1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Damage of multilayer optics with varying capping layers induced by focused extreme ultraviolet beam
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/20/10.1063/1.4807644
1.
1. M. Suman, M. G. Pelizzo, P. Nicolosi, and D. L. Windt, “ Aperiodic multilayers with enhanced reflectivity for extreme ultraviolet lithography,” Appl. Opt. 47(16), 29062914 (2008).
http://dx.doi.org/10.1364/AO.47.002906
2.
2. D. L. Windt, S. Donguy, J. Seely, and B. Kjornrattanawanich, “ Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt. 43(9), 18351848 (2004).
http://dx.doi.org/10.1364/AO.43.001835
3.
3. M. Suman, F. Frassetto, P. Nicolosi, and M. G. Pelizzo, “ Design of aperiodic multilayer structures for attosecond pulses in the extreme ultraviolet,” Appl. Opt. 46(33), 81598169 (2007).
http://dx.doi.org/10.1364/AO.46.008159
4.
4. M. G. Pelizzo, A. J. Corso, G. Monaco, P. Nicolosi, M. Suman, P. Zuppella, and D. Cocco, “ Multilayer optics to be used as FEL fundamental suppressors for harmonics selection,” Nucl. Instrum. Methods Phys. Res. A 635, S24S29 (2011).
http://dx.doi.org/10.1016/j.nima.2010.10.015
5.
5. Q. Zhong, W. B. Li, Z. Zhang, J. T. Zhu, Q. S. Huang, H. C. Li, Z. S. Wang, P. Jonnard, K. Le Guen, J. M. Andre, H. J. Zhou, and T. L. Huo, “ Optical and structural performance of the Al(1% wt Si)/Zr reflection multilayers in the 17-19 nm region,” Opt. Express 20(10), 1069210700 (2012).
http://dx.doi.org/10.1364/OE.20.010692
6.
6. P. Zuppella, G. Monaco, A. J. Corso, P. Nicolosi, D. L. Windt, V. Bello, G. Mattei, and M. G. Pelizzo, “ Iridium/silicon multilayers for EUV applications in the 20-35 nm wavelength range,” Opt. Lett. 36(7), 12031205 (2011).
http://dx.doi.org/10.1364/OL.36.001203
7.
7. R. Soufli, M. Fernandez-Perea, S. L. Baker, J. C. Robinson, J. Alameda, and C. C. Walton, “ Spontaneously intermixed Al-Mg barriers enable corrosion-resistant Mg/SiC multilayer coatings,” Appl. Phys. Lett. 101(4), 043111 (2012).
http://dx.doi.org/10.1063/1.4737649
8.
8. N. A. Papadogiannis, B. Witzel, C. Kalpouzos, and D. Charalambidis, “ Observation of attosecond light localization in higher order harmonic generation,” Phys. Rev. Lett. 83, 42894292 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.4289
9.
9. P. Antoine, A. L’Huillier, and M. Lewenstein, “ Attosecond pulse trains using high-order harmonics,” Phys. Rev. Lett. 77, 12341237 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1234
10.
10. M. Suman, G. Monaco, M. G. Pelizzo, D. L. Windt, and P. Nicolosi, “ Realization and characterization of an XUV multilayer coating for attosecond pulses,” Opt. Express 17(10), 79227932 (2009).
http://dx.doi.org/10.1364/OE.17.007922
11.
11. M. Hofstetter, A. Aquila, M. Schultze, A. Guggenmos, S. Yang, E. Gullikson, M. Huth, B. Nickel, J. Gagnon, V. S. Yakovlev, E. Goulielmakis, F. Krausz, and U. Kleineberg, “ Lanthanum-molybdenum multilayer mirrors for attosecond pulses between 80 and 130 eV,” New J. Phys. 13, 063038 (2011).
http://dx.doi.org/10.1088/1367-2630/13/6/063038
12.
12. C. Bourassin-Bouchet, S. De Rossi, J. Wang, E. Meltchakov, A. Giglia, N. Mahne, S. Nannarone, and F. Delmotte, “ Shaping of single-cycle sub-50-attosecond pulses with multilayer mirrors,” New J. Phys. 14, 023040 (2012).
http://dx.doi.org/10.1088/1367-2630/14/2/023040
13.
13. B. Vodungbo, A. B. Sardinha, J. Gautier, G. Lambert, C. Valentin, M. Lozano, G. Iaquaniello, F. Delmotte, S. Sebban, J. Lüning, and P. Zeitoun, “ Polarization control of high order harmonics in the EUV photon energy range,” Opt. Express 19(5), 43464356 (2011).
http://dx.doi.org/10.1364/OE.19.004346
14.
14. H. N. Chapman, S. P. Hau-Riege, M. J. Bogan, S. Bajt, A. Barty, S. Boutet, S. Marchesini, M. Frank, B. W. Woods, W. H. Benner, R. A. London, U. Rohner, A. Szoke, E. Spiller, T. Moller, C. Bostedt, D. A. Shapiro, M. Kuhlmann, R. Treusch, E. Plonjes, F. Burmeister, M. Bergh, C. Caleman, G. Huldt, M. M. Seibert, and J. Hajdu, “ Femtosecond time-delay X-ray holography,” Nature 448(7154), 676679 (2007).
http://dx.doi.org/10.1038/nature06049
15.
15. E. Allaria, C. Callegari, D. Cocco, W. M. Fawley, M. Kiskinova, C. Masciovecchio, and F. Parmigiani, “ The FERMI@ELETTRA free-electron-laser source for coherent x-ray physics: photon properties, beam transport system and applications,” New J. Phys. 12, 075002 (2010).
http://dx.doi.org/10.1088/1367-2630/12/7/075002
16.
16. A. J. Corso, P. Zuppella, D. L. Windt, M. Zangrando, and M. G. Pelizzo, “ Extreme ultraviolet multilayer for the FERMI@ELETTRA free electron laser beam transport system,” Opt. Express 20(7), 80068014 (2012).
http://dx.doi.org/10.1364/OE.20.008006
17.
17. M. Suman, G. Monaco, P. Zuppella, P. Nicolosi, M. G. Pelizzo, F. Ferrari, M. Lucchini, and M. Nisoli, “ Analysis of the damage effect of femtosecond-laser irradiation on extreme ultraviolet Mo/Si multilayer coating,” Thin Solid Films 520(6), 23012306 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.08.109
18.
18. A. Giglia, N. Mahne, A. Bianco, C. Svetina, and S. Nannarone, “ EUV soft X-ray characterization of a FEL multilayer optics damaged by multiple shot laser beam,” Nucl. Instrum. Methods Phys. Res. A 635, S30S38 (2011).
http://dx.doi.org/10.1016/j.nima.2010.10.026
19.
19. F. Barkusky, A. Bayer, S. Döring, P. Grossmann, and K. Mann, “ Damage threshold measurements on EUV optics using focused radiation from a table-top laser produced plasma source,” Opt. Express 18(5), 43464355 (2010).
http://dx.doi.org/10.1364/OE.18.004346
20.
20. M. Müller, F. Barkusky, T. Feigl, and K. Mann, “ EUV damage threshold measurements of Mo/Si multilayer mirrors,” Appl. Phys. A 108(2), 263267 (2012).
http://dx.doi.org/10.1007/s00339-012-7037-9
21.
21. A. R. Khorsand, R. Sobierajski, E. Louis, S. Bruijn, E. D. van Hattum, R. W. E. van de Kruijs, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, T. Burian, J. Chalupsky, J. Cihelka, V. Hajkova, L. Vysin, U. Jastrow, N. Stojanovic, S. Toleikis, H. Wabnitz, K. Tiedtke, K. Sokolowski-Tinten, U. Shymanovich, J. Krzywinski, S. Hau-Riege, R. London, A. Gleeson, E. M. Gullikson, and F. Bijkerk, “ Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure,” Opt. Express 18(2), 700712 (2010).
http://dx.doi.org/10.1364/OE.18.000700
22.
22. R. Sobierajski, S. Bruijn, A. R. Khorsand, E. Louis, R. W. E. van de Kruijs, T. Burian, J. Chalupsky, J. Cihelka, A. Gleeson, J. Grzonka, E. M. Gullikson, V. Hajkova, S. Hau-Riege, L. Juha, M. Jurek, D. Klinger, J. Krzywinski, R. London, J. B. Pelka, T. Plocinski, M. Rasinski, K. Tiedtke, S. Toleikis, L. Vysin, H. Wabnitz, and F. Bijkerk, “ Damage mechanisms of MoN/SiN multilayer optics for next-generation pulsed XUV light sources,” Opt. Express 19(1), 193205 (2011).
http://dx.doi.org/10.1364/OE.19.000193
23.
23. A. J. Corso, P. Zuppella, P. Nicolosi, D. L. Windt, E. M. Gullikson, and M. G. Pelizzo, “ Capped Si/Mo multilayers with improved performances at 30.4 nm for future solar missions,” Opt. Express 19(15), 1396313973 (2011).
http://dx.doi.org/10.1364/OE.19.013963
24.
24. M. G. Pelizzo, A. J. Corso, P. Zuppela, and P. Nicolosi, “ Multilayer coatings and their use in spectroscopic applications,” Nucl. Instrum. Methods Phys. Res. A (in press).
25.
25. D. L. Windt and W. K. Waskiewicz, “ Multilayer facilities required for extreme-ultraviolet lithography,” J. Vac. Sci. Technol. B 12(6), 38263832 (1994).
http://dx.doi.org/10.1116/1.587449
26.
26. See http://www.infoplease.com/periodictable.php?id=46 for an interactive periodic table with the main physical parameters for each element (last accessed 2012).
27.
27. J. C. Miller and R. F. Haglund, Laser Ablation and Desorption (Academic Press, 1998).
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/20/10.1063/1.4807644
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Sketch of the laser produced plasma facility at Laser-Laboratorium Göttingen e.V. (Germany).

Image of FIG. 2.

Click to view

FIG. 2.

Map of samples irradiated areas during the experimental session.

Image of FIG. 3.

Click to view

FIG. 3.

Topography for CL2 damaged areas, taken at different fluencies: (a) A4 at F = 330 mJ/cm; (b) B1 at F = 750 mJ/cm; (c) D4 at F = 1720 mJ/cm; (d) E2 at F = 2220 mJ/cm.

Image of FIG. 4.

Click to view

FIG. 4.

Selected height profiles for CL2 damaged areas, taken at different fluencies: (a) A4 at F = 330 mJ/cm; (b) C2 at F = 1220 mJ/cm; (c) D4 at F = 1720 mJ/cm.

Image of FIG. 5.

Click to view

FIG. 5.

CL2-D3, F = 1720 mJ/cm topography and depth profile.

Image of FIG. 6.

Click to view

FIG. 6.

CL3-E4 at F = 2220 mJ/cm topography and depth profile for F = 2220 mJ/cm.

Image of FIG. 7.

Click to view

FIG. 7.

CL4-A4, F = 330 mJ/cm (a) and CL4-E1, F = 2220 mJ/cm topography and depth profile.

Image of FIG. 8.

Click to view

FIG. 8.

Profile section of a damaged spot showing the concept of volume calculation.

Image of FIG. 9.

Click to view

FIG. 9.

Volume versus fluence.

Tables

Generic image for table

Click to view

Table I.

Aperiodic capping-layer structures and related optical performances.

Generic image for table

Click to view

Table II.

Experimental parameters of the LPP EUV source.

Generic image for table

Click to view

Table III.

Confrontation between properties of the materials considered in the experiment (Ref. ).

Generic image for table

Click to view

Table IV.

The factor f at different fluences computed for the samples under investigation. The values reported are an average of the five damage obtained during the experiment.

Generic image for table

Click to view

Table V.

The volumes V1 and V2 computed for the sample CL1 and CL2 at the fluencies in which the damage mechanism changes.

Generic image for table

Click to view

Table VI.

Volume data linear fit and damage threshold values.

Loading

Article metrics loading...

/content/aip/journal/jap/113/20/10.1063/1.4807644
2013-05-28
2014-04-18

Abstract

Extreme ultraviolet Mo/Si multilayers protected by capping layers of different materials were exposed to 13.5 nm plasma source radiation generated with a table-top laser to study the irradiation damage mechanism. Morphology of single-shot damaged areas has been analyzed by means of atomic force microscopy. Threshold fluences were evaluated for each type of sample in order to determine the capability of the capping layer to protect the structure underneath.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/20/1.4807644.html;jsessionid=5j5p4spmferdd.x-aip-live-02?itemId=/content/aip/journal/jap/113/20/10.1063/1.4807644&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Damage of multilayer optics with varying capping layers induced by focused extreme ultraviolet beam
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/20/10.1063/1.4807644
10.1063/1.4807644
SEARCH_EXPAND_ITEM