. K. Farha, and J. T. Hupp, J. Phys. Chem. C 112, 19756 (2008).
http://dx.doi.org/10.1021/jp807395g
872.
872. A. Langner, M. Knez, F. Müller, and U. Gösele, Appl. Phys. A: Mater. Sci. Process. 93, 399 (2008).
http://dx.doi.org/10.1007/s00339-008-4784-8
873.
873. H. Kim, E. Pippel, U. Gösele, and M. Knez, Langmuir 25, 13284 (2009).
http://dx.doi.org/10.1021/la903106j
874.
874. S.-M. Lee, E. Pippel, U. Gösele, C. Dresbach, Y. Qin, C. V. Chandran, T. Braeuniger, G. Hause, and M. Knez, Science 324, 488 (2009).
http://dx.doi.org/10.1126/science.1168162
875.
875. Y. Lin, S. Zhou, X. Liu, S. Sheehan, and D. Wang, J. Am. Chem. Soc. 131, 2772 (2009).
http://dx.doi.org/10.1021/ja808426h
876.
876. A. Kim, H. Park, K. Lee, K. Jeong, C. Kim, E. Lee, and J. Lee, Electron. Mater. Lett. 5, 35 (2009).
http://dx.doi.org/10.3365/eml.2009.03.035
877.
877. Y. Yang, R. Scholz, H. J. Fan, D. Hesse, U. Gösele, and M. Zacharias, ACS Nano 3, 555 (2009).
http://dx.doi.org/10.1021/nn800681q
878.
878. J. Joo and S. M. Rossnagel, J. Korean Phys. Soc. 54, 1048 (2009).
http://dx.doi.org/10.3938/jkps.54.1048
879.
879. H. Kwon, H.-H. Park, B.-H. Kim, and J. S. Ha, J. Electrochem. Soc. 156, G13 (2009).
http://dx.doi.org/10.1149/1.3033500
880.
880. Y. Luo, K.-D. Kim, H. O. Seo, M. J. Kim, W. S. Tai, K. H. Lee, D. C. Lim, and Y. D. Kim, Bull. Korean Chem. Soc. 31, 1661 (2010).
http://dx.doi.org/10.5012/bkcs.2010.31.6.1661
881.
881. J. Lee, H. Ju, J. K. Lee, H. S. Kim, and J. Lee, Electrochem. Commun. 12, 210 (2010).
http://dx.doi.org/10.1016/j.elecom.2009.11.026
882.
882. X. Liang, D. M. King, P. Li, and A. W. Weimer, J. Am. Ceram. Soc. 92, 649 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.02940.x
883.
883. H. Wang, S. Xu, and R. G. Gordon, Electrochem. Solid-State Lett. 13, G75 (2010).
http://dx.doi.org/10.1149/1.3457485
884.
884. J. Keränen, E. Iiskola, C. Guimon, A. Auroux, and L. Niinistö, in Proceedings of the 8th International Symposium on Scientific Bases for the Preparation of Heterogeneous Catalysts, Louvain-la-Neuve, Belgium, 9-12 September 2002, Stud. Surf. Sci. Catal., edited by E. Gaigneaux, D. E. De Vos, P. Grange, P. A. Jacobs, J. A. Martens, P. Ruiz, and G. Poncelet (Elsevier, Amsterdam, 2002), Vol. 143, pp. 777785.
885.
885. D.-S. Kil, J.-M. Lee, and J.-S. Roh, Chem. Vap. Deposition 8, 195 (2002).
http://dx.doi.org/10.1002/1521-3862(20020903)8:5<195::AID-CVDE195>3.0.CO;2-9
886.
886. A. Niskanen, K. Arstila, M. Leskelä, and M. Ritala, Chem. Vap. Deposition 13, 152 (2007).
http://dx.doi.org/10.1002/cvde.200606546
887.
887. J. Y. Kim, J. H. Kim, J. H. Ahn, P. K. Park, and S. W. Kang, J. Electrochem. Soc. 154, H1008 (2007).
http://dx.doi.org/10.1149/1.2789802
888.
888. V. R. Rai and S. Agarwal, J. Phys. Chem. C 113, 12962 (2009).
http://dx.doi.org/10.1021/jp903669c
889.
889. S.-W. Nam, M. J. Rooks, K.-B. Kim, and S. M. Rossnagel, Nano Lett. 9, 2044 (2009).
http://dx.doi.org/10.1021/nl900309s
890.
890. G.-J. Choi, S. K. Kim, S.-J. Won, H. J. Kim, and C. S. Hwang, J. Electrochem. Soc. 156, G138 (2009).
http://dx.doi.org/10.1149/1.3169516
891.
891. J.-S. Park, J. K. Jeong, Y.-G. Mo, and S. Kim, Appl. Phys. Lett. 94, 042105 (2009).
http://dx.doi.org/10.1063/1.3075612
892.
892. D.-K. Joo, J.-S. Park, and S.-W. Kang, Electrochem. Solid-State Lett. 12, H77 (2009).
http://dx.doi.org/10.1149/1.3059060
893.
893. B. J. Choi, S. H. Oh, S. Choi, T. Eom, Y. C. Shin, K. M. Kim, K.-W. Yi, C. S. Hwang, Y. J. Kim, H. C. Park, T. S. Baek, and S. K. Hong, J. Electrochem. Soc. 156, H59 (2009).
http://dx.doi.org/10.1149/1.3008013
894.
894. S.-W. Nam, M.-H. Lee, S.-H. Lee, D.-J. Lee, S. M. Rossnagel, and K.-B. Kim, Nano Lett. 10, 3324 (2010).
http://dx.doi.org/10.1021/nl100999e
895.
895. H. Y. Jeong, J. Y. Lee, M.-K. Ryu, and S.-Y. Choi, Phys. Status Solidi RRL 4, 28 (2010).
http://dx.doi.org/10.1002/pssr.200903383
896.
896. S.-W. Kim, T. H. Han, J. Kim, H. Gwon, H.-S. Moon, S.-W. Kang, S. O. Kim, and K. Kang, ACS Nano 3, 1085 (2009).
http://dx.doi.org/10.1021/nn900062q
897.
897. T. H. Han, J. K. Oh, J. S. Park, S.-H. Kwon, S.-W. Kim, and S. O. Kim, J. Mater. Chem. 19, 3512 (2009).
http://dx.doi.org/10.1039/b819254e
898.
898. T. H. Han, H.-S. Moon, J. O. Hwang, S. I. Seok, S. H. Im, and S. O. Kim, Nanotechnology 21, 185601 (2010).
http://dx.doi.org/10.1088/0957-4484/21/18/185601
899.
899. S. K. Kim, W.-D. Kim, K.-M. Kim, C. S. Hwang, and J. Jeong, Appl. Phys. Lett. 85, 4112 (2004).
http://dx.doi.org/10.1063/1.1812832
900.
900. S. K. Kim, K. M. Kim, O. S. Kwon, S. W. Lee, C. B. Jeon, W. Y. Park, C. S. Hwang, and J. Jeong, Electrochem. Solid-State Lett. 8, F59 (2005).
http://dx.doi.org/10.1149/1.2081994
901.
901. S. K. Kim, S. Y. Lee, M. Seo, G. J. Choi, and C. S. Hwang, J. Appl. Phys. 102, 024109 (2007).
http://dx.doi.org/10.1063/1.2757008
902.
902. S. K. Kim, G. J. Choi, and C. S. Hwang, Electrochem. Solid-State Lett. 11, G27 (2008).
http://dx.doi.org/10.1149/1.2909768
903.
903. V. R. Rai and S. Agarwal, J. Phys. Chem. C 112, 9552 (2008).
http://dx.doi.org/10.1021/jp8028616
904.
904. S. K. Kim, G. J. Choi, S. Y. Lee, M. Seo, S. W. Lee, J. H. Han, H. S.