1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Graphene–Fe3O4 nanohybrids: Synthesis and excellent electromagnetic absorption properties
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/2/10.1063/1.4774243
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. H. L. Wang, H. S. Casalongue, Y. Y. Liang, and H. J. Dai, J. Am. Chem. Soc. 132, 7472 (2010).
http://dx.doi.org/10.1021/ja102267j
3.
3. H. L. Wang, L. F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Y. Liang, Y. Cui, and H. J. Dai, J. Am. Chem. Soc. 132, 13978 (2010).
http://dx.doi.org/10.1021/ja105296a
4.
4. C. Xu, X. Wang, and J. W. Zhu, J. Phys. Chem. C 112, 19841 (2008).
http://dx.doi.org/10.1021/jp807989b
5.
5. A. N. Cao, Z. Liu, S. S. Chu, M. H. Wu, Z. M. Ye, Z. W. Cai, Y. L. Chang, S. F. Wang, Q. H. Gong, and Y. F. Li, Adv. Mater. 22, 103 (2010).
http://dx.doi.org/10.1002/adma.200901920
6.
6. Z. S. Wu, W. S. Ren, L. Wen, L. B. Gao, J. P. Zhao, Z. P. Chen, G. M. Zhou, F. Li, and H. M. Cheng, ACS Nano 4, 3187 (2010).
http://dx.doi.org/10.1021/nn100740x
7.
7. G. M. Zhou, D. W. Wang, F. Li, L. L. Zhang, N. Li, Z. S. Wu, L. Wen, G. Q. Lu, and H. M. Cheng, Chem. Mater. 22, 5306 (2010).
http://dx.doi.org/10.1021/cm101532x
8.
8. Z. Xu and C. Gao, Nat. Commun. 2, 571 (2011).
http://dx.doi.org/10.1038/ncomms1583
9.
9. H. K. He and C. Gao, ACS Appl. Mater. Interface 2, 3201 (2010).
http://dx.doi.org/10.1021/am100673g
10.
10. P. C. P. Watts, W. K. Hsu, A. Barnes, and B. Chambers, Adv. Mater. 15, 600 (2003).
http://dx.doi.org/10.1002/adma.200304485
11.
11. A. Wadhawan, D. Garrett, and J. M. Perez, Appl. Phys. Lett. 83, 2683 (2003).
http://dx.doi.org/10.1063/1.1615679
12.
12. C. C. Lee and C. H. Chen, Appl. Phys. Lett. 90, 193102 (2007).
http://dx.doi.org/10.1063/1.2731706
13.
13. Y. J. Chen, M. S. Cao, T. H. Wang, and Q. Wan, Appl. Phys. Lett. 84, 3367 (2004).
http://dx.doi.org/10.1063/1.1702134
14.
14. Y. J. Chen, F. Zhang, G. G. Zhao, X. Y. Fang, H. B. Jin, P. Gao, C. L. Zhu, M. S. Cao, and G. Xiao, J. Phys. Chem. C 114, 9239 (2010).
http://dx.doi.org/10.1021/jp912178q
15.
15. C. L. Zhu, M. L. Zhang, Y. J. Qiao, G. Xiao, F. Zhang, and Y. J. Chen, J. Phys. Chem. C 114, 16229 (2010).
http://dx.doi.org/10.1021/jp104445m
16.
16. Y. J. Chen, P. Gao, R. X. Wang, C. L. Zhu, L. J. Wang, M. S. Cao, and H. B. Jin, J. Phys. Chem. C 113, 10061 (2009).
http://dx.doi.org/10.1021/jp902296z
17.
17. X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G. Zhu, B. Lv, J. P. Lei, and C. G. Lee, Appl. Phys. Lett. 89, 053115 (2006).
http://dx.doi.org/10.1063/1.2236965
18.
18. R. C. Che, C. Y. Zhi, C. Y. Liang, and X. G. Zhou, Appl. Phys. Lett. 88, 033105 (2006).
http://dx.doi.org/10.1063/1.2165276
19.
19. R. C. Che, L. M. Peng, X. F. Duan, Q. Chen, and X. L. Liang, Adv. Mater. 16, 401 (2004).
http://dx.doi.org/10.1002/adma.200306460
20.
20. Y. J. Chen, G. Xiao, T. S. Wang, Q. Y. Ouyang, L. H. Qi, Y. Ma, P. Gao, C. L. Zhu, M. S. Cao, and H. B. Jin, J. Phys. Chem. C 115, 13603 (2011).
http://dx.doi.org/10.1021/jp202473y
21.
21. N. L. Li, Y. Huang, F. Du, X. B. He, X. Lin, H. J. Gao, Y. F. Ma, F. F. Li, Y. S. Chen, and P. C. Eklund, Nano Lett. 6, 1141 (2006).
http://dx.doi.org/10.1021/nl0602589
22.
22. J. H. Zhu, S. Y. Wei, L. Zhang, Y. B. Mao, J. Ryu, N. Haldolaarachchige, D. P. Young, and Z. H. Guo, J. Mater. Chem. 21, 3952 (2011).
http://dx.doi.org/10.1039/c0jm03908j
23.
23. J. H. Zhu, S. Y. Wei, N. Haldolaarachchige, D. P. Young, and Z. H. Guo, J. Phys. Chem. C 115, 15304 (2011).
http://dx.doi.org/10.1021/jp2052536
24.
24. S. B. Ni, S. M. Lin, Q. T. Pan, F. Yang, K. Huang, and D. Y. He, J. Phys. D: Appl. Phys. 42, 055004 (2009).
http://dx.doi.org/10.1088/0022-3727/42/5/055004
25.
25. Z. Zou, A. G. Xuan, Z. G. Yan, Y. X. Wu, and N. Li, Chem. Eng. Sci. 65, 160 (2010).
http://dx.doi.org/10.1016/j.ces.2009.06.003
26.
26. G. X. Tong, W. H. Wu, J. G. Guan, H. S. Qian, J. H. Yuan, and W. Li, J. Alloys Compd. 509, 4320 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.01.058
27.
27. Z. Ma, F. B. Meng, R. Zhao, Y. Q. Zhan, J. C. Zhong, and X. B. Liu, J. Magn. Magn. Mater. 324, 1365 (2012).
http://dx.doi.org/10.1016/j.jmmm.2011.11.040
28.
28. Y. J. Chen, Y. Zhang, G. Xiao, T. S. Wang, Y. Ma, C. L. Zhu, and P. Gao, Sci. China, Ser. G 55, 25 (2012).
http://dx.doi.org/10.1007/s11433-011-4583-7
29.
29. J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, Carbon 47, 922 (2009).
http://dx.doi.org/10.1016/j.carbon.2008.12.038
30.
30. A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
31.
31. C. Wang, X. J. Han, P. Xu, X. L. Zhang, Y. C. Du, S. R. Hu, J. Y. Wang, and X. H. Wang, Appl. Phys. Lett. 98, 072906 (2011).
http://dx.doi.org/10.1063/1.3555436
32.
32. M. Choucair, P. Thordarson, and J. A. Stride, Nat. Nanotechnol. 4, 30 (2009).
http://dx.doi.org/10.1038/nnano.2008.365
33.
33. J. P. Liu, Y. Y. Li, H. J. Fan, Z. H. Zhu, J. Jiang, R. Ding, Y. Y. Hu, and X. T. Huang, Chem. Mater. 22, 212 (2010).
http://dx.doi.org/10.1021/cm903099w
34.
34. Y. J. Chen, F. N. Meng, C. Ma, W. Yang, C. L. Zhu, Q. Y. Ouyang, P. Li, J. Q. Gao, and C. W. Sun, J. Mater. Chem. 22, 12900 (2012).
http://dx.doi.org/10.1039/c2jm31557b
35.
35. Y. J. Chen, Q. S. Wang, C. L. Zhu, P. Gao, Q. Y. Ouyang, T. S. Wang, Y. Ma, and C. W. Sun, J. Mater. Chem. 22, 5924 (2012).
http://dx.doi.org/10.1039/c2jm16825a
36.
36. T. Fujii, F. M. F. Groot, F. G. A. awatzky, F. C. Voogt, T. K. Hibma, and K. Okada, Phys. Rev. B 59, 3195 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.3195
37.
37. S. Chen, J.W. Zhu, and X. Wang, J. Phys. Chem. C 114, 11829 (2010).
http://dx.doi.org/10.1021/jp1048474
38.
38. H. C. Gao, F. Xiao, C. B. Ching, and H. W. Duan, ACS Appl. Mater. Interface 3, 3049 (2011).
http://dx.doi.org/10.1021/am200563f
39.
39. M. Cochet, W. K. Maser, A. M. Benit, M. A. Callejas, M. T. Martínez, J. M. Benoit, J. Schreiber, and O. Chauvet, Chem. Commnun. 37, 1450 (2001).
http://dx.doi.org/10.1039/b104009j
40.
40. R. J. Tseng, C. O. Baker, B. Shedd, J. X. Huang, R. B. Kaner, J. Y. Ouyang, and Y. Yang, Appl. Phys. Lett. 90, 053101 (2007).
http://dx.doi.org/10.1063/1.2434167
41.
41. G. F. Goya, T. S. Berquó, F. C. Fonseca, and M. P. Morales, J. Appl. Phys. 94, 3520 (2003).
http://dx.doi.org/10.1063/1.1599959
42.
42. H. Lee, E. Lee, D. K. Kim, N. K. Jang, Y. Y. Jeong, and S. Jon, J. Am. Chem. Soc. 128, 7383 (2006).
http://dx.doi.org/10.1021/ja061529k
43.
43. S. H. Sun and H. Zeng, J. Am. Chem. Soc. 124, 8204 (2002).
http://dx.doi.org/10.1021/ja026501x
44.
44. S. Peng and S. H. Sun, Angew. Chem., Int. Ed. 46, 4155 (2007).
http://dx.doi.org/10.1002/anie.200700677
45.
45. C. Kittel, Phys. Rev. 73, 155 (1948).
http://dx.doi.org/10.1103/PhysRev.73.155
46.
46. Y. J. Chen, M. S. Cao, Q. Tian, T. H. Wang, and J. Zhu, Mater. Lett. 58, 1481 (2004).
http://dx.doi.org/10.1016/j.matlet.2003.10.036
47.
47. X. G. Liu, D. Y. Geng, H. Meng, P. J. Shang, and Z. D. Zhang, Appl. Phys. Lett. 92, 173117 (2008).
http://dx.doi.org/10.1063/1.2919098
48.
48. X. G. Liu, D. Y. Geng, P. J. Shang, H. Meng, F. Yang, B. Li, D. J. Kang, and Z. D. Zhang, J. Phys. D: Appl. Phys. 41, 175006 (2008).
http://dx.doi.org/10.1088/0022-3727/41/17/175006
49.
49. P. A. Miles, W. B. Westphal, and A. V. Hippel, Rev. Mod. Phys. 29, 279 (1957).
http://dx.doi.org/10.1103/RevModPhys.29.279
50.
50. N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti, and M. Niederberger, Chem. Mater. 17, 3044 (2005).
http://dx.doi.org/10.1021/cm050060+
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/2/10.1063/1.4774243
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SEM image of as-obtained graphene sheets.

Image of FIG. 2.

Click to view

FIG. 2.

XRD pattern of the G–β-FeOOH hybrids.

Image of FIG. 3.

Click to view

FIG. 3.

(a) TEM image and (b) HRTEM image of the G–β-FeOOH nanohybrids. The inset in (a) shows SAED pattern of the nanohybrids.

Image of FIG. 4.

Click to view

FIG. 4.

(a) XRD pattern and (b) Fe 2p core level XPS spectrum of the G–Fe3O4 nanohybrids.

Image of FIG. 5.

Click to view

FIG. 5.

(a) SEM, (b) TEM, (c) magnified TEM, and (d) HRTEM images of the G–Fe3O4 nanohybrids.

Image of FIG. 6.

Click to view

FIG. 6.

(a) Low-resolution and (b) high-resolution AFM images of the G–Fe3O4 nanohybrids.

Image of FIG. 7.

Click to view

FIG. 7.

Raman spectra of (a) the graphene sheets and (b) the G–Fe3O4 nanohybrids.

Image of FIG. 8.

Click to view

FIG. 8.

Magnetization hysteresis loop of the G–Fe3O4 nanohybrids.

Image of FIG. 9.

Click to view

FIG. 9.

(a) The complex permittivity, (b) the complex permeability, and (c) tangent loss of G–Fe3O4 nanohybrids.

Image of FIG. 10.

Click to view

FIG. 10.

(a) The reflection loss of the G–Fe3O4 nanohybrids and (b) the graphene sheets with 20 wt. % of an addition amount in wax matrix.

Image of FIG. 11.

Click to view

FIG. 11.

The reflection loss of the Fe3O4 NP–wax composites with 20 wt. % of an addition amount in wax matrix.

Image of FIG. 12.

Click to view

FIG. 12.

The nitrogen adsorption-desorption isotherms of G–Fe3O4 nanohybrids.

Image of FIG. 13.

Click to view

FIG. 13.

(a) TEM images of G/Fe3O4 nanohybrids as the added amount of Fe(NO3)3·9H2O in the reaction system is increased to 2.0 g, and (b) the reflection loss of the G/Fe3O4 nanohybrids as the added amount of Fe(NO3)3·9H2O in the reaction system is increased to 2.0 g.

Image of FIG. 14.

Click to view

FIG. 14.

(a) TEM images of G/Fe3O4 nanohybrids as the added amount of Fe(NO3)3·9H2O in the reaction system is reduced to 0.3 g, and (b) the reflection loss of the G/Fe3O4 nanohybrids as the added amount of Fe(NO3)3·9H2O in the reaction system is reduced to 0.3 g.

Tables

Generic image for table

Click to view

Table I.

Comparison of RL between other magnetic materials and G–Fe3O4 nanohybrids. C denotes the added amount of the magnetic materials in the wax matrix.

Generic image for table

Click to view

Table II.

Detailed comparison of RL between graphene and G–Fe3O4 nanohybrids.

Loading

Article metrics loading...

/content/aip/journal/jap/113/2/10.1063/1.4774243
2013-01-10
2014-04-18

Abstract

Graphene (G)–Fe3O4 nanohybrids were fabricated by first depositing β-FeOOH crystals with diameter of 3–5 nm on the surface of the graphene sheets. After annealing under Ar flow, β-FeOOH nanocrystals were reduced to Fe3O4 nanoparticles by the graphene sheets, and thus G–Fe3O4 nanohybrids were obtained. The Fe3O4 nanoparticles with a diameter of about 25 nm were uniformly dispersed over the surface of the graphene sheets. Moreover, compared with other magnetic materials and the graphene, the nanohybrids exhibited significantly increased electromagnetic absorption properties owing to high surface areas, interfacial polarizations, and good separation of magnetic nanoparticles. The maximum reflection loss was up to −40.36 dB for G–Fe3O4 nanohybrids with a thickness of 5.0 mm. The nanohybrids are very promising for lightweight and strong electromagnetic attenuation materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/2/1.4774243.html;jsessionid=asmiio6fdssek.x-aip-live-01?itemId=/content/aip/journal/jap/113/2/10.1063/1.4774243&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Graphene–Fe3O4 nanohybrids: Synthesis and excellent electromagnetic absorption properties
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/2/10.1063/1.4774243
10.1063/1.4774243
SEARCH_EXPAND_ITEM