1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Raman spectroscopy of piezoelectrics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/21/10.1063/1.4803740
1.
1. C. V. Raman, Indian J. Phys. 2, 387 (1928).
2.
2. C. V. Raman and K. S. Krishnan, Nature 121, 619 (1928).
http://dx.doi.org/10.1038/121619b0
3.
3. G. Landsberg and L. Mandelstam, Naturwiss. 16, 557 (1928).
http://dx.doi.org/10.1007/BF01506807
4.
4. D. L. Rousseau, R. P. Baumann, and S. P. S. Porto, J. Raman Spectrosc. 10, 253 (1981).
http://dx.doi.org/10.1002/jrs.1250100152
5.
5. I. R. Beattie, Chem. Soc. Rev. 4, 107 (1975).
http://dx.doi.org/10.1039/cs9750400107
6.
6. A. S. Barker, Jr. and A. J. Sievers, Rev. Mod. Phys. 47(2 ), S1 (1975).
http://dx.doi.org/10.1103/RevModPhys.47.S1.2
7.
7. T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966).
http://dx.doi.org/10.1103/PhysRev.142.570
8.
8. Y. D. Harker, C. Y. She, and D. F. Edwards, Appl. Phys. Lett. 15, 272 (1969).
http://dx.doi.org/10.1063/1.1652997
9.
9. E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollak, and M. Cardona, Solid State Commun. 8, 133 (1970).
http://dx.doi.org/10.1016/0038-1098(70)90588-0
10.
10. J. F. Asell and M. Nicol, J. Chem. Phys. 49, 5395 (1968).
http://dx.doi.org/10.1063/1.1670064
11.
11. R. Loudon, Adv. Phys. 13, 423 (1964).
http://dx.doi.org/10.1080/00018736400101051
12.
12. M. Mariee and J. P. Mathieu, C. R. Acad. Sci. 223, 147 (1946).
13.
13. E. Anastassakis, J. Appl. Phys. 81, 3046 (1997).
http://dx.doi.org/10.1063/1.364339
14.
14. V. J. Tekippe, A. K. Ramdas, and S. Rodriguez, Phys. Rev. B 8, 706 (1973).
http://dx.doi.org/10.1103/PhysRevB.8.706
15.
15. F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, Phys. Rev. B 5, 580 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.580
16.
16. V. J. Tekippe and A. K. Ramdas, Phys. Lett. A 35, 143 (1971).
http://dx.doi.org/10.1016/0375-9601(71)90115-0
17.
17. R. J. Briggs and A. K. Ramdas, Phys. Rev. B 15, 5518 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5518
18.
18. C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys. Rev. 181, 1351 (1969).
http://dx.doi.org/10.1103/PhysRev.181.1351
19.
19. R. Loudon, Proc. R. Soc. London, Ser. A 275, 218 (1963).
http://dx.doi.org/10.1098/rspa.1963.0166
20.
20. A. Pinczuk, Solid State Commun. 12, 1035 (1973).
http://dx.doi.org/10.1016/0038-1098(73)90031-8
21.
21. W. G. Cady, Piezoelectricity (Dover Publ., Inc., New York, 1946), p. 177.
22.
22. A. C. Becquerel, Ann. Chim. Phys. T. 22, 135 (1823).
23.
23. A. L. Kholkin, N. A. Pertsev, and A. V. Goltsev, in Piezoelectric and Acoustic Materials for Transducer Applications, edited by A. Safari and E. K. Akdogan (Springer Science, Boston, MA, 2008), Chap. 2.
24.
24. J. Haines, J. Rouquette, V. Bornand, M. Pintard, Ph. Papet, and F. A. Gorelli, J. Raman Spectrosc. 34, 519 (2003).
http://dx.doi.org/10.1002/jrs.1009
25.
25. A. G. Souza Filho, P. T. C. Freire, A. P. Ayala, J. M. Sasaki, I. Guedes, J. Mendes Filho, F. E. A. Melo, E. B. Araujo, and J. A. Eiras, J. Phys.: Condens. Matter 12, 7295 (2000).
http://dx.doi.org/10.1088/0953-8984/12/32/313
26.
26. A. G. Souza Filho, J. L. B. Faria, P. T. C. Freire, A. P. Ayala, J. M. Sasaki, F. E. A. Melo, J. Mendes Filho, E. B. Araujo, and J. A. Eiras, J. Phys.: Condens. Matter 13, 7305 (2001).
http://dx.doi.org/10.1088/0953-8984/13/33/311
27.
27. J. Kreisel, A. M. Glazer, P. Bouvier, and G. Lucazeau, Phys. Rev. B 63, 174106 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.174106
28.
28. A. K. Sood, N. Chandrabhas, D. V. S. Muthu, and A. Jayaraman, Phys. Rev. B 51, 8892 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.8892
29.
29. U. D. Venkateswaran, V. M. Naik, and R. Naik, Phys. Rev. B 58, 14256 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.14256
30.
30. J. A. Sanjurjo, E. Lopez-Cruz, and G. Burns, Phys. Rev. B 28, 7260 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.7260
31.
31. F. Cerdeira, W. B. Holzapfel, and D. Bauerle, Phys. Rev. B 11, 1188 (1975).
http://dx.doi.org/10.1103/PhysRevB.11.1188
32.
32. A. Grzechnik, G. H. Wolf, and P. F. McMillan, J. Raman Spectrosc. 28, 885 (1997).
http://dx.doi.org/10.1002/(SICI)1097-4555(199711)28:11<885::AID-JRS179>3.0.CO;2-Z
33.
33. P. Gillet, F. Guyot, G. D. Price, B. Tournerie, and A. L. Cleach, Phys. Chem. Miner. 20, 159 (1993).
http://dx.doi.org/10.1007/BF00200118
34.
34. K. Uchino, Acta Mater. 46, 3745 (1998).
http://dx.doi.org/10.1016/S1359-6454(98)00102-5
35.
35. A. Yu. Belov and W. S. Kreher, Ferroelectrics 351, 79 (2007).
http://dx.doi.org/10.1080/00150190701353093
36.
36. K. Okai, W. Zhu, and G. Pezzotti, Phys. Status Solidi A 208, 1132 (2011).
http://dx.doi.org/10.1002/pssa.201000108
37.
37. V. Srikant, E. J. Tarsa, D. R. Clarke, and J. S. Speck, J. Appl. Phys. 77, 1517 (1995).
http://dx.doi.org/10.1063/1.358902
38.
38. A. Von Hippel, R. G. Breckenridge, F. G. Chelsey, and L. Tisza, Ind. Eng. Chem. 38, 1097 (1946).
http://dx.doi.org/10.1021/ie50443a009
39.
39. F. Jona and G. Shirane, Ferroelectric Crystals (MacMillan Co., New York, 1962).
40.
40. L. E. Cross, in Ferroelectric Ceramics: Tutorial Reviews, Theory, Processing, and Applications, edited by N. Setter and E. L. Colla (Birkhaueser Verlag, Boston, MA, 1993), pp. 185.
41.
41. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971).
42.
42. J. S. Speck and W. Pompe, J. Appl. Phys. 76, 466 (1994).
http://dx.doi.org/10.1063/1.357097
43.
43. H. Ishihara, F. Arai, and T. Fukuda, IEEE/ASME Trans. Mechatron. 1, 68 (1996).
http://dx.doi.org/10.1109/3516.491411
44.
44. W. S. N. Trimmer, Sens. Actuators 19, 267 (1989).
http://dx.doi.org/10.1016/0250-6874(89)87079-9
45.
45. M. Y. Al Aioubi, P. D. Prewett, S. E. Huq, V. Djakov, and A. G. Michette, Microelectron. Eng. 83, 1321 (2006).
http://dx.doi.org/10.1016/j.mee.2006.01.107
46.
46. D. Zhang, D. Rodriguez Sanmartin, T. W. Button, C. Meggs, C. Atkins, P. Doel, D. Brooks, C. Feldman, R. Willingale, A. Michette, S. Pfauntsch, S. Sahraei, A. James, C. Dunare, T. Stevenson, W. Parkes, A. Smith, and H. Wang, Proc. SPIE 7448, 744807 (2009).
http://dx.doi.org/10.1117/12.826018
47.
47. T. Morita, Sens. Actuators, A 103, 291 (2003).
http://dx.doi.org/10.1016/S0924-4247(02)00405-3
48.
48. H. Kuwajima, H. Uchiyama, Y. Ogawa, and H. Kita, IEEE Trans. Magn. 38, 2156 (2002).
http://dx.doi.org/10.1109/TMAG.2002.802798
49.
49. S. Nakamura, H. Numasato, K. Sato, M. Kobayashi, and I. Naniwa, Microsyst. Technol. 8, 149 (2002).
http://dx.doi.org/10.1007/s00542-002-0180-z
50.
50. M. Budinger, J. F. Rouchon, and B. Nogarede, IEEE-ASME Trans. Mechatron. 9, 1 (2004).
http://dx.doi.org/10.1109/TMECH.2004.823846
51.
51. G. X. Guo, Q. Hao, and T. S. Low, IEEE Trans. Magn. 37, 860 (2001).
http://dx.doi.org/10.1109/20.917632
52.
52. M. Klee, H. Boots, B. Kumar, C. van Heesch, R. Mauczok, W. Keur, M. de Wild, H. van Esch, A. L. Roest, K. Reimann, L. van Leuken, O. Wunnicke, J. Zhao, G. Schmitz, M. Mienkina, M. Mleczko, and M. Tiggelman, IOP Conf. Ser.: Mater. Sci. Eng. 8, 012008 (2010).
http://dx.doi.org/10.1088/1757-899X/8/1/012008
53.
53. S. L. Swartz, IEEE Trans. Electr. Insul. 25, 935 (1990).
http://dx.doi.org/10.1109/14.59868
54.
54. J. F. Meng, R. S. Katiyar, G. T. Zou, and X. H. Wang, Phys. Status Solidi A 164, 851 (1997).
http://dx.doi.org/10.1002/1521-396X(199712)164:2<851::AID-PSSA851>3.0.CO;2-J
55.
55. V. B. Podobedov, A. Weber, D. B. Romero, J. P. Rice, and H. D. Drew, Phys. Rev. B 58, 43 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.43
56.
56. P. S. Dobal, S. Bhaskar, S. B. Majumder, and R. S. Katiyar, J. Appl. Phys. 86, 828 (1999).
http://dx.doi.org/10.1063/1.370810
57.
57. A. A. Maradudin, S. Ganesan, and E. Burstein, Phys. Rev. 163, 882 (1967).
http://dx.doi.org/10.1103/PhysRev.163.882
58.
58. M. Nakajima, H. Nakaki, Y. Ehara, T. Yamada, K. Nishida, T. Yamamoto, M. Osada, and H. Funakubo, Appl. Phys. Lett. 97, 181907 (2010).
http://dx.doi.org/10.1063/1.3502591
59.
59. J. H. Lee, K. S. Hwang, and T. S. Kim, Nanoscale Res. Lett. 6, 55 (2011).
http://dx.doi.org/10.1007/s11671-010-9810-z
60.
60. K. Nishida, H. Kishi, H. Funakubo, H. Takeuchi, T. Katoda, and T. Yamamoto, Jpn. J. Appl. Phys., Part 1 46, 7005 (2007).
http://dx.doi.org/10.1143/JJAP.46.7005
61.
61. W.-H. Xu, D. Lu, and T.-Y. Zhang, Appl. Phys. Lett. 79, 4112 (2001).
http://dx.doi.org/10.1063/1.1426271
62.
62. G. Pezzotti, Phys. Status Solidi A 208, 976 (2011).
http://dx.doi.org/10.1002/pssa.201000785
63.
63. H. Barańska, A. Łabudzińska, and J. Terpiński, Laser Raman Spectrometry: Analytical Applications (John Wiley & Sons, New York, 1987).
64.
64. M. Meyer, P. G. Etchegoin, and E. C. Le Ru, Am. J. Phys. 78, 300 (2010).
http://dx.doi.org/10.1119/1.3271796
65.
65. T. Strach, J. Brunen, B. Lederle, J. Zegenhagen, and M. Cardona, Phys. Rev. B 57, 1292 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1292
66.
66. M. Cardona, in Light Scattering in Solids II, edited by M. Cardona and G. Güntherodt (Springer, Berlin, 1982), p. 19.
67.
67. S. P. S. Porto and R. S. Krishnan, J. Chem. Phys. 47, 1009 (1967).
http://dx.doi.org/10.1063/1.1711980
68.
68. D. E. Sands, Introduction to Crystallography (Dover Publ., New York, 1975), p. 54.
69.
69. M. Di Domenico, Jr., S. H. Wemple, and S. P. S. Porto, Phys. Rev. 174, 522 (1968).
http://dx.doi.org/10.1103/PhysRev.174.522
70.
70. M. El Marssi, F. Le Marrec, I. A. Lukyanchuk, and M. G. Karkut, J. Appl. Phys. 94, 3307 (2003).
http://dx.doi.org/10.1063/1.1596720
71.
71. S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, J. Chem. Phys. Solids 27, 997 (1966).
http://dx.doi.org/10.1016/0022-3697(66)90072-2
72.
72. R. F. Schaufele and M. J. Weber, Phys. Rev. 152, 705 (1966).
http://dx.doi.org/10.1103/PhysRev.152.705
73.
73. C.-S. Tu, V. H. Schmidt, I.-C. Shih, and R. Chien, Phys. Rev. B 67, 020102R (2003).
http://dx.doi.org/10.1103/PhysRevB.67.020102
74.
74. F. Fang, W. Yang, F. C. Zhang, and H. Qing, J. Mater. Res. 23, 3387 (2008).
http://dx.doi.org/10.1557/JMR.2008.0415
75.
75. M. Abplanalp, D. Barosova, P. Bridenbaugh, J. Erhart, J. Fousek, P. Günter, J. Nosek, and M. Sulc, J. Appl. Phys. 91, 3797 (2002).
http://dx.doi.org/10.1063/1.1446655
76.
76. R. R. Chien, V. H. Schmidt, L.-W. Hung, and C.-S. Tu, J. Appl. Phys. 97, 114112 (2005).
http://dx.doi.org/10.1063/1.1927288
77.
77. Y. Yang, L. Y. Zhang, K. Zhu, and Y. L. Liu, J. Appl. Phys. 109, 083517 (2011).
http://dx.doi.org/10.1063/1.3574666
78.
78. A. A. Bokov and Z.-G. Ye, J. Appl. Phys. 95, 6347 (2004).
http://dx.doi.org/10.1063/1.1703830
79.
79. A. K. Singh and D. Pandey, Phys. Rev. B 67, 064102R (2003).
http://dx.doi.org/10.1103/PhysRevB.67.064102
80.
80. F. Fang, X. Luo, and W. Yang, Phys. Rev. B 79, 174118 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.174118
81.
81. D. M. Fanning, I. K. Robinson, X. Lu, and D. A. Payne, J. Phys. Chem. Solids 61, 209 (2000).
http://dx.doi.org/10.1016/S0022-3697(99)00283-8
82.
82. N. Zhong, W.-L. Yao, P.-H. Xiang, C.-D. Feng, and S. Kojima, Solid State Commun. 134, 425 (2005).
http://dx.doi.org/10.1016/j.ssc.2005.01.038
83.
83. S. Ganesan, A. Maradudin, and J. Oitmaa, Ann. Phys. (N.Y.) 56, 556 (1970).
http://dx.doi.org/10.1016/0003-4916(70)90029-1
84.
84. G. Lucazeau, J. Raman Spectrosc. 34, 478 (2003).
http://dx.doi.org/10.1002/jrs.1027
85.
85. E. Anastassakis, in Light Scattering in Semiconductor Structures and Superlattices, edited by D. J. Lockwood and J. F. Young (Plenum, New York, 1991), p. 173.
86.
86. E. Anastassakis and E. Burstein, J. Phys. Chem. Solids 32, 313 (1971).
http://dx.doi.org/10.1016/0022-3697(71)90016-3
87.
87. C. S. G. Cousin, L. Gerward, J. Staun Olsen, B. Selsmark, and B. Sheldom. J. Appl. Crystall. 15, 154 (1982).
http://dx.doi.org/10.1107/S0021889882011704
88.
88. C. S. G. Cousin, L. Gerward, J. Staun Olsen, B. Selsmark, and B. Sheldom, J. Phys. C 20, 29 (1987).
http://dx.doi.org/10.1088/0022-3719/20/1/007
89.
89. V. N. Murzin, R. E. Pasynkov, and S. P. Solov'ev, Sov. Phys. Usp. 10, 453 (1968).
http://dx.doi.org/10.1070/PU1968v010n04ABEH003697
90.
90. A. Atkinson, S. C. Jain, and S. J. Webbs, Semicond. Sci. Technol. 14, 561 (1999).
http://dx.doi.org/10.1088/0268-1242/14/6/312
91.
91. A. Atkinson and S. C. Jain, J. Raman Spectrosc. 30, 885 (1999).
http://dx.doi.org/10.1002/(SICI)1097-4555(199910)30:10<885::AID-JRS485>3.0.CO;2-5
92.
92. I. De Wolf, H. E. Maes, and S. K. Jones, J. Appl. Phys. 79, 7148 (1996).
http://dx.doi.org/10.1063/1.361485
93.
93. E. Bonera, M. Fanciulli, and D. N. Batchelder, J. Appl. Phys. 94, 2729 (2003).
http://dx.doi.org/10.1063/1.1592872
94.
94. S. Narayanan, S. R. Kalidindi, and L. S. Schadler, J. Appl. Phys. 82, 2595 (1997).
http://dx.doi.org/10.1063/1.366072
95.
95. F. Demangeot, J. Frandon, M. A. Renucci, O. Briot, B. Gil, and R. L. Aulombard, Solid State Commun. 100, 207 (1996).
http://dx.doi.org/10.1016/0038-1098(96)00410-3
96.
96. J. Gleize, M. A. Renucci, J. Frandon, E. Bellet-Amalric, and B. Daudin, J. Appl. Phys. 93, 2065 (2003).
http://dx.doi.org/10.1063/1.1539531
97.
97. V. Darakchieva, T. Paskova, M. Schubert, H. Arwin, P. P. Paskov, B. Monemar, D. Hommel, M. Heuken, J. Off, F. Scholz, B. A. Haskell, P. T. Fini, J. S. Speck, and S. Nakamura, Phys. Rev. B 75, 195217 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.195217
98.
98. W. Zhu and G. Pezzotti, J. Raman Spectrosc. 42, 2015 (2011).
http://dx.doi.org/10.1002/jrs.2953
99.
99. T. Miyatake and G. Pezzotti, J. Appl. Phys. 110, 093511 (2011).
http://dx.doi.org/10.1063/1.3656447
100.
100. P. A. Gustafson, S. J. Harris, A. E. O'Neill, and A. M. Waas, J. Appl. Mech. 73, 745 (2006).
http://dx.doi.org/10.1115/1.2187527
101.
101. A. Bartasyte, S. Margueron, J. Kreisel, P. Bourson, O. Chaix-Pluchery, L. Rapenne-Homand, J. Santiso, C. Jimenez, A. Abrutis, F. Weiss, and M. D. Fontana, Phys. Rev. B 79, 104104 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.104104
102.
102. V. Lughi and D. R. Clarke, Appl. Phys. Lett. 89, 241911 (2006).
http://dx.doi.org/10.1063/1.2404938
103.
103. V. Sergo, X.-L. Wang, D. R. Clarke, and P. F. Becher, J. Am. Ceram. Soc. 78, 2213 (1995).
http://dx.doi.org/10.1111/j.1151-2916.1995.tb08639.x
104.
104. V. Sergo, G. Pezzotti, G. Katagiri, N. Muraki, and T. Nishida, J. Am. Ceram. Soc. 79, 781 (1996).
http://dx.doi.org/10.1111/j.1151-2916.1996.tb07944.x
105.
105. M. S. Amer, Int. J. Solids Struct. 42, 751 (2005).
http://dx.doi.org/10.1016/j.ijsolstr.2004.06.031
106.
106. T. Miyatake and G. Pezzotti, Phys. Status Solidi A 208, 1151 (2011).
http://dx.doi.org/10.1002/pssa.201000696
107.
107. K. F. Dombrowski, I. De Wolf, and B. Dietrich, Appl. Phys. Lett. 75, 2450 (1999).
http://dx.doi.org/10.1063/1.125044
108.
108. K. F. Dombrowski and I. De Wolf, Solid State Phenom. 63–64, 519 (1998).
http://dx.doi.org/10.4028/www.scientific.net/SSP.63-64.519
109.
109. I. De Wolf, G. Pozzat, K. Pinardi, D. J. Howard, M. Ignat, S. C. Jain, and H. E. Maes, Microelectron. Reliab. 36, 1751 (1996).
http://dx.doi.org/10.1016/0026-2714(96)00190-4
110.
110. I. De Wolf, M. Ignat, G. Pozza, L. Maniguet, and H. E. Maes, J. Appl. Phys. 85, 6477 (1999).
http://dx.doi.org/10.1063/1.370151
111.
111. D. Berlincourt and H. Jaffe, Phys. Rev. 111, 143 (1958).
http://dx.doi.org/10.1103/PhysRev.111.143
112.
112. J. Rödel, J. F. Kelly, M. R. Stoudt, and S. J. Bennison, Scanning Microsc. 5, 29 (1991).
113.
113. A. B. Kounga Njiwa, T. Fett, D. C. Lupascu, and J. Rödel, J. Am. Ceram. Soc. 86, 1973 (2003).
http://dx.doi.org/10.1111/j.1151-2916.2003.tb03593.x
114.
114. T. Fett, A. B. Kounga Njiwa, and J. Rödel, Eng. Fract. Mech. 72, 647 (2005).
http://dx.doi.org/10.1016/j.engfracmech.2004.07.003
115.
115. G. Pezzotti and A. Leto, Phys. Rev. Lett. 103, 175501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.175501
116.
116. W. Zhu, A. A. Porporati, A. Matsutani, N. Lama, and G. Pezzotti, J. Appl. Phys. 101, 103531 (2007).
http://dx.doi.org/10.1063/1.2735681
117.
117. A. G. Haerle, W. R. Cannon, and M. Denda, J. Am. Ceram. Soc. 74, 2897 (1991).
http://dx.doi.org/10.1111/j.1151-2916.1991.tb06860.x
118.
118. M. J. Busche and K. J. Hsia, Scr. Mater. 44, 207 (2001).
http://dx.doi.org/10.1016/S1359-6462(00)00588-1
119.
119. W. Zhu, K. S. Wan, and G. Pezzotti, Meas. Sci. Tech. 17, 191 (2006).
http://dx.doi.org/10.1088/0957-0233/17/1/030
120.
120. G. Pezzotti, A. Matsutani, and W. Zhu, J. Am. Ceram. Soc. 93, 256 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2009.03340.x
121.
121. A. Rivera, G. Garcia, J. Olivares, M. L. Crespillo, and F. Agullo-Lopez, J. Phys. D: Appl. Phys. 44, 475301 (2011).
http://dx.doi.org/10.1088/0022-3727/44/47/475301
122.
122. I. Tomeno and S. Matsumura (updated by C. Florea), in Properties of Lithium Niobate, EMIS Datareviews Series No. 28, edited by K. K. Wong (INSPEC Publ., London, 2002), p. 58.
123.
123. A. F. Kirstein and R. M. Woolley, J. Res. Natl. Bur. Stand. C 71, 1 (1967).
http://dx.doi.org/10.6028/jres.071C.002
124.
124. F. F. Vitman and V. P. Pukh, Zavod. Lab. 29, 863 (1963).
125.
125. A. A. Porporati, T. Miyatake, K. Schilcher, W. Zhu, and G. Pezzotti, J. Eur. Ceram. Soc. 31, 2031 (2011).
http://dx.doi.org/10.1016/j.jeurceramsoc.2011.05.009
126.
126. G. Pezzotti, H. Hagihara, and W. Zhu, J. Phys. D: Appl. Phys. 46, 145103 (2013).
http://dx.doi.org/10.1088/0022-3727/46/14/145103
127.
127. O. Kolosov, A. Gruverman, J. Hatano, K. Takahashi, and H. Tokumoto, Phys. Rev. Lett. 74, 4309 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.4309
128.
128. S. Hong, J. Woo, H. Shin, J.-U. Jeon, and Y. E. Pak, J. Appl. Phys. 89, 1377 (2001).
http://dx.doi.org/10.1063/1.1331654
129.
129. I. K. Bdikin, V. V. Shvartsman, and A. L. Kholkin, Appl. Phys. Lett. 83, 4232 (2003).
http://dx.doi.org/10.1063/1.1627476
130.
130. D. Dragoman, Prog. Opt. 37, 1 (1997).
http://dx.doi.org/10.1016/S0079-6638(08)70336-6
131.
131. R. Pérez, S. Banda, and Z. Ounaies, J. Appl. Phys. 103, 074302 (2008).
http://dx.doi.org/10.1063/1.2885347
132.
132. Y. Takahashi, L. Puppulin, W. Zhu, and G. Pezzotti, Acta Biomater. 6, 3583 (2010).
http://dx.doi.org/10.1016/j.actbio.2010.02.051
133.
133. H. L. Chen and A. A. Gundjian, Medical and biological engineering 12, 531 (1974).
http://dx.doi.org/10.1007/BF02478612
134.
134. G. S. Harbison, V.-D. Vogt, and H. W. Spiess, J. Chem. Phys. 86, 1206 (1987).
http://dx.doi.org/10.1063/1.452265
135.
135. U. A. van der Heide, S. C. Hopkins, and Y. E. Goldman, Biophys. J. 78, 2138 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76760-9
136.
136. F. Emren, U. Vonschlippenbach, and K. Lucke, Acta Metall. 34, 2105 (1986).
http://dx.doi.org/10.1016/0001-6160(86)90156-2
137.
137. J. B. Clark, R. K. Garrett, T. L. Jungling, R. A. Vandermeer, and C. L. Vold, Metall. Trans. A 22, 2039 (1991).
http://dx.doi.org/10.1007/BF02669871
138.
138. E. Nakamachi, C. L. Xie, H. Morimoto, K. Morita, and N. Yokoyama, Int. J. Plast. 18, 617 (2002).
http://dx.doi.org/10.1016/S0749-6419(01)00052-3
139.
139. G. Proust and S. R. Kalidindi, J. Mech. Phys. Solids 54, 1744 (2006).
http://dx.doi.org/10.1016/j.jmps.2006.01.010
140.
140. F. H. Müller, Kolloid-Z. 95, 138 (1941).
http://dx.doi.org/10.1007/BF01521456
141.
141. F. H. Müller, Kolloid-Z. 95, 306 (1941).
http://dx.doi.org/10.1007/BF01511872
142.
142. P. H. Hermans, Physics and Chemistry of Cellulose Fibres (Elsevier, New York, 1949).
143.
143. P. H. Hermans and P. Platzek, Kolloid-Z. 88, 68 (1939).
http://dx.doi.org/10.1007/BF01518890
144.
144. J. V. Bernier, M. P. Miller, and D. E. Boyce, J. Appl. Crystallogr. 39, 697 (2006).
http://dx.doi.org/10.1107/S002188980602468X
145.
145. T. Bohlke, U. U. Haus, and V. Schulze, Acta Mater. 54, 1359 (2006).
http://dx.doi.org/10.1016/j.actamat.2005.11.009
146.
146. R. Hielscher and H. Schaeben, J. Appl. Crystallogr. 41, 1024 (2008).
http://dx.doi.org/10.1107/S0021889808030112
147.
147. H. J. Bunge, Monatsber. Dtsch. Akad. Wiss. 7, 351 (1965).
148.
148. R.-J. Roe, J. Appl. Phys. 36, 2024 (1965).
http://dx.doi.org/10.1063/1.1714396
149.
149. H. J. Bunge, Texture Analysis in Materials Science: Mathematical Methods (Cuvillier Verlag, Gottingen, Germany, 1993), pp. 4, 47, 351.
150.
150. J. Stuelpnagel, SIAM Rev. 6, 422 (1964).
http://dx.doi.org/10.1137/1006093
151.
151. N. J. Vilenkin, Special Functions and the Theory of Group Representations (American Mathematical Society, Providence, RI, 1968), p. 97.
152.
152. M. Siemens, J. Hancock, and D. Siminovitch, Solid State Nucl. Mag. 31, 35 (2007).
http://dx.doi.org/10.1016/j.ssnmr.2006.12.001
153.
153. J. W. Zhao and B. L. Adams, Acta Crystallogr. A 44, 326 (1988).
http://dx.doi.org/10.1107/S010876738701256X
154.
154. H. Grimmer, Acta Crystallogr. A 36, 382 (1980).
http://dx.doi.org/10.1107/S0567739480000861
155.
155. A. Heinz and P. Neumann, Acta Crystallogr. A 47, 780 (1991).
http://dx.doi.org/10.1107/S0108767391006864
156.
156. A. Morawiec and D. P. Field, Philos. Mag. A 73, 1113 (1996).
http://dx.doi.org/10.1080/01418619608243708
157.
157. S. L. Altmann, Rotations, Quaternions, and Double Groups (Clarendon Press, Oxford, UK, 1986), pp. 29, 201, 237.
158.
158. A. Morawiec, J. Appl. Crystallogr. 23, 374 (1990).
http://dx.doi.org/10.1107/S002188989000512X
159.
159. M. Humbert, N. Gey, J. Muller, and C. Esling, J. Appl. Crystallogr. 29, 662 (1996).
http://dx.doi.org/10.1107/S0021889896006693
160.
160. J. K. Mason and C. A. Schuh, Metall. Mater. Trans A 40, 2590 (2009).
http://dx.doi.org/10.1007/s11661-009-9936-8
161.
161. V. J. McBrierty, J. Chem. Phys. 61, 872 (1974).
http://dx.doi.org/10.1063/1.1682028
162.
162. E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, New York, 1959).
163.
163. M. E. Rose, Elementary Theory of Angular Momentum (Dover Publ., New York, 1995).
164.
164. S. Jen, N. A. Clark, P. S. Pershan, and E. B. Priestley, J. Chem. Phys. 66, 4635 (1977).
http://dx.doi.org/10.1063/1.433720
165.
165. M. van Gurp, Colloid Polym. Sci. 273, 607 (1995).
http://dx.doi.org/10.1007/BF00652253
166.
166. J. Michl and E. W. Thulstrup, Spectroscopy with Polarized Light (Wiley-VCH, New York, 1995).
167.
167. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1960).
168.
168. D. M. Brink and G. R. Satchler, Angular Momentum (Clarendon Press, Oxford, 1968).
169.
169. L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Mechanics (Addison-Wesley, London, 1981).
170.
170. C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids, Fundamentals Vol. 1 (Clarendon Press, Oxford, 1984).
171.
171. S. Nomura, H. Kawai, I. Kimura, and M. Kagiyama, J. Polym. Sci. Part A-2 8, 383 (1970).
http://dx.doi.org/10.1002/pol.1970.160080305
172.
172. Particle Data Group, Rev. Mod. Phys. 48, S36 (1967).
173.
173. M. Pigeon, R. E. Prud'homme, and M. Pézolet, Macromolecules 24, 5687 (1991).
http://dx.doi.org/10.1021/ma00020a032
174.
174. M. J. Citra, D. B. Chase, R. M. Ikeda, and K. H. Gardner, Macromolecules 28, 4007 (1995).
http://dx.doi.org/10.1021/ma00115a037
175.
175. G. Y. Nikolaeva, L. E. Semenova, K. A. Prokhorov, and S. A. Gordeyev, Laser Phys. 7, 403 (1997).
176.
176. E. T. Jaynes, Phys. Rev. 106, 620 (1957).
http://dx.doi.org/10.1103/PhysRev.106.620
177.
177. B. J. Berne, P. Pechukas, and G. D. Harp, J. Chem. Phys. 49, 3125 (1968).
http://dx.doi.org/10.1063/1.1670559
178.
178. D. I. Bower, J. Polym. Sci. Polym. Phys. Ed. 19, 93 (1981).
http://dx.doi.org/10.1002/pol.1981.180190108
179.
179. M. Janssen and J. Zuidema, J. Nondestruct. Eval. 5, 42 (1985).
http://dx.doi.org/10.1007/BF00568763
180.
180. V. Stelmukh, L. Edwards, and S. Ganguly, Textures Microstruct. 35, 175 (2003).
http://dx.doi.org/10.1080/07303300310001628607
181.
181. V. V. Sumin, I. V. Papushkin, R. N. Vasin, A. M. Venter, and A. M. Balagurov, J. Nucl. Mater. 421, 64 (2012).
http://dx.doi.org/10.1016/j.jnucmat.2011.11.053
182.
182. E. C. Dickey, C. S. Frazer, T. R. Watkins, and C. R. Hubbard, J. Eur. Ceram. Soc. 19, 2503 (1999).
http://dx.doi.org/10.1016/S0955-2219(99)00100-4
183.
183. E. C. Dickey, C. R. Hubbard, and V. P. Dravid, J. Am. Ceram. Soc. 80, 2773 (1997).
http://dx.doi.org/10.1111/j.1151-2916.1997.tb03193.x
184.
184. N. C. Popa and D. Balzar, J. Appl. Cryst. 34, 187 (2001).
http://dx.doi.org/10.1107/S0021889801002060
185.
185. M. Ferrari and L. Lutterotti, J. Appl. Phys. 76, 7246 (1994).
http://dx.doi.org/10.1063/1.358006
186.
186. N. C. Popa, D. Balzar, G. Stefanic, S. Vogel, D. Brown, M. Bourke, and B. Clausen, Advances in X-ray Analysis (JCPDS—International Centre for Diffraction Data, Newtown Square, PA, 2004), Vol. 47, p. 373.
187.
187. Q. Ma and D. R. Clarke, Acta Metall. Mater. 41, 1811 (1993).
http://dx.doi.org/10.1016/0956-7151(93)90201-3
188.
188. Q. Ma and D. R. Clarke, J. Am. Ceram. Soc. 76, 1433 (1993).
http://dx.doi.org/10.1111/j.1151-2916.1993.tb03922.x
189.
189. D. M. Lipkin and D. R. Clarke, Oxid. Met. 45, 267 (1996).
http://dx.doi.org/10.1007/BF01046985
190.
190. K. Syassen, High Pressure Res. 28, 75 (2008).
http://dx.doi.org/10.1080/08957950802235640
191.
191. J. Weissmüller and J. W. Cahn, Acta Mater. 45, 1899 (1997).
http://dx.doi.org/10.1016/S1359-6454(96)00314-X
192.
192. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981).
http://dx.doi.org/10.1111/j.1151-2916.1981.tb10320.x
193.
193. C. B. Ponton and R. D. Rawlings, Mater. Sci. Technol. 5, 865 (1989).
http://dx.doi.org/10.1179/026708389790222852
194.
194. M. Sakai, Acta Metall. Mater. 41, 1751 (1993).
http://dx.doi.org/10.1016/0956-7151(93)90194-W
195.
195. J. J. Kruzic, D. K. Kim, K. J. Koester, and R. O. Ritchie, J. Mech. Behavior Biomed. Mater. 2, 384 (2009).
http://dx.doi.org/10.1016/j.jmbbm.2008.10.008
196.
196. R. F. Cook and G. M. Pharr, J. Am. Ceram. Soc. 73, 787 (1990).
http://dx.doi.org/10.1111/j.1151-2916.1990.tb05119.x
197.
197. F. Ebrahimi and L. Kalwani, Mater. Sci. Eng. A 268, 116 (1999).
http://dx.doi.org/10.1016/S0921-5093(99)00077-5
198.
198. J. D. Stanescu and H. M. Chan, J. Mater. Sci. 11, 1364 (1992).
199.
199. A. S. Raynes, S. W. Freiman, F. W. Gayle, and L. D. Kaiser, J. Appl. Phys. 70, 5254 (1991).
http://dx.doi.org/10.1063/1.350234
200.
200. F. Fang and W. Yang, Mater. Lett. 57, 198 (2002).
http://dx.doi.org/10.1016/S0167-577X(02)00764-4
201.
201. T. Yamamoto, H. Igarashi, and K. Okazaki, Ferroelectrics 50, 273 (1983).
http://dx.doi.org/10.1080/00150198308014462
202.
202. C. T. Sun and S. B. Park, Proc. SPIE 2441, 213 (1995).
http://dx.doi.org/10.1117/12.209811
203.
203. C. S. Lynch, Acta Mater. 46, 599 (1998).
http://dx.doi.org/10.1016/S1359-6454(97)00225-5
204.
204. C. S. Lynch, Proc. SPIE 2715, 359 (1996).
http://dx.doi.org/10.1117/12.240846
205.
205. A. G. Tobin and Y. E. Pak, Proc. SPIE 1916, 78 (1993).
http://dx.doi.org/10.1117/12.148506
206.
206. G. G. Pisarenko, V. M. Chushko, and S. P. Kovalev, J. Am. Ceram. Soc. 68, 259 (1985).
http://dx.doi.org/10.1111/j.1151-2916.1985.tb15319.x
207.
207. K. Mehta and A. V. Virkar, J. Am. Ceram. 73, 567 (1990).
http://dx.doi.org/10.1111/j.1151-2916.1990.tb06554.x
208.
208. K. Nassau, H. J. Levinstein, and G. M. Loiacono, J. Phys. Chem. Solids 27, 983 (1966).
http://dx.doi.org/10.1016/0022-3697(66)90070-9
209.
209. X. Liu, K. Kitamura, K. Terabe, H. Zeng, and Q. Yin, Appl. Phys. Lett. 91, 232913 (2007).
http://dx.doi.org/10.1063/1.2823585
210.
210. D. Xue, S. Wu, Y. Zhu, K. Terabe, K. Kitamura, and J. Wang, Chem. Phys. Lett. 377, 475 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)01190-4
211.
211. Y.-L. Chen, J.-J. Xu, X.-Z. Zhang, Y.-F. Kong, X.-J. Chen, and G.-Y. Zhang, Appl. Phys. A 74, 187 (2002).
http://dx.doi.org/10.1007/s003390100855
212.
212. X. Liu, K. Terabe, and K. Kitamura, Jpn. J. Appl. Phys., Part 1 44, 7012 (2005).
http://dx.doi.org/10.1143/JJAP.44.7012
213.
213. L.-H. Peng, Y.-L. Shih, and Y.-C. Zhang, Appl. Phys. Lett. 81, 1666 (2002).
http://dx.doi.org/10.1063/1.1503169
214.
214. M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, Appl. Phys. Lett. 98, 122910 (2011).
http://dx.doi.org/10.1063/1.3571559
215.
215. K. Nassau and H. J. Levinstein, Appl. Phys. Lett. 7, 69 (1965).
http://dx.doi.org/10.1063/1.1754304
216.
216. H. D. Megaw, Acta Crystallogr. 7, 187 (1954).
http://dx.doi.org/10.1107/S0365110X54000527
217.
217. J. K. Choi and K. H. Auh, J. Mater. Sci. 31, 643 (1996).
http://dx.doi.org/10.1007/BF00367880
218.
218. G. Dhanaraj, H. L. Bath, and P. S. Narayanan, Ferroelectrics 157, 7 (1994).
http://dx.doi.org/10.1080/00150199408229474
219.
219. S. Basu, A. Zhou, and M. W. Barsoum, J. Mater. Res. 23, 1334 (2008).
http://dx.doi.org/10.1557/JMR.2008.0150
220.
220. J. F. Scott, A. Gruverman, D. Wu, I. Vrejoiu, and M. Alexe, J. Phys.: Condens. Matter 20, 425222 (2008).
http://dx.doi.org/10.1088/0953-8984/20/42/425222
221.
221. J.-C. Toledano, Ann. Telecommun. 29, 249 (1974).
222.
222. E. H. Yoffe, Philos. Mag. A 46, 617 (1982).
http://dx.doi.org/10.1080/01418618208236917
223.
223. K. Zeng and D. J. Rowcliffe, Acta Metall. Mater. 43, 1935 (1995).
http://dx.doi.org/10.1016/0956-7151(94)00392-U
224.
224. K. Zeng, A. E. Giannakopoulos, and D. J. Rowcliffe, Acta Metall. Mater. 43, 1945 (1995).
http://dx.doi.org/10.1016/0956-7151(94)00393-V
225.
225. K. Zeng and D. J. Rowcliffe, J. Hard Mater. 5, 239 (1994).
226.
226. A. E. Giannakopoulos, P.-L. Larsson, and R. Vestergaard, Int. J. Solids Struct. 31, 2679 (1994).
http://dx.doi.org/10.1016/0020-7683(94)90225-9
227.
227. K. Zeng, A. E. Giannakopoulos, D. J. Rowcliffe, and P. Meier, J. Am. Ceram. Soc. 81, 689 (1998).
http://dx.doi.org/10.1111/j.1151-2916.1998.tb02390.x
228.
228. A. Chandra, K. Wang, Y. Huang, G. Subbash, M. H. Miller, and W. Qu, ASME J. Manuf. Sci. Eng. 122, 452 (2000).
http://dx.doi.org/10.1115/1.1285903
229.
229. A. Chaves, R. S. Katiyar, and S. P. S. Porto, Phys. Rev. B 10, 3522 (1974).
http://dx.doi.org/10.1103/PhysRevB.10.3522
230.
230. M. P. Fontana and M. Lamrabet, Solid State Commun. 10, 1 (1972).
http://dx.doi.org/10.1016/0038-1098(72)90334-1
231.
231. A. Scalabrin, A. S. Chaves, D. S. Shim, and S. P. S. Porto, Phys. Status Solidi B 79, 731 (1977).
http://dx.doi.org/10.1002/pssb.2220790240
232.
232. J. A. Sanjurjo, R. S. Katiyar, and S. P. S. Porto, Phys. Rev. B 22, 2396 (1980).
http://dx.doi.org/10.1103/PhysRevB.22.2396
233.
233. Y. Luspin, J. L. Servoin, and F. Gervais, J. Phys. C 13, 3761 (1980).
http://dx.doi.org/10.1088/0022-3719/13/19/018
234.
234. M. Osada, M. Kakihana, S. Wada, T. Noma, and W. Cho, Appl. Phys. Lett. 75, 3393 (1999).
http://dx.doi.org/10.1063/1.125304
235.
235. K. Laabidi, M. Fontana, and B. Jannot, Solid State Commun. 76, 765 (1990).
http://dx.doi.org/10.1016/0038-1098(90)90623-J
236.
236. A. Scalabrin, S. P. S. Porto, and A. S. Chaves, in Third International Conference on Light Scattering in Solids, edited by M. Balkansky, R. C. C. Leite, and S. P. S. Porto (Flammarion Science, Paris, 1975), p. 861.
237.
237. A. Scalabrin, S. P. S. Porto, H. Vargas, C. A. S. Lima, and L. C. M. Miranda, Solid State Commun. 24, 291 (1977).
http://dx.doi.org/10.1016/0038-1098(77)90209-5
238.
238. F. Jona and G. Shirane, Ferroelectric Crystals (MacMillan, New York, 1962).
239.
239. B. Matthias and A. von Hippel, Phys. Rev. 73, 1378 (1948).
http://dx.doi.org/10.1103/PhysRev.73.1378
240.
240. R. Vivekanandan and T. R. N. Kutty, Powder Technol. 57, 181 (1989).
http://dx.doi.org/10.1016/0032-5910(89)80074-9
241.
241. P. Murugaraj, T. R. N. Kutty, and M. Subba Rao, J. Mater. Sci. 21, 3521 (1986).
http://dx.doi.org/10.1007/BF02402998
242.
242. K. C. Kao, Dielectric phenomena in solids (Elsevier Academic Press, San Diego, 2004).
243.
243. N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagansev, Phys. Rev. Lett. 80, 1988 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.1988
244.
244. I. N. Zakharchenko, E. S. Nikitin, V. M. Mukhortov, Yu. I. Golovko, M. G. Radchenko, and V. P. Dudkevich, Phys. Status Solidi A 114, 559 (1989).
http://dx.doi.org/10.1002/pssa.2211140217
245.
245. S. Wada, T. Suzuki, M. Osada, M. Kakihana, and T. Noma, Jpn. J. Appl. Phys., Part 1 37, 5385 (1998).
http://dx.doi.org/10.1143/JJAP.37.5385
246.
246. J. L. Parsons and L. Rimai, Solid State Commun. 5, 423 (1967).
http://dx.doi.org/10.1016/0038-1098(67)90790-9
247.
247. H. F. Kay, Acta Crystallogr. 1, 229 (1948).
http://dx.doi.org/10.1107/S0365110X4800065X
248.
248. J. D. Freire and R. S. Katiyar, Phys. Rev. B 37, 2074 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.2074
249.
249. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, International Series of Monographs on Physics (Oxford University Press, New York, 1966).
250.
250. J. C. Slater, Phys. Rev. 78, 748 (1950).
http://dx.doi.org/10.1103/PhysRev.78.748
251.
251. I. A. Cutter and R. McPherson, J. Am. Ceram. Soc. 55, 334 (1972).
http://dx.doi.org/10.1111/j.1151-2916.1972.tb11304.x
252.
252. J.-H. Chen, B.-H. Hwang, T.-C. Hsu, and H.-Y. Lu, Mater. Chem. Phys. 91, 67 (2005).
http://dx.doi.org/10.1016/j.matchemphys.2004.10.048
253.
253. S.-B. Kim, T.-J. Chung, and D.-Y. Kim, J. Eur. Ceram. Soc. 12, 147 (1993).
http://dx.doi.org/10.1016/0955-2219(93)90135-E
254.
254. G. Arlt, J. Mater. Sci. 25, 2655 (1990).
http://dx.doi.org/10.1007/BF00584864
255.
255. H. Kishi, Y. Mizuno, and H. Chazono, Jpn. J. Appl. Phys., Part 1 42, 1 (2003).
http://dx.doi.org/10.1143/JJAP.42.1
256.
256. G. de With, J. Eur. Ceram. Soc. 12, 323 (1993).
http://dx.doi.org/10.1016/0955-2219(93)90001-8
257.
257. Y. Nakano, T. Nomura, and T. Takenaka, Jpn. J. Appl. Phys., Part 1 42, 6041 (2003).
http://dx.doi.org/10.1143/JJAP.42.6041
258.
258. K. Saito and H. Chazono, Jpn. J. Appl. Phys., Part 1 42, 6045 (2003).
http://dx.doi.org/10.1143/JJAP.42.6045
259.
259. P. W. Forsbergh, Jr., Phys. Rev. 76, 1187 (1949).
http://dx.doi.org/10.1103/PhysRev.76.1187
260.
260. W. Cao and C. A. Randall, J. Phys. Chem. Solids 57, 1499 (1996).
http://dx.doi.org/10.1016/0022-3697(96)00019-4
261.
261. K. Imai, S. Takeno, and K. Nakamura, Jpn. J. Appl. Phys., Part 1 41, 6060 (2002).
http://dx.doi.org/10.1143/JJAP.41.6060
262.
262. J.-S. Park, H. Shin, K. S. Hong, H. S. Jung, J.-K. Lee, and K. Y. Rhee, Microelectr. Eng. 83, 2558 (2006).
http://dx.doi.org/10.1016/j.mee.2006.06.008
263.
263. H. Shin, J.-S. Park, K. S. Hong, H. S. Jung, J.-K. Lee, and K. Y. Rhee, J. Appl. Phys. 101, 063527 (2007).
http://dx.doi.org/10.1063/1.2713364
264.
264. H. Shin, J.-S. Park, S. Kim, H. S. Jung, and K. S. Hong, Microelectr. Eng. 77, 270 (2005).
http://dx.doi.org/10.1016/j.mee.2004.11.008
265.
265. X. C. Zhang, B. S. Xu, H. D. Wang, Y. Jiang, and Y. X. Wu, Compos. Sci. Technol. 66, 2249 (2006).
http://dx.doi.org/10.1016/j.compscitech.2005.12.004
266.
266. W. Lee, J. M. Myoung, Y. H. Yoo, and H. Shin, Compos. Sci. Technol. 66, 435 (2006).
http://dx.doi.org/10.1016/j.compscitech.2005.07.015
267.
267. J. M. J. den Toonder, C. W. Rademaker, and C.-L. Hu, Trans. ASME J. Electron. Packag. 125, 506 (2003).
http://dx.doi.org/10.1115/1.1604151
268.
268. J.-S. Park, H. Shin, H. S. Jung, and K. S. Hong, J. Appl. Phys. 97, 94504 (2005).
http://dx.doi.org/10.1063/1.1894602
269.
269. K. Franken, H. R. Maier, K. Prume, and R. Waser, J. Am. Ceram. Soc. 83, 1433 (2000).
http://dx.doi.org/10.1111/j.1151-2916.2000.tb01407.x
270.
270. K. Prume, K. Franken, U. Bottger, R. Waser, and H. R. Maier, J. Eur. Ceram. Soc. 22, 1285 (2002).
http://dx.doi.org/10.1016/S0955-2219(01)00439-3
271.
271. A. Umeri, T. A. Kuku, N. Scuor, and V. Sergo, J. Mater. Sci. 43, 922 (2008).
http://dx.doi.org/10.1007/s10853-007-2215-4
272.
272. Y. Mizuno, T. Hagiwara, and H. Kishi, J. Ceram. Soc. Jpn. 115, 360 (2007).
http://dx.doi.org/10.2109/jcersj.115.360
273.
273. M. Ryu, T. Suzuki, K. Kobayashi, T. Sakashita, and Y. Mizuno, Jpn. J. Appl. Phys., Part 1 49, 061101 (2010).
http://dx.doi.org/10.1143/JJAP.49.061101
274.
274. W. R. Buessem, L. E. Cross, and A. K. Goswami, J. Am. Ceram. Soc. 49, 33 (1966).
http://dx.doi.org/10.1111/j.1151-2916.1966.tb13144.x
275.
275. Z. Zao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, Phys. Rev. B 70, 024107 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.024107
276.
276. L. Curecheriu, M. T. Buscaglia, V. Buscaglia, Z. Zhao, and L. Mitoseriu, Appl. Phys. Lett. 97, 242909 (2010).
http://dx.doi.org/10.1063/1.3526375
277.
277. D. A. Hall and M. M. Ben-Omran, J. Phys.: Condens. Matter 10, 9129 (1998).
http://dx.doi.org/10.1088/0953-8984/10/40/016
278.
278. G. Arlt, D. Hennings, and G. de With, J. Appl. Phys. 58, 1619 (1985).
http://dx.doi.org/10.1063/1.336051
279.
279. S. Tsunekawa, S. Ito, T. Mori, K. Ishikawa, Z. Q. Li, and Y. Kawazoe, Phys. Rev. B 62, 3065 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.3065
280.
280. C. H. Ahn, K. M. Rabe, and J. M. Triscone, Science 303, 488 (2004).
http://dx.doi.org/10.1126/science.1092508
281.
281. S. M. Hu, J. Appl. Phys. 70, R53 (1991).
http://dx.doi.org/10.1063/1.349282
282.
282. S. M. Hu, J. Appl. Phys. 66, 2741 (1989).
http://dx.doi.org/10.1063/1.344194
283.
283. J. N. Goodier, Philos. Mag. 7, 1017 (1937).
284.
284. R. D. Mindlin and D. H. Cheng, J. Appl. Phys. 21, 926 (1950).
http://dx.doi.org/10.1063/1.1699785
285.
285. R. D. Mindlin and D. H. Cheng, J. Appl. Phys. 21, 931 (1950).
http://dx.doi.org/10.1063/1.1699786
286.
286. B. Sen, Quart. Appl. Math. 8, 365 (1951).
287.
287. B. Bridge, J. Mater. Sci. Lett. 8, 695 (1989).
http://dx.doi.org/10.1007/BF01730446
288.
288. Yu. A. Parmenov and S. N. Chaika, Sov. Microelectron. 16, 139 (1987).
289.
289. A. A. Gorbatsevich, Yu. A. Parmenov, A. A. Reznik, and S. N. Chaika, Sov. Microelectron. 18, 225 (1989).
290.
290. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York, 1977).
291.
291. W. Cochran, Adv. Phys. 9, 387 (1960).
http://dx.doi.org/10.1080/00018736000101229
292.
292. R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59, 673 (1951).
http://dx.doi.org/10.1103/PhysRev.59.673
293.
293. W. Cochran, Z. Kristallogr. 112, 465 (1959).
http://dx.doi.org/10.1524/zkri.1959.112.1-6.465
294.
294. W. Cochran and R. A. Cowley, J. Phys. Chem. Solids 23, 447 (1962).
http://dx.doi.org/10.1016/0022-3697(62)90084-7
295.
295. P. R. Andrade and S. P. S. Porto, Ann. Rev. Mater. Sci. 4, 287 (1974).
http://dx.doi.org/10.1146/annurev.ms.04.080174.001443
296.
296. G. Burns and F. H. Dacol, Phys. Rev. B 18, 5750 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.5750
297.
297. H. Vogt, J. A. Sanjurjo, and G. Rossbroich, Phys. Rev. B 26, 5904 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.5904
298.
298. H. Presting, J. A. Sanjurjo, and H. Vogt, Phys. Rev. B 28, 6097 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.6097
299.
299. N. Choudhury, S. L. Chaplot, K. R. Rao, and S. Ghose, Pramana J. Phys. 30, 423 (1988).
http://dx.doi.org/10.1007/BF02935597
300.
300. T. Ohno, D. Suzuki, and T. Ida, Kona 1, 195 (2004).
301.
301. A. M. Prokhorov and Yu. S. Kuz‘minov, Physics and Chemistry of Crystalline Lithium Niobate (Adam Hilger, Bristol, UK, 1990).
302.
302. M. E. Lines and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarendon Press, Oxford, UK, 1977).
303.
303. L. O. Svaasand, M. Eriksrud, G. Nakken, and A. P. Grande, J. Cryst. Growth 22, 230 (1974).
http://dx.doi.org/10.1016/0022-0248(74)90099-2
304.
304. P. F. Bordui, C. D. Bird, R. Blachman, R. G. Schlecht, and C. I. Zanelli, in Proceedings of the 13th Sagamore Army Materials Research Conference, edited by T. V. Hayes (Materials Technology Laboratory, Watertown, MA, 1991), p. 103.
305.
305. J. G. Bergman, A. Ashkin, A. A. Ballman, J. M. Dziedzic, H. J. Levinstein, and R. G. Smith, Appl. Phys. Lett. 12, 92 (1968).
http://dx.doi.org/10.1063/1.1651912
306.
306. L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wohlecke, Appl. Phys. Lett. 70, 2801 (1997).
http://dx.doi.org/10.1063/1.119056
307.
307. K. Yamada, H. Takemura, Y. Inoue, T. Omi, and S. Matsumura, Jpn. J. Appl. Phys., Part 1 26(26-2 ) 219 (1987).
http://dx.doi.org/10.1143/JJAP.26.1811
308.
308. R. S. Weis and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).
http://dx.doi.org/10.1007/BF00614817
309.
309. P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, J. Appl. Phys. 71, 875 (1992).
http://dx.doi.org/10.1063/1.351308
310.
310. S. Sankaranarayanan and V. R. Bhethanabotla, Sens. J. IEEE 9, 329 (2009).
http://dx.doi.org/10.1109/JSEN.2009.2013505
311.
311. R. Tucoulou, F. de Bergevin, O. Mathon, and D. Roshchupkin, Phys. Rev. B 64, 134108 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.134108
312.
312. N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, J. Solid State Chem. 118, 148 (1995).
http://dx.doi.org/10.1006/jssc.1995.1323
313.
313. H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer, Phys. Rev. B 44, 4877 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.4877
314.
314. Y.-L. Chen, J.-J. Xu, X.-J. Chen, Y.-F. Kong, and G.-Y. Zhang, Opt. Commun. 188, 359 (2001).
http://dx.doi.org/10.1016/S0030-4018(00)01137-8
315.
315. V. Gopalan and T. E. Mitchell, J. Appl. Phys. 83, 941 (1998).
http://dx.doi.org/10.1063/1.366782
316.
316. V. Gopalan, V. Dierolf, and D. A. Scrymgeour, Ann. Rev. Mater. Res. 37, 449 (2007).
http://dx.doi.org/10.1146/annurev.matsci.37.052506.084247
317.
317. V. Gopalan, T. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
http://dx.doi.org/10.1063/1.121491
318.
318. E. N. Ivanova, N. A. Sergeev, and A. V. Yatsenko, Kristallografiya 43, 337 (1998).
319.
319. A. V. Yatsenko, E. N. Ivanova, and N. A. Sergeev, Physica B 240, 254 (1997).
http://dx.doi.org/10.1016/S0921-4526(97)00415-8
320.
320. V. Grachev and G. Malovichko, Phys. Rev. B 62, 7779 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.7779
321.
321. H. Donneberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer, Phys. Rev. B 40, 11909 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.11909
322.
322. G. S. Zhdanov, E. V. Kolontsova, A. E. Korneev, and S. A. Ivanov, Ferroelectrics 21, 463 (1978).
http://dx.doi.org/10.1080/00150197808237298
323.
323. S. A. Ivanov, A. E. Korneev, E. V. Kolontsova, and Y. N. Venevtsev, Kristallografiya 23, 1071 (1978).
324.
324. N. Zotov, F. Frey, H. Boysen, H. Lehnert, A. Hornsteiner, B. Strauss, R. Sonntag, H. M. Mayer, F. Güthoff, and D. Hohlwein, Acta Crystallogr. B 51, 961 (1995).
http://dx.doi.org/10.1107/S0108768195004216
325.
325. K. Nassau and M. E. Lines, J. Appl. Phys. 41, 533 (1970).
http://dx.doi.org/10.1063/1.1658708
326.
326. S. Yao, X. Hu, T. Yan, H. Liu, J. Wang, X. Qin, and Y. Chen, J. Appl. Cryst. 43, 276 (2010).
http://dx.doi.org/10.1107/S0021889809055459
327.
327. M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, G. Pierattini, F. Caccavale, D. Callejo, and A. Morbiato, Opt. Express 13, 5416 (2005).
http://dx.doi.org/10.1364/OPEX.13.005416
328.
328. P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, and M. Musolino, Opt. Laser Eng. 45, 380 (2007).
http://dx.doi.org/10.1016/j.optlaseng.2005.05.007
329.
329. N. V. Sidorov, M. N. Palatnikov, K. Bormanis, and A. Sternberg, Ferroelectrics 285, 311 (2003).
http://dx.doi.org/10.1080/00150190390206158
330.
330. U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, Appl. Phys. A 56, 311 (1993).
http://dx.doi.org/10.1007/BF00324348
331.
331. S. Kojima, Jpn. J. Appl. Phys., Part 1 32, 4373 (1993).
http://dx.doi.org/10.1143/JJAP.32.4373
332.
332. A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, J. Phys.: Condens. Matter 9, 9687 (1997).
http://dx.doi.org/10.1088/0953-8984/9/44/022
333.
333. R. Mouras, P. Bourson, M. Fontana, and G. Boulon, Opt. Commun. 197, 439 (2001).
http://dx.doi.org/10.1016/S0030-4018(01)01446-8
334.
334. Y. Zhang, L. Guilbert, and P. Bourson, Appl. Phys. B 78, 355 (2004).
http://dx.doi.org/10.1007/s00340-004-1402-0
335.
335. D. Zhang, X. Chen, Y. Wang, D. Zhu, B. Wu, and G. Lan, J. Phys. Chem. Solids 63, 345 (2002).
http://dx.doi.org/10.1016/S0022-3697(01)00154-8
336.
336. M.-L. Hu, C.-T. Chia, J. Y. Chang, W.-S. Tse, and J.-T. Yu, Mater. Chem. Phys. 78, 358 (2003).
http://dx.doi.org/10.1016/S0254-0584(02)00015-9
337.
337. M. Quintanilla, E. M. Rodriguez, E. Cantelar, F. Cussó, and C. Domingo, Opt. Express 18, 5449 (2010).
http://dx.doi.org/10.1364/OE.18.005449
338.
338. V. Dierolf and C. Sandmann, Appl. Phys. B 78, 363 (2004).
http://dx.doi.org/10.1007/s00340-003-1377-2
339.
339. V. Dierolf, C. Sandmann, S. Kim, V. Gopalan, and K. Polgar, J. Appl. Phys. 93, 2295 (2003).
http://dx.doi.org/10.1063/1.1538333
340.
340. S. Kim, V. Gopalan, and B. Steiner, Appl. Phys. Lett. 77, 2051 (2000).
http://dx.doi.org/10.1063/1.1312854
341.
341. G. Berth, W. Hahn, V. Wiedemeier, A. Zrenner, S. Sanna, and W. G. Schmidt, Ferroelectrics 420, 44 (2011).
http://dx.doi.org/10.1080/00150193.2011.594774
342.
342. P. Capek, G. Stone, V. Dierolf, C. Althouse, and V. Gopolan, Phys. Status solidi C 4, 830 (2007).
http://dx.doi.org/10.1002/pssc.200673720
343.
343. G. K. Teal, M. Sparks, and E. Buehler, Phys. Rev. 81, 637 (1951).
http://dx.doi.org/10.1103/PhysRev.81.637
344.
344. J. Aleksic, P. Zielke, and J. A. Szymczyk, Ann. N.Y. Acad. Sci. 972, 158 (2002).
http://dx.doi.org/10.1111/j.1749-6632.2002.tb04567.x
345.
345. W. Zhu and G. Pezzotti, J. Appl. Phys. 109, 073502 (2011).
http://dx.doi.org/10.1063/1.3559871
346.
346. S.-E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997).
http://dx.doi.org/10.1063/1.365983
347.
347. K. K. Durbin, J. C. Hicks, S.-E. Park, and T. R. Shrout, J. Appl. Phys. 87, 8159 (2000).
http://dx.doi.org/10.1063/1.373512
348.
348. B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, I. E. Cross, and S.-E. Park, Appl. Phys. Lett. 74, 2059 (1999).
http://dx.doi.org/10.1063/1.123756
349.
349. B. Noheda, D. E. Cox, G. Shirane, R. Guo, B. Jones, and I. E. Cross, Phys. Rev. B 63, 014103 (2000).
http://dx.doi.org/10.1103/PhysRevB.63.014103
350.
350. H. X. Fu and R. E. Cohen, Nature 403, 281 (2000).
http://dx.doi.org/10.1038/35002022
351.
351. R. Guo, L. E. Cross, S.-E. Park, B. Noheda, D. E. Cox, and G. Shirane, Phys. Rev. Lett. 84, 5423 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5423
352.
352. L. Bellaiche, A. Garcia, and D. Vanderbilt, Phys. Rev. Lett. 84, 5427 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5427
353.
353. D. Vanderbilt and M. H. Cohen, Phys. Rev. B 63, 094108 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.094108
354.
354. Z. G. Ye, B. Noheda, M. Dong, D. Cox, and G. Shirane, Phys. Rev. B 64, 184114 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.184114
355.
355. B. Noheda, D. E. Cox, G. Shirane, J. Gao, and Z. G. Ye, Phys. Rev. B 66, 054104 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.054104
356.
356. B. Noheda, D. E. Cox, G. Shirane, S. E. Park, L. E. Cross, and Z. Zhong, Phys. Rev. Lett. 86, 3891 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3891
357.
357. B. Noheda, Z. Zhong, D. E. Cox, G. Shirane, S. E. Park, and P. Rehrig, Phys. Rev. B 65, 224101 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.224101
358.
358. A. K. Singh and D. Pandey, J. Phys.: Condens. Matter 13, L931 (2001).
http://dx.doi.org/10.1088/0953-8984/13/48/102
359.
359. H. Cao, F. M. Bai, N. G. Wang, J. F. Li, D. Viehland, G. Y. Xu, and G. Shirane, Phys. Rev. B 72, 064104 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.064104
360.
360. J. M. Kiat, Y. Uesu, B. Dkhil, M. Matsuda, C. Malibert, and G. Calvarin, Phys. Rev. B 65, 064106 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.064106
361.
361. A. K. Singh, D. Pandey, and O. Zaharko, Phys. Rev. B 68, 172103 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.172103
362.
362. G. Xu, H. Luo, H. Xu, and Z. Yin, Phys. Rev. B 64, 020102R (2001).
http://dx.doi.org/10.1103/PhysRevB.64.020102
363.
363. C. S. Tu, I. C. Shih, V. H. Schmidt, and R. Chien, Appl. Phys. Lett. 83, 1833 (2003).
http://dx.doi.org/10.1063/1.1602558
364.
364. D. Viehland and J. F. Li, J. Appl. Phys. 92, 7690 (2002).
http://dx.doi.org/10.1063/1.1524016
365.
365. V. A. Shuvaeva, A. M. Glazer, and D. Zekria, J. Phys.: Condens. Matter 17, 5709 (2005).
http://dx.doi.org/10.1088/0953-8984/17/37/009
366.
366. E. B. Araújo, in Advances in Ceramics—Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment, edited by C. Sikalidis (InTech, Rijeka, Croatia, 2011), Chap. 3.
367.
367. T. R. Shrout and S. L. Swartz, Mater. Res. Bull. 18, 663 (1983).
http://dx.doi.org/10.1016/0025-5408(83)90091-0
368.
368. S.-E. Park and T. R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1140 (1997).
http://dx.doi.org/10.1109/58.655639
369.
369. K. Wasa, S. Ito, K. Nakamura, T. Matsunaga, I. Kanno, T. Suzuki, H. Okino, T. Yamamoto, S. H. Seo, and D. Y. Noh, Appl. Phys. Lett. 88, 122903 (2006).
http://dx.doi.org/10.1063/1.2188588
370.
370. R. Zhang and W. Cao, Appl. Phys. Lett. 85, 6380 (2004).
http://dx.doi.org/10.1063/1.1842365
371.
371. R. Zhang, B. Jiang, and W. Cao, J. Appl. Phys. 90, 3471 (2001).
http://dx.doi.org/10.1063/1.1390494
372.
372. R. F. Service, Science 275, 1878 (1997).
http://dx.doi.org/10.1126/science.275.5308.1878
373.
373. Z. Yin, H. Luo, P. Wang, and G. Xu, Ferroelectrics 299, 207 (1999).
http://dx.doi.org/10.1080/00150199908224341
374.
374. X. Wan, H. L. W. Chan, C. L. Choy, X. Zhao, and H. Luo, J. Appl. Phys. 96, 1387 (2004).
http://dx.doi.org/10.1063/1.1767287
375.
375. X. Zhao, X. Wu, L. Liu, H. Luo, N. Neumann, and P. Yu, Phys. Status Solidi A 208, 1061 (2011).
http://dx.doi.org/10.1002/pssa.201000051
376.
376. G. S. Xu, H. S. Luo, Y. P. Guo, Y. Q. Gao, H. Q. Xu, Z. Y. Qi, W. Z. Zhong, and Z. W. Yin, Solid State Commun. 120, 321 (2001).
http://dx.doi.org/10.1016/S0038-1098(01)00387-8
377.
377. Y. Yang, Y. L. Liu, L. Y. Zhang, K. Zhu, S. Y. Ma, G. G. Siu, Z. K. Xu, and H. Luo, J. Raman Spectrosc. 41, 1735 (2010).
http://dx.doi.org/10.1002/jrs.2600
378.
378. P. Bao, F. Yan, X. Lu, J. Zhu, H. Shen, Y. Wang, and H. Luo, Appl. Phys. Lett. 88, 092905 (2006).
http://dx.doi.org/10.1063/1.2177370
379.
379. S. Keller, T. Löchte, B. Dippel, and B. Schrader, Fresenius’ J. Anal. Chem. 346, 863 (1993).
http://dx.doi.org/10.1007/BF00321306
380.
380. J. A. Stuart Williams and W. Bonawi-Tan, J. Manuf. Systems 23, 299 (2004).
http://dx.doi.org/10.1016/S0278-6125(04)80042-6
381.
381. L. Ashton and R. Goodacre, Eur. Pharm. Rev. 16, 46 (2011).
382.
382. X. Cao, Z.-Q. Wen, A. Vance, and G. Torraca, Appl. Spectrosc. 63, 830 (2009).
http://dx.doi.org/10.1366/000370209788701026
383.
383. A. Piegari and J. Bulir, Appl. Opt. 45, 3768 (2006).
http://dx.doi.org/10.1364/AO.45.003768
384.
384. A. Piegari, A. K. Sytchkova, J. Bulir, B. Harnisch, and A. Wuttig, Proc. SPIE 7101, 710113 (2008).
http://dx.doi.org/10.1117/12.797286
385.
385. L. B. Glebov, in Encyclopedia of Smart Materials 2, edited by M. Schwartz (John Wiley & Sons, New York, 2002), p. 770.
386.
386. InGaAs Camera, Synchrotron Radiat. News 25, 34 (2012).
387.
387. T. Trupke, R. A. Bardos, and M. D. Abbott, Appl. Phys. Lett. 87, 1841021 (2005).
http://dx.doi.org/10.1063/1.2119411
388.
388. J. A. Giesecke, W. Warta, M. C. Schubert, B. Michl, and F. Schindler, Sol. Energy Mater. Sol. Cells 95, 10111018 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.12.016
389.
389. T. Trupke, B. Mitchell, J. W. Weber, W. McMillan, R. A. Bardos, and R. Kroeze, Energy Proc. 15, 135146 (2012).
http://dx.doi.org/10.1016/j.egypro.2012.02.016
390.
390. F. Yan, S. Johnston, K. Zaunbrecher, M. Al-Jassim, O. Sidelkheir, and K. Ounadjela, Phys. Status Solidi RRL 6, 190192 (2012).
http://dx.doi.org/10.1002/pssr.201206068
391.
391. C. H. Perry and D. B. Hall, Phys. Rev. Lett. 15, 700 (1965).
http://dx.doi.org/10.1103/PhysRevLett.15.700
392.
392. A. Hüller, Z. Phys. 220, 145 (1969).
http://dx.doi.org/10.1007/BF01394744
393.
393. B. Jannot, L. Gnininvi, and G. Godefroy, Ferroelectrics 37, 669 (1981).
http://dx.doi.org/10.1080/00150198108223517
394.
394. Ph. Ghosez, X. Gonze, and J. P. Michenaud, Ferroelectrics 206, 205 (1998).
http://dx.doi.org/10.1080/00150199808009159
395.
395. Ph. Ghosez, X. Gonze, and J. P. Michenaud, Ferroelectrics 220, 1 (1999).
http://dx.doi.org/10.1080/00150199908007992
396.
396. M. Uludogan and T. Cagin, Turk. J. Phys. 30, 277 (2006).
397.
397. G. Shirane, B. C. Frazer, V. J. Minkiewicz, and J. A. Leake, Phys. Rev. Lett. 19, 234 (1967).
http://dx.doi.org/10.1103/PhysRevLett.19.234
398.
398. J. M. Zhang, Y. Zhang, K. W. Xu, and V. Ji, J. Chem. Crystallogr. 38, 733 (2008).
http://dx.doi.org/10.1007/s10870-008-9370-6
399.
399. J. M. Zhang, Y. Zhang, K. W. Xu, and V. Ji, Thin Solids Films 515, 7020 (2007).
http://dx.doi.org/10.1016/j.tsf.2007.01.045
400.
400. Y. Li and D. Y. Chung, Phys. Status Solidi A 46, 603 (1978).
http://dx.doi.org/10.1002/pssa.2210460225
401.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/21/10.1063/1.4803740
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Choice of Cartesian axes and Euler angles adopted for describing the vibrational modes generated in different crystal structures.

Image of FIG. 2.

Click to view

FIG. 2.

Parallel- and cross-polarized Raman spectra of BaTiO single-crystal, as collected on its -plane ((a) and (b), respectively) and -plane ((c) and (d), respectively).

Image of FIG. 3.

Click to view

FIG. 3.

Experimentally determined angular dependence of the intensities of various Raman bands of tetragonal BaTiO: (a) -plane, ; (b) -plane, ; (c) -plane, ; and (d) -plane, . Solid lines represent mathematical best-fitting curves as calculated according to linear combinations of Eqs. (17)–(20) .

Image of FIG. 4.

Click to view

FIG. 4.

(a) Parallel- and cross-polarized Raman spectra of 5Y-X LiNbO single-crystal, as collected on the plane with the polarization axis of the impinging laser parallel and perpendicular to the in-plane direction . In (b) and (c), enlargements of the spectral region including the (TO)/(TO)/(LO) + (TO) triplet with the related spectral deconvolutions in parallel- and cross-polarized configurations, respectively.

Image of FIG. 5.

Click to view

FIG. 5.

Experimentally determined angular dependences for the intensities of the 578 cm and the 631 cm ( ) bands of LiNbO single-crystal: (a) ; (b) ; (c) ; and, (d) . Full lines represent the mathematical best-fitting curves calculated according to Eqs. (22)–(27) , after substituting for the known Euler angles and .

Image of FIG. 6.

Click to view

FIG. 6.

Raman spectra in parallel and cross polarization for the plane 15Y-X of LiNbO single-crystal, located by Euler angles: . Note the difficulty in resolving the triplet (TO)/(TO)/(LO) + (TO) in the spectral interval 500–750 cm, as compared to the strong signal of the (LO) mode located at a frequency around 876 cm (i.e., obeying selection rules in Eqs. (22) and (25) ).

Image of FIG. 7.

Click to view

FIG. 7.

Experimentally determined angular dependences for the intensity of 876 cm ((LO) mode) on the plane 15Y-X of LiNbO single-crystal ((a) and (b) for parallel and cross configurations, respectively). Full lines represent the mathematical best-fitting curves calculated according to Eqs. (22) and (25) , after substituting for the known Euler angles and .

Image of FIG. 8.

Click to view

FIG. 8.

Parallel- (a) and cross-polarized (b) Raman spectra of monoclinic PMN-PT single-crystal as collected on its -plane ( and ). All the observed Raman bands belong to a monoclinic structure. No straightforward differences could be found in comparing spectra from crystals with nominal compositions  = 0.286 and 0.338 (i.e., mainly consisting of M and M structures, respectively), for which distinction can only be made according to the deconvolutive procedure explained in Sec. ??? .

Image of FIG. 9.

Click to view

FIG. 9.

Experimentally determined angular dependences for the intensities of the 589 cm ( mode) (parallel and cross configurations in (a) and (b), respectively) and of the 268 cm (″ mode) (parallel and cross configurations in (c) and (d), respectively) of the structure of the M phase. Mathematical best-fitting curves (full lines) were determined by using Eqs. (29)–(32) as trial functions after substituting for the known Euler angles and .

Image of FIG. 10.

Click to view

FIG. 10.

Experimentally determined angular dependences for the intensities of the 589 cm ( mode) (parallel and cross configurations in (a) and (b), respectively) and of the 268 cm ( mode) (parallel and cross configurations in (c) and (d), respectively) of the structure of the M phase. Mathematical best-fitting curves (full lines) were determined by using Eqs. (29)–(32) as trial functions after substituting for the known Euler angles and .

Image of FIG. 11.

Click to view

FIG. 11.

Different calibration methods for the determination of PDP constants using: (a) uniaxial compression loading (on different crystallographic planes); and, (b) Vickers indentation (residual) stress field (including line scans at different angles ahead of the crack tip).

Image of FIG. 12.

Click to view

FIG. 12.

Uniaxial calibration plots of spectral shift as collected for the 520 cm band of tetragonal BaTiO single-crystal with loading along the - and the -axes of the crystal (cf. loading configurations in Fig. 11(a) ).

Image of FIG. 13.

Click to view

FIG. 13.

Uniaxial calibration plots of spectral shift as collected for the 520 cm band of tetragonal BaTiO single-crystal with loading along the - and the -axes of the crystal (cf. loading configurations in Fig. 11(a) ).

Image of FIG. 14.

Click to view

FIG. 14.

Uniaxial calibration plots of spectral shift as collected for the 520 cm band of tetragonal BaTiO single-crystal with loading along the - and the -axes of the crystal (cf. loading configurations in Fig. 11(a) ).

Image of FIG. 15.

Click to view

FIG. 15.

Measured variations of Raman band position along different scanning paths ahead of the crack tip in tetragonal BaTiO single-crystal. Trends for the band located at ≈520 cm ( ) (a), for the band at ≈490 cm in cross (b) and parallel (c) polarization modes. The cleavage crack path was on the -plane of the crystal and could be located by the set of Euler angles, . Convoluted curves in (a), (b), and (c) are plotted with taking in Eq. (1) the functions described by Eqs. (69) , (79) , and (71) , respectively.

Image of FIG. 16.

Click to view

FIG. 16.

Detected variations of Raman band position along a  = 0 scanning path through the loading center of the ball-on-ring sample (cf. Fig. 11(b) and inset to Fig. 1 ) for (LO) (at ≈ 423, 603, and 873 cm, in (a), (b), and (c), respectively). Raman data were obtained with a polarized probe. Cross and parallel polarization geometries were used, which corresponded to and , respectively (-axis parallel to the crystallographic direction and perpendicular to the wafer edge provided by the maker as in central inset to Fig. 1 ). Calculated best-fitting curves are also plotted, which were obtained by using a trial function from Eqs. (100)–(105) . Experimental band-shift data from the central region at 0 <  <  were also best-fitted according to functions obtained with substituting the stress field given by the Eqs. (92)–(99) into Eqs. (80) and (89) .

Image of FIG. 17.

Click to view

FIG. 17.

Measured variations of Raman band position along different scanning paths ahead of the crack tip for the (TO) band located at ≈633 cm of LiNbO single-crystal (5Y-X plane, cleavage plane ). Convoluted curves are plotted with taking in Eq. (1) the function, according to Eq. (106) .

Image of FIG. 18.

Click to view

FIG. 18.

Choice of Cartesian systems ( integer to the laboratory frame, integer to the local domain orientation axes, and locating the axes of preferential orientation of the crystal texture) and Euler angles ( for rotation of with respect to , for rotation of with respect to , and for rotation of with respect to ). The three sets of Euler angles are related to each other according to Eqs. (141) and (142) .

Image of FIG. 19.

Click to view

FIG. 19.

Drafts in (a), (b), and (c) represent the different crack geometries detected upon indenting with a pyramidal head on different planes of BaTiO single-crystal; (d) is a draft of the three-dimensional morphology of the indentation print and of the related median cracks in the case of coincidence of the crack planes with cleavage crystallographic planes. The angle, , represents the inclination angle of the Vickers pyramidal edge, which is equal to 22°.

Image of FIG. 20.

Click to view

FIG. 20.

(a) Optical micrograph of an indented area and (b) a map of the out-of-plane angle, , obtained from the same zone on the surface of -plane BaTiO single-crystal; (c) in-depth maps of out-of-plane Euler angle, , were collected in confocal probe configuration along the sub-surface of the crystal. Values of Euler angles were computed from relative Raman intensities (cf. Sec. ??? ).

Image of FIG. 21.

Click to view

FIG. 21.

Results of polarized Raman assessments in an area surrounding the tip of a crack propagated on the -plane along the cleavage direction . Optical micrograph in (a) and Raman maps for the three Euler angles , , and in (b), (c), and (d), respectively. The micrograph in (a), featureless but the crack path, has been color filtered and the crack path emphasized with white color.

Image of FIG. 22.

Click to view

FIG. 22.

Assessment by confocal Raman spectroscopy of the sub-surface evolution of domain patterns around a Vickers indentation printed on the -plane of BaTiO single-crystal. Trends are shown for Euler angles, and , while the map of out-of-plane angle, , was shown in Fig. 20(c) .

Image of FIG. 23.

Click to view

FIG. 23.

Assessment by confocal Raman spectroscopy of the sub-surface evolution of domain patterns around a Vickers indentation printed on the -plane of BaTiO single-crystal. Domain textures are expressed in terms of three Euler angles in space, , , and .

Image of FIG. 24.

Click to view

FIG. 24.

Results of cross-polarized Raman line-scans collected on the - and -planes of BaTiO single crystal with moving the Raman probe focused on the crystal surface along a direction perpendicular to a selected edge of the indentation print. In (a) and (b), variations are plotted for the spectral positions of and bands, respectively, along the crystallographic direction . In (c), a similar characterization is shown for cross-polarized spectral positions of the band along the direction.

Image of FIG. 25.

Click to view

FIG. 25.

Individual components of the local stress tensor (i.e., computed from experimental data in Fig. 24 according to Eqs. (148)–(150) ) are plotted as a function of the radial abscissas, (cf. schematics of indentation print in Fig. 19(d) ) for scans on the - (a) and the -planes (b) of BaTiO single-crystal, respectively.

Image of FIG. 26.

Click to view

FIG. 26.

Residual stress fields induced by an indentation printed on the - (a) and on the -planes (b) of BaTiO single crystal. The selected directions are along oblique paths starting from the center of the indentation print and proceeding toward the bulk of the crystal at inclination angles as shown in the drafts in inset.

Image of FIG. 27.

Click to view

FIG. 27.

(a) Variation of the spectral positions of the 633 cm (TO) band of 5Y-X LiNbO, as retrieved upon a line scanning perpendicular to the indentation edge; and (b) results of a least-square computational routine to best fit experimental Raman shift data giving individual stress tensor components as a function of the radial abscissas, , as predicted by Eq. (153) and according to Eqs. (148)–(150) .

Image of FIG. 28.

Click to view

FIG. 28.

Spectral variations of the phonon bands of BaTiO single crystal (spectra collected on the -plane) in the temperature interval 20°   100 °C.

Image of FIG. 29.

Click to view

FIG. 29.

Plots of intensity (a), shift (b), and width (c) variations as a function of temperature for the band of BaTiO single crystal located at 270 cm in the temperature interval 26°   100 °C.

Image of FIG. 30.

Click to view

FIG. 30.

In-plane angular dependences of and phonon bands at room temperature (a) and at 100 °C (b), respectively. Data were collected on the -plane of a single-crystal sample in parallel polarization geometry. The differences in the periodic trends led to detectable differences in Raman tensor parameters.

Image of FIG. 31.

Click to view

FIG. 31.

Comparison between the variations of lattice constants in the tetragonal cell (according to Ref. ) and Raman tensor elements with increasing temperature. Within the investigated interval of temperature (i.e., 20°   100 °C), the presence of cubic phase could be excluded. Least-square fitting of the experimental data led to the two phenomenological Eqs. (154) and (155) , which link lattice constants to Raman tensor elements.

Image of FIG. 32.

Click to view

FIG. 32.

Evolution of in-plane Euler angle, , at three selected temperatures (i.e., 30° (a), 60° (b), and 100 °C (c)). A similar characterization for the out-of-plane Euler angle, , is shown in (d), (e), and (f) (at 30°, 60°, and 100 °C, respectively). A comparison among the collected angular maps clarifies that a temperature increase is effective in partly restoring the in-plane domain structure but it has little effect on the restoration of the out-of-plane angular distribution.

Image of FIG. 33.

Click to view

FIG. 33.

Typical structure of a MLCC capacitor consisting of a dense alternate sequence of BaTiO dielectric layers and Ni electrodes. The broken lines served to divide the corner area into three distinct sectors ((A), (B), and (C)) during the analysis by the Raman probe. In (a), an area 50 m × 50 m near the corner of the overall block of Ni stacking layers. In (b), an individual dielectric interlayer (area 5 m × 5 m) comprised between two randomly selected Ni electrodes in the stacking structure (choice of Cartesian axes and Euler angles in inset).

Image of FIG. 34.

Click to view

FIG. 34.

Maps of local Euler angles as obtained from Raman band intensity outputs. The broken lines divide the corner area into three zones of analysis as previously shown in Fig. 33 . The trends reveal domain orientation patterns in the end termination area of the MLCC device, as shown in the optical micrograph in Fig. 33(a) (angles , , and in (a), (b), and (c), respectively).

Image of FIG. 35.

Click to view

FIG. 35.

Maps of local Euler angles as obtained from Raman band intensity outputs. The trends reveal clear domain orientation patterns in the dielectric interlayer area of the MLCC device (area shown in Fig. 33(b) ) (angles , , and in (a), (b), and (c), respectively).

Image of FIG. 36.

Click to view

FIG. 36.

Plots of Euler angles are shown with high resolution in space along an abscissa, , taken across the dielectric interlayer thickness as shown in Fig. 33(b) (angles , , and in (a), (b), and (c), respectively). Best fitting curves are also plotted in the respective graphs (full lines), which corresponded to the solutions of Eqs. (156)–(158) .

Image of FIG. 37.

Click to view

FIG. 37.

Raman intensity variation of the mode (in parallel polarization geometry) as a function of in-plane rotation angle, , as detected at selected locations within the dielectric interlayer between two electrodes (cf. locations 1–6 as indicated in Fig. 33(b) ). The fitting lines were obtained according to the Raman selection rules for the tetragonal structure (Eqs. (8) and (12) for the vibrational mode) and following the analytical procedure described in Sec. V B .

Image of FIG. 38.

Click to view

FIG. 38.

Plots of local ODF, obtained from data in Fig. 37 according to the theory shown in Sec. V B , for selected points in the interlayer area of Fig. 33(b) . The angular distributions around the preferential direction of the -axis and around a direction perpendicular to it are shown in (a) and (b), respectively. Local ODF trends revealed almost full alignment at locations close to the Ni electrodes (Hermans' parameter, , exceeding 0.9).

Image of FIG. 39.

Click to view

FIG. 39.

Raman intensity variation of the mode (in parallel polarization geometry) as a function of in-plane rotation angle, , as detected at the MLCC corner area (cf. locations 1–9 as indicated in Fig. 33(a) ).

Image of FIG. 40.

Click to view

FIG. 40.

Plots of local ODF, obtained from data in Fig. 39 according to the theoretical formalism shown in Sec. V B , for selected points in the corner area of Fig. 33(a) . The degree of orientation was found significantly pronounced at corner locations, with values typically > 0.9.

Image of FIG. 41.

Click to view

FIG. 41.

Plots of frequency shift retrieved by an experimental line scan along an abscissa, , across the dielectric interlayer area (cf. Fig. 33(b) ) for bands belonging to both and modes. Plots in (a) and (b) are both in cross polarization geometry and refer to bands located at around 520 cm ( mode) and 490 cm ( mode), respectively. Experimental plots were deconvoluted according to Eq. (144) (by means of the three-dimensional PRF given in Table I ). The corresponding convoluted and deconvoluted curves are shown as full and broken lines, respectively.

Image of FIG. 42.

Click to view

FIG. 42.

Geometrical model used for representing an MLCC device. The th rectangular metallic inclusion, belonging to a regular array consisting of 2 inclusions with infinite length and depth (along the Cartesian and -axis, respectively) but finite width (along the -axis) is embedded in a half-space .

Image of FIG. 43.

Click to view

FIG. 43.

Plots of individual residual stress components piled up in the interlayer of MLCC device as a function of the abscissas, and , as calculated according to Eqs. (159)–(161) . Plots in the region,  = 0 to −3 m, are affected by an artifact perturbation that the sectioning procedure has introduced in the pristine state of the stress distribution.

Image of FIG. 44.

Click to view

FIG. 44.

Residual stress tensor components stored in the bulk of the MLCC device (i.e., unaffected by the sectioning procedure). The bulk components, and , reveal a compressive stress state at the center of the interlayer, along both the thickness and the depth of the dielectric component.

Image of FIG. 45.

Click to view

FIG. 45.

Maps of dielectric constant components along the axes of the Cartesian system, , at the corner region of the MLCC device shown in Fig. 33(a) . Spectroscopic measurements of polarized band frequencies have been translated into values of dielectric constants according to Eqs. (163) , (164) , and (166)–(168) , with the local orientation distribution function of the tetragonal lattice being retrieved through Eq. (143) .

Image of FIG. 46.

Click to view

FIG. 46.

Maps of dielectric constant components along the axes of the Cartesian system, , in the dielectric interlayer region of the MLCC device shown in Fig. 33(b) . Spectroscopic measurements of polarized band frequencies have been translated into values of dielectric constants according to Eqs. (163) , (164) , and (166)–(168) , with the local orientation distribution function of the tetragonal lattice being retrieved through Eq. (143) .

Image of FIG. 47.

Click to view

FIG. 47.

Schematics summarizing the development of domain textures in MLCC devices and their variations upon external application of a uniaxial load along different directions.

Image of FIG. 48.

Click to view

FIG. 48.

(a) Protocol for the assessment of crystallographic reliability followed in investigating LiNbO thin plate single-crystals; and (b) variations of relative Raman band intensities in different polarization geometries, as detected on line scans along different directions at random locations of the crystal surface. In (c), scattergrams of out-of-plane Euler angles, and , as obtained from data in (b) for three investigated crystals LiNbO crystals (5Y-X(A), 5Y-X(B), and 15Y-X). The analysis is based on Raman intensity fluctuations detected for the 578 cm Raman band ((TO) mode), the 631 cm Raman band ( (TO) mode), and the 876 cm Raman band ( (LO)) of the LiNbO crystals. The inherent scatter of the Raman spectroscope (kept at a rigorously constant room temperature) in terms of relative intensity was measured in the order of 5 × 10.

Image of FIG. 49.

Click to view

FIG. 49.

Histograms and cumulative histograms for the out-of-plane Euler angles, (5Y-X(A), 5Y-X(B), and 15Y-X in (a), (b), and (c), respectively) and (5Y-X(A), 5Y-X(B), and 15Y-X in (d), (e), and (f), respectively), as obtained for the three investigated LiNbO crystals.

Image of FIG. 50.

Click to view

FIG. 50.

Histograms and cumulative histograms for the individual residual stress components detected on the surfaces of the crystals labeled 5Y-X(A), 5Y-X(B), and 15Y-X. These histograms complement the statistical crystallographic assessments shown in Fig. 49 in judging about the quality of the obtained LiNbO crystals.

Image of FIG. 51.

Click to view

FIG. 51.

Results of optical microscopic observation on a mirror-polished (001)-plane surface of ( = 0.33) PMN-PT single-crystal: (a) optical micrograph, and (b)–(e) polarized optical micrographs from the same area taken with different polarization geometries (cf. polarization angles in inset). In (f), a volume fractional map is shown for the monoclinic structure embedded in the monoclinic matrix.

Image of FIG. 52.

Click to view

FIG. 52.

Variation along the sub-surface depth of the in plane angle, , as detected by the confocal Raman probe in a PMN-PT single-crystal. Note the significant sub-surface rotation of the M matrix crystal ( 25°, with 0° corresponding to the projection of the 〈100〉 direction on the 47Y-plane. The M lamina undergoes a smaller sub-surface rotation,  < 10°.

Image of FIG. 53.

Click to view

FIG. 53.

Angular plots of the dependencies of Raman band frequency in single-crystal BaTiO, as retrieved for different Raman bands in confocal probe configuration (pinhole aperture 100 m). Dependencies for bands located at around 270 ( (TO) mode), 480 cm ((TO) mode), and 520 cm ( (TO) mode) are given in (a), (b), and (c), respectively.

Image of FIG. 54.

Click to view

FIG. 54.

Experimental plot of the maximum fluctuations recorded upon -rotation in partly textured BaTiO polycrystal as a function of the local Hermans' parameter, . The collected experimental data could be fitted to the function represented in Eq. (A3) .

Tables

Generic image for table

Click to view

Table I.

Analytical shape of the PRFs and dimensions of the confocal probe for the studied piezoelectric materials. Note the micrometric nature of the Raman probe and its strong structural dependence on crystallographic orientation.

Generic image for table

Click to view

Table II.

Character and basis functions for the representation of the vibrational modes of point group structures.

Generic image for table

Click to view

Table III.

PDP values obtained for the same bands by means of crack-tip tensile stress calibrations and uniaxial compression calibrations on tetragonal BaTiO single crystal.

Generic image for table

Click to view

Table IV.

Character and basis functions for the representation of the vibrational modes of point group structures.

Generic image for table

Click to view

Table V.

Decomposition of the products of the basis functions for point group structures. Decomposition enables expressing in close form the elements of the matrix for the doubly degenerate states and of the mode.

Generic image for table

Click to view

Table VI.

PDP values and their respective experimental scatter as obtained from ball-on-ring bending calibrations and crack-tip calibrations on trigonal LiNbO.

Generic image for table

Click to view

Table VII.

Clebsch-Gordan coefficients (i.e., the constants, , in Eq. (119) ) used for expressing in a single rotation series the products of Wigner functions.

Generic image for table

Click to view

Table VIII.

Coefficients for constructing higher-order Wigner functions, , as shown in Eq. (119) .

Generic image for table

Click to view

Table IX.

Average values of Euler angles, Hermans' parameters, and , and the other fitting parameters in Eq. (137) , as found at different locations in the tetragonal BaTiO structure of the interlayer between Ni electrodes and of the corner area (cf. locations in Fig. 33 ).

Generic image for table

Click to view

Table X.

Average values of individual stress components ( , with , = ,,) and related standard deviations for different types of commercially available LiNbO wafers. These data refer to the histograms shown in Fig. 50 .

Generic image for table

Click to view

Table XI.

Numerical coefficients ( and ) in Eq. (A2) , which best fitted the experimental in-plane angular dependences of different bands as shown in Fig. 52 .

Loading

Article metrics loading...

/content/aip/journal/jap/113/21/10.1063/1.4803740
2013-06-03
2014-04-16

Abstract

Raman spectroscopy represents an insightful characterization tool in electronics, which comprehensively suits the technological needs for locally and quantitatively assessing crystal structures, domain textures, crystallographic misalignments, and residual stresses in piezoelectric materials and related devices. Recent improvements in data processing and instrumental screening of large sampling areas have provided Raman spectroscopic evaluations with rejuvenating effectiveness and presently give spin to increasingly wider and more sophisticated experimental explorations. However, the physics underlying the Raman effect represents an issue of deep complexity and its applicative development to non-cubic crystallographic structures can yet be considered in its infancy. This review paper revisits some applicative aspects of the physics governing Raman emission from crystalline matter, exploring the possibility of disentangling the convoluted dependences of the Raman spectrum on crystal orientation and mechanical stress. Attention is paid to the technologically important class of piezoelectric materials, for which working algorithms are explicitly worked out in order to quantitatively extract both structural and mechanical information from polarized Raman spectra. Systematic characterizations of piezoelectric materials and devices are successively presented as applications of the developed equations. The Raman response of complex crystal structures, described here according to a unified formalism, is interpreted as a means for assessing both crystallographic textures and stress-related issues in the three-dimensional space (thus preserving their vectorial and tensorial nature, respectively). Statistical descriptions of domain textures based on orientation distribution functions are also developed in order to provide a link between intrinsic single-crystal data and data collected on polycrystalline (partly textured) structures. This paper aims at providing rigorous spectroscopic foundations to Raman approaches dealing with the analyses of functional behavior and structural reliability of piezoelectric devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/21/1.4803740.html;jsessionid=5p3n0ml7hbuq8.x-aip-live-06?itemId=/content/aip/journal/jap/113/21/10.1063/1.4803740&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Raman spectroscopy of piezoelectrics
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/21/10.1063/1.4803740
10.1063/1.4803740
SEARCH_EXPAND_ITEM