1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Raman spectroscopy of piezoelectrics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/21/10.1063/1.4803740
1.
1. C. V. Raman, Indian J. Phys. 2, 387 (1928).
2.
2. C. V. Raman and K. S. Krishnan, Nature 121, 619 (1928).
http://dx.doi.org/10.1038/121619b0
3.
3. G. Landsberg and L. Mandelstam, Naturwiss. 16, 557 (1928).
http://dx.doi.org/10.1007/BF01506807
4.
4. D. L. Rousseau, R. P. Baumann, and S. P. S. Porto, J. Raman Spectrosc. 10, 253 (1981).
http://dx.doi.org/10.1002/jrs.1250100152
5.
5. I. R. Beattie, Chem. Soc. Rev. 4, 107 (1975).
http://dx.doi.org/10.1039/cs9750400107
6.
6. A. S. Barker, Jr. and A. J. Sievers, Rev. Mod. Phys. 47(2 ), S1 (1975).
http://dx.doi.org/10.1103/RevModPhys.47.S1.2
7.
7. T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966).
http://dx.doi.org/10.1103/PhysRev.142.570
8.
8. Y. D. Harker, C. Y. She, and D. F. Edwards, Appl. Phys. Lett. 15, 272 (1969).
http://dx.doi.org/10.1063/1.1652997
9.
9. E. Anastassakis, A. Pinczuk, E. Burstein, F. H. Pollak, and M. Cardona, Solid State Commun. 8, 133 (1970).
http://dx.doi.org/10.1016/0038-1098(70)90588-0
10.
10. J. F. Asell and M. Nicol, J. Chem. Phys. 49, 5395 (1968).
http://dx.doi.org/10.1063/1.1670064
11.
11. R. Loudon, Adv. Phys. 13, 423 (1964).
http://dx.doi.org/10.1080/00018736400101051
12.
12. M. Mariee and J. P. Mathieu, C. R. Acad. Sci. 223, 147 (1946).
13.
13. E. Anastassakis, J. Appl. Phys. 81, 3046 (1997).
http://dx.doi.org/10.1063/1.364339
14.
14. V. J. Tekippe, A. K. Ramdas, and S. Rodriguez, Phys. Rev. B 8, 706 (1973).
http://dx.doi.org/10.1103/PhysRevB.8.706
15.
15. F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, Phys. Rev. B 5, 580 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.580
16.
16. V. J. Tekippe and A. K. Ramdas, Phys. Lett. A 35, 143 (1971).
http://dx.doi.org/10.1016/0375-9601(71)90115-0
17.
17. R. J. Briggs and A. K. Ramdas, Phys. Rev. B 15, 5518 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5518
18.
18. C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys. Rev. 181, 1351 (1969).
http://dx.doi.org/10.1103/PhysRev.181.1351
19.
19. R. Loudon, Proc. R. Soc. London, Ser. A 275, 218 (1963).
http://dx.doi.org/10.1098/rspa.1963.0166
20.
20. A. Pinczuk, Solid State Commun. 12, 1035 (1973).
http://dx.doi.org/10.1016/0038-1098(73)90031-8
21.
21. W. G. Cady, Piezoelectricity (Dover Publ., Inc., New York, 1946), p. 177.
22.
22. A. C. Becquerel, Ann. Chim. Phys. T. 22, 135 (1823).
23.
23. A. L. Kholkin, N. A. Pertsev, and A. V. Goltsev, in Piezoelectric and Acoustic Materials for Transducer Applications, edited by A. Safari and E. K. Akdogan (Springer Science, Boston, MA, 2008), Chap. 2.
24.
24. J. Haines, J. Rouquette, V. Bornand, M. Pintard, Ph. Papet, and F. A. Gorelli, J. Raman Spectrosc. 34, 519 (2003).
http://dx.doi.org/10.1002/jrs.1009
25.
25. A. G. Souza Filho, P. T. C. Freire, A. P. Ayala, J. M. Sasaki, I. Guedes, J. Mendes Filho, F. E. A. Melo, E. B. Araujo, and J. A. Eiras, J. Phys.: Condens. Matter 12, 7295 (2000).
http://dx.doi.org/10.1088/0953-8984/12/32/313
26.
26. A. G. Souza Filho, J. L. B. Faria, P. T. C. Freire, A. P. Ayala, J. M. Sasaki, F. E. A. Melo, J. Mendes Filho, E. B. Araujo, and J. A. Eiras, J. Phys.: Condens. Matter 13, 7305 (2001).
http://dx.doi.org/10.1088/0953-8984/13/33/311
27.
27. J. Kreisel, A. M. Glazer, P. Bouvier, and G. Lucazeau, Phys. Rev. B 63, 174106 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.174106
28.
28. A. K. Sood, N. Chandrabhas, D. V. S. Muthu, and A. Jayaraman, Phys. Rev. B 51, 8892 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.8892
29.
29. U. D. Venkateswaran, V. M. Naik, and R. Naik, Phys. Rev. B 58, 14256 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.14256
30.
30. J. A. Sanjurjo, E. Lopez-Cruz, and G. Burns, Phys. Rev. B 28, 7260 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.7260
31.
31. F. Cerdeira, W. B. Holzapfel, and D. Bauerle, Phys. Rev. B 11, 1188 (1975).
http://dx.doi.org/10.1103/PhysRevB.11.1188
32.
32. A. Grzechnik, G. H. Wolf, and P. F. McMillan, J. Raman Spectrosc. 28, 885 (1997).
http://dx.doi.org/10.1002/(SICI)1097-4555(199711)28:11<885::AID-JRS179>3.0.CO;2-Z
33.
33. P. Gillet, F. Guyot, G. D. Price, B. Tournerie, and A. L. Cleach, Phys. Chem. Miner. 20, 159 (1993).
http://dx.doi.org/10.1007/BF00200118
34.
34. K. Uchino, Acta Mater. 46, 3745 (1998).
http://dx.doi.org/10.1016/S1359-6454(98)00102-5
35.
35. A. Yu. Belov and W. S. Kreher, Ferroelectrics 351, 79 (2007).
http://dx.doi.org/10.1080/00150190701353093
36.
36. K. Okai, W. Zhu, and G. Pezzotti, Phys. Status Solidi A 208, 1132 (2011).
http://dx.doi.org/10.1002/pssa.201000108
37.
37. V. Srikant, E. J. Tarsa, D. R. Clarke, and J. S. Speck, J. Appl. Phys. 77, 1517 (1995).
http://dx.doi.org/10.1063/1.358902
38.
38. A. Von Hippel, R. G. Breckenridge, F. G. Chelsey, and L. Tisza, Ind. Eng. Chem. 38, 1097 (1946).
http://dx.doi.org/10.1021/ie50443a009
39.
39. F. Jona and G. Shirane, Ferroelectric Crystals (MacMillan Co., New York, 1962).
40.
40. L. E. Cross, in Ferroelectric Ceramics: Tutorial Reviews, Theory, Processing, and Applications, edited by N. Setter and E. L. Colla (Birkhaueser Verlag, Boston, MA, 1993), pp. 185.
41.
41. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971).
42.
42. J. S. Speck and W. Pompe, J. Appl. Phys. 76, 466 (1994).
http://dx.doi.org/10.1063/1.357097
43.
43. H. Ishihara, F. Arai, and T. Fukuda, IEEE/ASME Trans. Mechatron. 1, 68 (1996).
http://dx.doi.org/10.1109/3516.491411
44.
44. W. S. N. Trimmer, Sens. Actuators 19, 267 (1989).
http://dx.doi.org/10.1016/0250-6874(89)87079-9
45.
45. M. Y. Al Aioubi, P. D. Prewett, S. E. Huq, V. Djakov, and A. G. Michette, Microelectron. Eng. 83, 1321 (2006).
http://dx.doi.org/10.1016/j.mee.2006.01.107
46.
46. D. Zhang, D. Rodriguez Sanmartin, T. W. Button, C. Meggs, C. Atkins, P. Doel, D. Brooks, C. Feldman, R. Willingale, A. Michette, S. Pfauntsch, S. Sahraei, A. James, C. Dunare, T. Stevenson, W. Parkes, A. Smith, and H. Wang, Proc. SPIE 7448, 744807 (2009).
http://dx.doi.org/10.1117/12.826018
47.
47. T. Morita, Sens. Actuators, A 103, 291 (2003).
http://dx.doi.org/10.1016/S0924-4247(02)00405-3
48.
48. H. Kuwajima, H. Uchiyama, Y. Ogawa, and H. Kita, IEEE Trans. Magn. 38, 2156 (2002).
http://dx.doi.org/10.1109/TMAG.2002.802798
49.
49. S. Nakamura, H. Numasato, K. Sato, M. Kobayashi, and I. Naniwa, Microsyst. Technol. 8, 149 (2002).
http://dx.doi.org/10.1007/s00542-002-0180-z
50.
50. M. Budinger, J. F. Rouchon, and B. Nogarede, IEEE-ASME Trans. Mechatron. 9, 1 (2004).
http://dx.doi.org/10.1109/TMECH.2004.823846
51.
51. G. X. Guo, Q. Hao, and T. S. Low, IEEE Trans. Magn. 37, 860 (2001).
http://dx.doi.org/10.1109/20.917632
52.
52. M. Klee, H. Boots, B. Kumar, C. van Heesch, R. Mauczok, W. Keur, M. de Wild, H. van Esch, A. L. Roest, K. Reimann, L. van Leuken, O. Wunnicke, J. Zhao, G. Schmitz, M. Mienkina, M. Mleczko, and M. Tiggelman, IOP Conf. Ser.: Mater. Sci. Eng. 8, 012008 (2010).
http://dx.doi.org/10.1088/1757-899X/8/1/012008
53.
53. S. L. Swartz, IEEE Trans. Electr. Insul. 25, 935 (1990).
http://dx.doi.org/10.1109/14.59868
54.
54. J. F. Meng, R. S. Katiyar, G. T. Zou, and X. H. Wang, Phys. Status Solidi A 164, 851 (1997).
http://dx.doi.org/10.1002/1521-396X(199712)164:2<851::AID-PSSA851>3.0.CO;2-J
55.
55. V. B. Podobedov, A. Weber, D. B. Romero, J. P. Rice, and H. D. Drew, Phys. Rev. B 58, 43 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.43
56.
56. P. S. Dobal, S. Bhaskar, S. B. Majumder, and R. S. Katiyar, J. Appl. Phys. 86, 828 (1999).
http://dx.doi.org/10.1063/1.370810
57.
57. A. A. Maradudin, S. Ganesan, and E. Burstein, Phys. Rev. 163, 882 (1967).
http://dx.doi.org/10.1103/PhysRev.163.882
58.
58. M. Nakajima, H. Nakaki, Y. Ehara, T. Yamada, K. Nishida, T. Yamamoto, M. Osada, and H. Funakubo, Appl. Phys. Lett. 97, 181907 (2010).
http://dx.doi.org/10.1063/1.3502591
59.
59. J. H. Lee, K. S. Hwang, and T. S. Kim, Nanoscale Res. Lett. 6, 55 (2011).
http://dx.doi.org/10.1007/s11671-010-9810-z
60.
60. K. Nishida, H. Kishi, H. Funakubo, H. Takeuchi, T. Katoda, and T. Yamamoto, Jpn. J. Appl. Phys., Part 1 46, 7005 (2007).
http://dx.doi.org/10.1143/JJAP.46.7005
61.
61. W.-H. Xu, D. Lu, and T.-Y. Zhang, Appl. Phys. Lett. 79, 4112 (2001).
http://dx.doi.org/10.1063/1.1426271
62.
62. G. Pezzotti, Phys. Status Solidi A 208, 976 (2011).
http://dx.doi.org/10.1002/pssa.201000785
63.
63. H. Barańska, A. Łabudzińska, and J. Terpiński, Laser Raman Spectrometry: Analytical Applications (John Wiley & Sons, New York, 1987).
64.
64. M. Meyer, P. G. Etchegoin, and E. C. Le Ru, Am. J. Phys. 78, 300 (2010).
http://dx.doi.org/10.1119/1.3271796
65.
65. T. Strach, J. Brunen, B. Lederle, J. Zegenhagen, and M. Cardona, Phys. Rev. B 57, 1292 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1292
66.
66. M. Cardona, in Light Scattering in Solids II, edited by M. Cardona and G. Güntherodt (Springer, Berlin, 1982), p. 19.
67.
67. S. P. S. Porto and R. S. Krishnan, J. Chem. Phys. 47, 1009 (1967).
http://dx.doi.org/10.1063/1.1711980
68.
68. D. E. Sands, Introduction to Crystallography (Dover Publ., New York, 1975), p. 54.
69.
69. M. Di Domenico, Jr., S. H. Wemple, and S. P. S. Porto, Phys. Rev. 174, 522 (1968).
http://dx.doi.org/10.1103/PhysRev.174.522
70.
70. M. El Marssi, F. Le Marrec, I. A. Lukyanchuk, and M. G. Karkut, J. Appl. Phys. 94, 3307 (2003).
http://dx.doi.org/10.1063/1.1596720
71.
71. S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, J. Chem. Phys. Solids 27, 997 (1966).
http://dx.doi.org/10.1016/0022-3697(66)90072-2
72.
72. R. F. Schaufele and M. J. Weber, Phys. Rev. 152, 705 (1966).
http://dx.doi.org/10.1103/PhysRev.152.705
73.
73. C.-S. Tu, V. H. Schmidt, I.-C. Shih, and R. Chien, Phys. Rev. B 67, 020102R (2003).
http://dx.doi.org/10.1103/PhysRevB.67.020102
74.
74. F. Fang, W. Yang, F. C. Zhang, and H. Qing, J. Mater. Res. 23, 3387 (2008).
http://dx.doi.org/10.1557/JMR.2008.0415
75.
75. M. Abplanalp, D. Barosova, P. Bridenbaugh, J. Erhart, J. Fousek, P. Günter, J. Nosek, and M. Sulc, J. Appl. Phys. 91, 3797 (2002).
http://dx.doi.org/10.1063/1.1446655
76.
76. R. R. Chien, V. H. Schmidt, L.-W. Hung, and C.-S. Tu, J. Appl. Phys. 97, 114112 (2005).
http://dx.doi.org/10.1063/1.1927288
77.
77. Y. Yang, L. Y. Zhang, K. Zhu, and Y. L. Liu, J. Appl. Phys. 109, 083517 (2011).
http://dx.doi.org/10.1063/1.3574666
78.
78. A. A. Bokov and Z.-G. Ye, J. Appl. Phys. 95, 6347 (2004).
http://dx.doi.org/10.1063/1.1703830
79.
79. A. K. Singh and D. Pandey, Phys. Rev. B 67, 064102R (2003).
http://dx.doi.org/10.1103/PhysRevB.67.064102
80.
80. F. Fang, X. Luo, and W. Yang, Phys. Rev. B 79, 174118 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.174118
81.
81. D. M. Fanning, I. K. Robinson, X. Lu, and D. A. Payne, J. Phys. Chem. Solids 61, 209 (2000).
http://dx.doi.org/10.1016/S0022-3697(99)00283-8
82.
82. N. Zhong, W.-L. Yao, P.-H. Xiang, C.-D. Feng, and S. Kojima, Solid State Commun. 134, 425 (2005).
http://dx.doi.org/10.1016/j.ssc.2005.01.038
83.
83. S. Ganesan, A. Maradudin, and J. Oitmaa, Ann. Phys. (N.Y.) 56, 556 (1970).
http://dx.doi.org/10.1016/0003-4916(70)90029-1
84.
84. G. Lucazeau, J. Raman Spectrosc. 34, 478 (2003).
http://dx.doi.org/10.1002/jrs.1027
85.
85. E. Anastassakis, in Light Scattering in Semiconductor Structures and Superlattices, edited by D. J. Lockwood and J. F. Young (Plenum, New York, 1991), p. 173.
86.
86. E. Anastassakis and E. Burstein, J. Phys. Chem. Solids 32, 313 (1971).
http://dx.doi.org/10.1016/0022-3697(71)90016-3
87.
87. C. S. G. Cousin, L. Gerward, J. Staun Olsen, B. Selsmark, and B. Sheldom. J. Appl. Crystall. 15, 154 (1982).
http://dx.doi.org/10.1107/S0021889882011704
88.
88. C. S. G. Cousin, L. Gerward, J. Staun Olsen, B. Selsmark, and B. Sheldom, J. Phys. C 20, 29 (1987).
http://dx.doi.org/10.1088/0022-3719/20/1/007
89.
89. V. N. Murzin, R. E. Pasynkov, and S. P. Solov'ev, Sov. Phys. Usp. 10, 453 (1968).
http://dx.doi.org/10.1070/PU1968v010n04ABEH003697
90.
90. A. Atkinson, S. C. Jain, and S. J. Webbs, Semicond. Sci. Technol. 14, 561 (1999).
http://dx.doi.org/10.1088/0268-1242/14/6/312
91.
91. A. Atkinson and S. C. Jain, J. Raman Spectrosc. 30, 885 (1999).
http://dx.doi.org/10.1002/(SICI)1097-4555(199910)30:10<885::AID-JRS485>3.0.CO;2-5
92.
92. I. De Wolf, H. E. Maes, and S. K. Jones, J. Appl. Phys. 79, 7148 (1996).
http://dx.doi.org/10.1063/1.361485
93.
93. E. Bonera, M. Fanciulli, and D. N. Batchelder, J. Appl. Phys. 94, 2729 (2003).
http://dx.doi.org/10.1063/1.1592872
94.
94. S. Narayanan, S. R. Kalidindi, and L. S. Schadler, J. Appl. Phys. 82, 2595 (1997).
http://dx.doi.org/10.1063/1.366072
95.
95. F. Demangeot, J. Frandon, M. A. Renucci, O. Briot, B. Gil, and R. L. Aulombard, Solid State Commun. 100, 207 (1996).
http://dx.doi.org/10.1016/0038-1098(96)00410-3
96.
96. J. Gleize, M. A. Renucci, J. Frandon, E. Bellet-Amalric, and B. Daudin, J. Appl. Phys. 93, 2065 (2003).
http://dx.doi.org/10.1063/1.1539531
97.
97. V. Darakchieva, T. Paskova, M. Schubert, H. Arwin, P. P. Paskov, B. Monemar, D. Hommel, M. Heuken, J. Off, F. Scholz, B. A. Haskell, P. T. Fini, J. S. Speck, and S. Nakamura, Phys. Rev. B 75, 195217 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.195217
98.
98. W. Zhu and G. Pezzotti, J. Raman Spectrosc. 42, 2015 (2011).
http://dx.doi.org/10.1002/jrs.2953
99.
99. T. Miyatake and G. Pezzotti, J. Appl. Phys. 110, 093511 (2011).
http://dx.doi.org/10.1063/1.3656447
100.
100. P. A. Gustafson, S. J. Harris, A. E. O'Neill, and A. M. Waas, J. Appl. Mech. 73, 745 (2006).
http://dx.doi.org/10.1115/1.2187527
101.
101. A. Bartasyte, S. Margueron, J. Kreisel, P. Bourson, O. Chaix-Pluchery, L. Rapenne-Homand, J. Santiso, C. Jimenez, A. Abrutis, F. Weiss, and M. D. Fontana, Phys. Rev. B 79, 104104 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.104104
102.
102. V. Lughi and D. R. Clarke, Appl. Phys. Lett. 89, 241911 (2006).
http://dx.doi.org/10.1063/1.2404938
103.
103. V. Sergo, X.-L. Wang, D. R. Clarke, and P. F. Becher, J. Am. Ceram. Soc. 78, 2213 (1995).
http://dx.doi.org/10.1111/j.1151-2916.1995.tb08639.x
104.
104. V. Sergo, G. Pezzotti, G. Katagiri, N. Muraki, and T. Nishida, J. Am. Ceram. Soc. 79, 781 (1996).
http://dx.doi.org/10.1111/j.1151-2916.1996.tb07944.x
105.
105. M. S. Amer, Int. J. Solids Struct. 42, 751 (2005).
http://dx.doi.org/10.1016/j.ijsolstr.2004.06.031
106.
106. T. Miyatake and G. Pezzotti, Phys. Status Solidi A 208, 1151 (2011).
http://dx.doi.org/10.1002/pssa.201000696
107.
107. K. F. Dombrowski, I. De Wolf, and B. Dietrich, Appl. Phys. Lett. 75, 2450 (1999).
http://dx.doi.org/10.1063/1.125044
108.
108. K. F. Dombrowski and I. De Wolf, Solid State Phenom. 63–64, 519 (1998).
http://dx.doi.org/10.4028/www.scientific.net/SSP.63-64.519
109.
109. I. De Wolf, G. Pozzat, K. Pinardi, D. J. Howard, M. Ignat, S. C. Jain, and H. E. Maes, Microelectron. Reliab. 36, 1751 (1996).
http://dx.doi.org/10.1016/0026-2714(96)00190-4
110.
110. I. De Wolf, M. Ignat, G. Pozza, L. Maniguet, and H. E. Maes, J. Appl. Phys. 85, 6477 (1999).
http://dx.doi.org/10.1063/1.370151
111.
111. D. Berlincourt and H. Jaffe, Phys. Rev. 111, 143 (1958).
http://dx.doi.org/10.1103/PhysRev.111.143
112.
112. J. Rödel, J. F. Kelly, M. R. Stoudt, and S. J. Bennison, Scanning Microsc. 5, 29 (1991).
113.
113. A. B. Kounga Njiwa, T. Fett, D. C. Lupascu, and J. Rödel, J. Am. Ceram. Soc. 86, 1973 (2003).
http://dx.doi.org/10.1111/j.1151-2916.2003.tb03593.x
114.
114. T. Fett, A. B. Kounga Njiwa, and J. Rödel, Eng. Fract. Mech. 72, 647 (2005).
http://dx.doi.org/10.1016/j.engfracmech.2004.07.003
115.
115. G. Pezzotti and A. Leto, Phys. Rev. Lett. 103, 175501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.175501
116.
116. W. Zhu, A. A. Porporati, A. Matsutani, N. Lama, and G. Pezzotti, J. Appl. Phys. 101, 103531 (2007).
http://dx.doi.org/10.1063/1.2735681
117.
117. A. G. Haerle, W. R. Cannon, and M. Denda, J. Am. Ceram. Soc. 74, 2897 (1991).
http://dx.doi.org/10.1111/j.1151-2916.1991.tb06860.x
118.
118. M. J. Busche and K. J. Hsia, Scr. Mater. 44, 207 (2001).
http://dx.doi.org/10.1016/S1359-6462(00)00588-1
119.
119. W. Zhu, K. S. Wan, and G. Pezzotti, Meas. Sci. Tech. 17, 191 (2006).
http://dx.doi.org/10.1088/0957-0233/17/1/030
120.
120. G. Pezzotti, A. Matsutani, and W. Zhu, J. Am. Ceram. Soc. 93, 256 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2009.03340.x
121.
121. A. Rivera, G. Garcia, J. Olivares, M. L. Crespillo, and F. Agullo-Lopez, J. Phys. D: Appl. Phys. 44, 475301 (2011).
http://dx.doi.org/10.1088/0022-3727/44/47/475301
122.
122. I. Tomeno and S. Matsumura (updated by C. Florea), in Properties of Lithium Niobate, EMIS Datareviews Series No. 28, edited by K. K. Wong (INSPEC Publ., London, 2002), p. 58.
123.
123. A. F. Kirstein and R. M. Woolley, J. Res. Natl. Bur. Stand. C 71, 1 (1967).
http://dx.doi.org/10.6028/jres.071C.002
124.
124. F. F. Vitman and V. P. Pukh, Zavod. Lab. 29, 863 (1963).
125.
125. A. A. Porporati, T. Miyatake, K. Schilcher, W. Zhu, and G. Pezzotti, J. Eur. Ceram. Soc. 31, 2031 (2011).
http://dx.doi.org/10.1016/j.jeurceramsoc.2011.05.009
126.
126. G. Pezzotti, H. Hagihara, and W. Zhu, J. Phys. D: Appl. Phys. 46, 145103 (2013).
http://dx.doi.org/10.1088/0022-3727/46/14/145103
127.
127. O. Kolosov, A. Gruverman, J. Hatano, K. Takahashi, and H. Tokumoto, Phys. Rev. Lett. 74, 4309 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.4309
128.
128. S. Hong, J. Woo, H. Shin, J.-U. Jeon, and Y. E. Pak, J. Appl. Phys. 89, 1377 (2001).
http://dx.doi.org/10.1063/1.1331654
129.
129. I. K. Bdikin, V. V. Shvartsman, and A. L. Kholkin, Appl. Phys. Lett. 83, 4232 (2003).
http://dx.doi.org/10.1063/1.1627476
130.
130. D. Dragoman, Prog. Opt. 37, 1 (1997).
http://dx.doi.org/10.1016/S0079-6638(08)70336-6
131.
131. R. Pérez, S. Banda, and Z. Ounaies, J. Appl. Phys. 103, 074302 (2008).
http://dx.doi.org/10.1063/1.2885347
132.
132. Y. Takahashi, L. Puppulin, W. Zhu, and G. Pezzotti, Acta Biomater. 6, 3583 (2010).
http://dx.doi.org/10.1016/j.actbio.2010.02.051
133.
133. H. L. Chen and A. A. Gundjian, Medical and biological engineering 12, 531 (1974).
http://dx.doi.org/10.1007/BF02478612
134.
134. G. S. Harbison, V.-D. Vogt, and H. W. Spiess, J. Chem. Phys. 86, 1206 (1987).
http://dx.doi.org/10.1063/1.452265
135.
135. U. A. van der Heide, S. C. Hopkins, and Y. E. Goldman, Biophys. J. 78, 2138 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76760-9
136.
136. F. Emren, U. Vonschlippenbach, and K. Lucke, Acta Metall. 34, 2105 (1986).
http://dx.doi.org/10.1016/0001-6160(86)90156-2
137.
137. J. B. Clark, R. K. Garrett, T. L. Jungling, R. A. Vandermeer, and C. L. Vold, Metall. Trans. A 22, 2039 (1991).
http://dx.doi.org/10.1007/BF02669871
138.
138. E. Nakamachi, C. L. Xie, H. Morimoto, K. Morita, and N. Yokoyama, Int. J. Plast. 18, 617 (2002).
http://dx.doi.org/10.1016/S0749-6419(01)00052-3
139.
139. G. Proust and S. R. Kalidindi, J. Mech. Phys. Solids 54, 1744 (2006).
http://dx.doi.org/10.1016/j.jmps.2006.01.010
140.
140. F. H. Müller, Kolloid-Z. 95, 138 (1941).
http://dx.doi.org/10.1007/BF01521456
141.
141. F. H. Müller, Kolloid-Z. 95, 306 (1941).
http://dx.doi.org/10.1007/BF01511872
142.
142. P. H. Hermans, Physics and Chemistry of Cellulose Fibres (Elsevier, New York, 1949).
143.
143. P. H. Hermans and P. Platzek, Kolloid-Z. 88, 68 (1939).
http://dx.doi.org/10.1007/BF01518890
144.
144. J. V. Bernier, M. P. Miller, and D. E. Boyce, J. Appl. Crystallogr. 39, 697 (2006).
http://dx.doi.org/10.1107/S002188980602468X
145.
145. T. Bohlke, U. U. Haus, and V. Schulze, Acta Mater. 54, 1359 (2006).
http://dx.doi.org/10.1016/j.actamat.2005.11.009
146.
146. R. Hielscher and H. Schaeben, J. Appl. Crystallogr. 41, 1024 (2008).
http://dx.doi.org/10.1107/S0021889808030112
147.
147. H. J. Bunge, Monatsber. Dtsch. Akad. Wiss. 7, 351 (1965).
148.
148. R.-J. Roe, J. Appl. Phys. 36, 2024 (1965).
http://dx.doi.org/10.1063/1.1714396
149.
149. H. J. Bunge, Texture Analysis in Materials Science: Mathematical Methods (Cuvillier Verlag, Gottingen, Germany, 1993), pp. 4, 47, 351.
150.
150. J. Stuelpnagel, SIAM Rev. 6, 422 (1964).
http://dx.doi.org/10.1137/1006093
151.
151. N. J. Vilenkin, Special Functions and the Theory of Group Representations (American Mathematical Society, Providence, RI, 1968), p. 97.
152.
152. M. Siemens, J. Hancock, and D. Siminovitch, Solid State Nucl. Mag. 31, 35 (2007).
http://dx.doi.org/10.1016/j.ssnmr.2006.12.001
153.
153. J. W. Zhao and B. L. Adams, Acta Crystallogr. A 44, 326 (1988).
http://dx.doi.org/10.1107/S010876738701256X
154.
154. H. Grimmer, Acta Crystallogr. A 36, 382 (1980).
http://dx.doi.org/10.1107/S0567739480000861
155.
155. A. Heinz and P. Neumann, Acta Crystallogr. A 47, 780 (1991).
http://dx.doi.org/10.1107/S0108767391006864
156.
156. A. Morawiec and D. P. Field, Philos. Mag. A 73, 1113 (1996).
http://dx.doi.org/10.1080/01418619608243708
157.
157. S. L. Altmann, Rotations, Quaternions, and Double Groups (Clarendon Press, Oxford, UK, 1986), pp. 29, 201, 237.
158.
158. A. Morawiec, J. Appl. Crystallogr. 23, 374 (1990).
http://dx.doi.org/10.1107/S002188989000512X
159.
159. M. Humbert, N. Gey, J. Muller, and C. Esling, J. Appl. Crystallogr. 29, 662 (1996).
http://dx.doi.org/10.1107/S0021889896006693
160.
160. J. K. Mason and C. A. Schuh, Metall. Mater. Trans A 40, 2590 (2009).
http://dx.doi.org/10.1007/s11661-009-9936-8
161.
161. V. J. McBrierty, J. Chem. Phys. 61, 872 (1974).
http://dx.doi.org/10.1063/1.1682028
162.
162. E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, New York, 1959).
163.
163. M. E. Rose, Elementary Theory of Angular Momentum (Dover Publ., New York, 1995).
164.
164. S. Jen, N. A. Clark, P. S. Pershan, and E. B. Priestley, J. Chem. Phys. 66, 4635 (1977).
http://dx.doi.org/10.1063/1.433720
165.
165. M. van Gurp, Colloid Polym. Sci. 273, 607 (1995).
http://dx.doi.org/10.1007/BF00652253
166.
166. J. Michl and E. W. Thulstrup, Spectroscopy with Polarized Light (Wiley-VCH, New York, 1995).
167.
167. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1960).
168.
168. D. M. Brink and G. R. Satchler, Angular Momentum (Clarendon Press, Oxford, 1968).
169.
169. L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Mechanics (Addison-Wesley, London, 1981).
170.
170. C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids, Fundamentals Vol. 1 (Clarendon Press, Oxford, 1984).
171.
171. S. Nomura, H. Kawai, I. Kimura, and M. Kagiyama, J. Polym. Sci. Part A-2 8, 383 (1970).
http://dx.doi.org/10.1002/pol.1970.160080305
172.
172. Particle Data Group, Rev. Mod. Phys. 48, S36 (1967).
173.
173. M. Pigeon, R. E. Prud'homme, and M. Pézolet, Macromolecules 24, 5687 (1991).
http://dx.doi.org/10.1021/ma00020a032
174.
174. M. J. Citra, D. B. Chase, R. M. Ikeda, and K. H. Gardner, Macromolecules 28, 4007 (1995).
http://dx.doi.org/10.1021/ma00115a037
175.
175. G. Y. Nikolaeva, L. E. Semenova, K. A. Prokhorov, and S. A. Gordeyev, Laser Phys. 7, 403 (1997).
176.
176. E. T. Jaynes, Phys. Rev. 106, 620 (1957).
http://dx.doi.org/10.1103/PhysRev.106.620
177.
177. B. J. Berne, P. Pechukas, and G. D. Harp, J. Chem. Phys. 49, 3125 (1968).
http://dx.doi.org/10.1063/1.1670559
178.
178. D. I. Bower, J. Polym. Sci. Polym. Phys. Ed. 19, 93 (1981).
http://dx.doi.org/10.1002/pol.1981.180190108
179.
179. M. Janssen and J. Zuidema, J. Nondestruct. Eval. 5, 42 (1985).
http://dx.doi.org/10.1007/BF00568763
180.
180. V. Stelmukh, L. Edwards, and S. Ganguly, Textures Microstruct. 35, 175 (2003).
http://dx.doi.org/10.1080/07303300310001628607
181.
181. V. V. Sumin, I. V. Papushkin, R. N. Vasin, A. M. Venter, and A. M. Balagurov, J. Nucl. Mater. 421, 64 (2012).
http://dx.doi.org/10.1016/j.jnucmat.2011.11.053
182.
182. E. C. Dickey, C. S. Frazer, T. R. Watkins, and C. R. Hubbard, J. Eur. Ceram. Soc. 19, 2503 (1999).
http://dx.doi.org/10.1016/S0955-2219(99)00100-4
183.
183. E. C. Dickey, C. R. Hubbard, and V. P. Dravid, J. Am. Ceram. Soc. 80, 2773 (1997).
http://dx.doi.org/10.1111/j.1151-2916.1997.tb03193.x
184.
184. N. C. Popa and D. Balzar, J. Appl. Cryst. 34, 187 (2001).
http://dx.doi.org/10.1107/S0021889801002060
185.
185. M. Ferrari and L. Lutterotti, J. Appl. Phys. 76, 7246 (1994).
http://dx.doi.org/10.1063/1.358006
186.
186. N. C. Popa, D. Balzar, G. Stefanic, S. Vogel, D. Brown, M. Bourke, and B. Clausen, Advances in X-ray Analysis (JCPDS—International Centre for Diffraction Data, Newtown Square, PA, 2004), Vol. 47, p. 373.
187.
187. Q. Ma and D. R. Clarke, Acta Metall. Mater. 41, 1811 (1993).
http://dx.doi.org/10.1016/0956-7151(93)90201-3
188.
188. Q. Ma and D. R. Clarke, J. Am. Ceram. Soc. 76, 1433 (1993).
http://dx.doi.org/10.1111/j.1151-2916.1993.tb03922.x
189.
189. D. M. Lipkin and D. R. Clarke, Oxid. Met. 45, 267 (1996).
http://dx.doi.org/10.1007/BF01046985
190.
190. K. Syassen, High Pressure Res. 28, 75 (2008).
http://dx.doi.org/10.1080/08957950802235640
191.
191. J. Weissmüller and J. W. Cahn, Acta Mater. 45, 1899 (1997).
http://dx.doi.org/10.1016/S1359-6454(96)00314-X
192.
192. G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981).
http://dx.doi.org/10.1111/j.1151-2916.1981.tb10320.x
193.
193. C. B. Ponton and R. D. Rawlings, Mater. Sci. Technol. 5, 865 (1989).
http://dx.doi.org/10.1179/026708389790222852
194.
194. M. Sakai, Acta Metall. Mater. 41, 1751 (1993).
http://dx.doi.org/10.1016/0956-7151(93)90194-W
195.
195. J. J. Kruzic, D. K. Kim, K. J. Koester, and R. O. Ritchie, J. Mech. Behavior Biomed. Mater. 2, 384 (2009).
http://dx.doi.org/10.1016/j.jmbbm.2008.10.008
196.
196. R. F. Cook and G. M. Pharr, J. Am. Ceram. Soc. 73, 787 (1990).
http://dx.doi.org/10.1111/j.1151-2916.1990.tb05119.x
197.
197. F. Ebrahimi and L. Kalwani, Mater. Sci. Eng. A 268, 116 (1999).
http://dx.doi.org/10.1016/S0921-5093(99)00077-5
198.
198. J. D. Stanescu and H. M. Chan, J. Mater. Sci. 11, 1364 (1992).
199.
199. A. S. Raynes, S. W. Freiman, F. W. Gayle, and L. D. Kaiser, J. Appl. Phys. 70, 5254 (1991).
http://dx.doi.org/10.1063/1.350234
200.
200. F. Fang and W. Yang, Mater. Lett. 57, 198 (2002).
http://dx.doi.org/10.1016/S0167-577X(02)00764-4
201.
201. T. Yamamoto, H. Igarashi, and K. Okazaki, Ferroelectrics 50, 273 (1983).
http://dx.doi.org/10.1080/00150198308014462
202.
202. C. T. Sun and S. B. Park, Proc. SPIE 2441, 213 (1995).
http://dx.doi.org/10.1117/12.209811
203.
203. C. S. Lynch, Acta Mater. 46, 599 (1998).
http://dx.doi.org/10.1016/S1359-6454(97)00225-5
204.
204. C. S. Lynch, Proc. SPIE 2715, 359 (1996).
http://dx.doi.org/10.1117/12.240846
205.
205. A. G. Tobin and Y. E. Pak, Proc. SPIE 1916, 78 (1993).
http://dx.doi.org/10.1117/12.148506
206.
206. G. G. Pisarenko, V. M. Chushko, and S. P. Kovalev, J. Am. Ceram. Soc. 68, 259 (1985).
http://dx.doi.org/10.1111/j.1151-2916.1985.tb15319.x
207.
207. K. Mehta and A. V. Virkar, J. Am. Ceram. 73, 567 (1990).
http://dx.doi.org/10.1111/j.1151-2916.1990.tb06554.x
208.
208. K. Nassau, H. J. Levinstein, and G. M. Loiacono, J. Phys. Chem. Solids 27, 983 (1966).
http://dx.doi.org/10.1016/0022-3697(66)90070-9
209.
209. X. Liu, K. Kitamura, K. Terabe, H. Zeng, and Q. Yin, Appl. Phys. Lett. 91, 232913 (2007).
http://dx.doi.org/10.1063/1.2823585
210.
210. D. Xue, S. Wu, Y. Zhu, K. Terabe, K. Kitamura, and J. Wang, Chem. Phys. Lett. 377, 475 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)01190-4
211.
211. Y.-L. Chen, J.-J. Xu, X.-Z. Zhang, Y.-F. Kong, X.-J. Chen, and G.-Y. Zhang, Appl. Phys. A 74, 187 (2002).
http://dx.doi.org/10.1007/s003390100855
212.
212. X. Liu, K. Terabe, and K. Kitamura, Jpn. J. Appl. Phys., Part 1 44, 7012 (2005).
http://dx.doi.org/10.1143/JJAP.44.7012
213.
213. L.-H. Peng, Y.-L. Shih, and Y.-C. Zhang, Appl. Phys. Lett. 81, 1666 (2002).
http://dx.doi.org/10.1063/1.1503169
214.
214. M. Manzo, F. Laurell, V. Pasiskevicius, and K. Gallo, Appl. Phys. Lett. 98, 122910 (2011).
http://dx.doi.org/10.1063/1.3571559
215.
215. K. Nassau and H. J. Levinstein, Appl. Phys. Lett. 7, 69 (1965).
http://dx.doi.org/10.1063/1.1754304
216.
216. H. D. Megaw, Acta Crystallogr. 7, 187 (1954).
http://dx.doi.org/10.1107/S0365110X54000527
217.
217. J. K. Choi and K. H. Auh, J. Mater. Sci. 31, 643 (1996).
http://dx.doi.org/10.1007/BF00367880
218.
218. G. Dhanaraj, H. L. Bath, and P. S. Narayanan, Ferroelectrics 157, 7 (1994).
http://dx.doi.org/10.1080/00150199408229474
219.
219. S. Basu, A. Zhou, and M. W. Barsoum, J. Mater. Res. 23, 1334 (2008).
http://dx.doi.org/10.1557/JMR.2008.0150
220.
220. J. F. Scott, A. Gruverman, D. Wu, I. Vrejoiu, and M. Alexe, J. Phys.: Condens. Matter 20, 425222 (2008).
http://dx.doi.org/10.1088/0953-8984/20/42/425222
221.
221. J.-C. Toledano, Ann. Telecommun. 29, 249 (1974).
222.
222. E. H. Yoffe, Philos. Mag. A 46, 617 (1982).
http://dx.doi.org/10.1080/01418618208236917
223.
223. K. Zeng and D. J. Rowcliffe, Acta Metall. Mater. 43, 1935 (1995).
http://dx.doi.org/10.1016/0956-7151(94)00392-U
224.
224. K. Zeng, A. E. Giannakopoulos, and D. J. Rowcliffe, Acta Metall. Mater. 43, 1945 (1995).
http://dx.doi.org/10.1016/0956-7151(94)00393-V
225.
225. K. Zeng and D. J. Rowcliffe, J. Hard Mater. 5, 239 (1994).
226.
226. A. E. Giannakopoulos, P.-L. Larsson, and R. Vestergaard, Int. J. Solids Struct. 31, 2679 (1994).
http://dx.doi.org/10.1016/0020-7683(94)90225-9
227.
227. K. Zeng, A. E. Giannakopoulos, D. J. Rowcliffe, and P. Meier, J. Am. Ceram. Soc. 81, 689 (1998).
http://dx.doi.org/10.1111/j.1151-2916.1998.tb02390.x
228.
228. A. Chandra, K. Wang, Y. Huang, G. Subbash, M. H. Miller, and W. Qu, ASME J. Manuf. Sci. Eng. 122, 452 (2000).
http://dx.doi.org/10.1115/1.1285903
229.
229. A. Chaves, R. S. Katiyar, and S. P. S. Porto, Phys. Rev. B 10, 3522 (1974).
http://dx.doi.org/10.1103/PhysRevB.10.3522
230.
230. M. P. Fontana and M. Lamrabet, Solid State Commun. 10, 1 (1972).
http://dx.doi.org/10.1016/0038-1098(72)90334-1
231.
231. A. Scalabrin, A. S. Chaves, D. S. Shim, and S. P. S. Porto, Phys. Status Solidi B 79, 731 (1977).
http://dx.doi.org/10.1002/pssb.2220790240
232.
232. J. A. Sanjurjo, R. S. Katiyar, and S. P. S. Porto, Phys. Rev. B 22, 2396 (1980).
http://dx.doi.org/10.1103/PhysRevB.22.2396
233.
233. Y. Luspin, J. L. Servoin, and F. Gervais, J. Phys. C 13, 3761 (1980).
http://dx.doi.org/10.1088/0022-3719/13/19/018
234.
234. M. Osada, M. Kakihana, S. Wada, T. Noma, and W. Cho, Appl. Phys. Lett. 75, 3393 (1999).
http://dx.doi.org/10.1063/1.125304
235.
235. K. Laabidi, M. Fontana, and B. Jannot, Solid State Commun. 76, 765 (1990).
http://dx.doi.org/10.1016/0038-1098(90)90623-J
236.
236. A. Scalabrin, S. P. S. Porto, and A. S. Chaves, in Third International Conference on Light Scattering in Solids, edited by M. Balkansky, R. C. C. Leite, and S. P. S. Porto (Flammarion Science, Paris, 1975), p. 861.
237.
237. A. Scalabrin, S. P. S. Porto, H. Vargas, C. A. S. Lima, and L. C. M. Miranda, Solid State Commun. 24, 291 (1977).
http://dx.doi.org/10.1016/0038-1098(77)90209-5
238.
238. F. Jona and G. Shirane, Ferroelectric Crystals (MacMillan, New York, 1962).
239.
239. B. Matthias and A. von Hippel, Phys. Rev. 73, 1378 (1948).
http://dx.doi.org/10.1103/PhysRev.73.1378
240.
240. R. Vivekanandan and T. R. N. Kutty, Powder Technol. 57, 181 (1989).
http://dx.doi.org/10.1016/0032-5910(89)80074-9
241.
241. P. Murugaraj, T. R. N. Kutty, and M. Subba Rao, J. Mater. Sci. 21, 3521 (1986).
http://dx.doi.org/10.1007/BF02402998
242.
242. K. C. Kao, Dielectric phenomena in solids (Elsevier Academic Press, San Diego, 2004).
243.
243. N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagansev, Phys. Rev. Lett. 80, 1988 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.1988
244.
244. I. N. Zakharchenko, E. S. Nikitin, V. M. Mukhortov, Yu. I. Golovko, M. G. Radchenko, and V. P. Dudkevich, Phys. Status Solidi A 114, 559 (1989).
http://dx.doi.org/10.1002/pssa.2211140217
245.
245. S. Wada, T. Suzuki, M. Osada, M. Kakihana, and T. Noma, Jpn. J. Appl. Phys., Part 1 37, 5385 (1998).
http://dx.doi.org/10.1143/JJAP.37.5385
246.
246. J. L. Parsons and L. Rimai, Solid State Commun. 5, 423 (1967).
http://dx.doi.org/10.1016/0038-1098(67)90790-9
247.
247. H. F. Kay, Acta Crystallogr. 1, 229 (1948).
http://dx.doi.org/10.1107/S0365110X4800065X
248.
248. J. D. Freire and R. S. Katiyar, Phys. Rev. B 37, 2074 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.2074
249.
249. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, International Series of Monographs on Physics (Oxford University Press, New York, 1966).
250.
250. J. C. Slater, Phys. Rev. 78, 748 (1950).
http://dx.doi.org/10.1103/PhysRev.78.748
251.
251. I. A. Cutter and R. McPherson, J. Am. Ceram. Soc. 55, 334 (1972).
http://dx.doi.org/10.1111/j.1151-2916.1972.tb11304.x
252.
252. J.-H. Chen, B.-H. Hwang, T.-C. Hsu, and H.-Y. Lu, Mater. Chem. Phys. 91, 67 (2005).
http://dx.doi.org/10.1016/j.matchemphys.2004.10.048
253.
253. S.-B. Kim, T.-J. Chung, and D.-Y. Kim, J. Eur. Ceram. Soc. 12, 147 (1993).
http://dx.doi.org/10.1016/0955-2219(93)90135-E
254.
254. G. Arlt, J. Mater. Sci. 25, 2655 (1990).
http://dx.doi.org/10.1007/BF00584864
255.
255. H. Kishi, Y. Mizuno, and H. Chazono, Jpn. J. Appl. Phys., Part 1 42, 1 (2003).
http://dx.doi.org/10.1143/JJAP.42.1
256.
256. G. de With, J. Eur. Ceram. Soc. 12, 323 (1993).
http://dx.doi.org/10.1016/0955-2219(93)90001-8
257.
257. Y. Nakano, T. Nomura, and T. Takenaka, Jpn. J. Appl. Phys., Part 1 42, 6041 (2003).
http://dx.doi.org/10.1143/JJAP.42.6041
258.
258. K. Saito and H. Chazono, Jpn. J. Appl. Phys., Part 1 42, 6045 (2003).
http://dx.doi.org/10.1143/JJAP.42.6045
259.
259. P. W. Forsbergh, Jr., Phys. Rev. 76, 1187 (1949).
http://dx.doi.org/10.1103/PhysRev.76.1187
260.
260. W. Cao and C. A. Randall, J. Phys. Chem. Solids 57, 1499 (1996).
http://dx.doi.org/10.1016/0022-3697(96)00019-4
261.
261. K. Imai, S. Takeno, and K. Nakamura, Jpn. J. Appl. Phys., Part 1 41, 6060 (2002).
http://dx.doi.org/10.1143/JJAP.41.6060
262.
262. J.-S. Park, H. Shin, K. S. Hong, H. S. Jung, J.-K. Lee, and K. Y. Rhee, Microelectr. Eng. 83, 2558 (2006).
http://dx.doi.org/10.1016/j.mee.2006.06.008
263.
263. H. Shin, J.-S. Park, K. S. Hong, H. S. Jung, J.-K. Lee, and K. Y. Rhee, J. Appl. Phys. 101, 063527 (2007).
http://dx.doi.org/10.1063/1.2713364
264.
264. H. Shin, J.-S. Park, S. Kim, H. S. Jung, and K. S. Hong, Microelectr. Eng. 77, 270 (2005).
http://dx.doi.org/10.1016/j.mee.2004.11.008
265.
265. X. C. Zhang, B. S. Xu, H. D. Wang, Y. Jiang, and Y. X. Wu, Compos. Sci. Technol. 66, 2249 (2006).
http://dx.doi.org/10.1016/j.compscitech.2005.12.004
266.
266. W. Lee, J. M. Myoung, Y. H. Yoo, and H. Shin, Compos. Sci. Technol. 66, 435 (2006).
http://dx.doi.org/10.1016/j.compscitech.2005.07.015
267.
267. J. M. J. den Toonder, C. W. Rademaker, and C.-L. Hu, Trans. ASME J. Electron. Packag. 125, 506 (2003).
http://dx.doi.org/10.1115/1.1604151
268.
268. J.-S. Park, H. Shin, H. S. Jung, and K. S. Hong, J. Appl. Phys. 97, 94504 (2005).
http://dx.doi.org/10.1063/1.1894602
269.
269. K. Franken, H. R. Maier, K. Prume, and R. Waser, J. Am. Ceram. Soc. 83, 1433 (2000).
http://dx.doi.org/10.1111/j.1151-2916.2000.tb01407.x
270.
270. K. Prume, K. Franken, U. Bottger, R. Waser, and H. R. Maier, J. Eur. Ceram. Soc. 22, 1285 (2002).
http://dx.doi.org/10.1016/S0955-2219(01)00439-3
271.
271. A. Umeri, T. A. Kuku, N. Scuor, and V. Sergo, J. Mater. Sci. 43, 922 (2008).
http://dx.doi.org/10.1007/s10853-007-2215-4
272.
272. Y. Mizuno, T. Hagiwara, and H. Kishi, J. Ceram. Soc. Jpn. 115, 360 (2007).
http://dx.doi.org/10.2109/jcersj.115.360
273.
273. M. Ryu, T. Suzuki, K. Kobayashi, T. Sakashita, and Y. Mizuno, Jpn. J. Appl. Phys., Part 1 49, 061101 (2010).
http://dx.doi.org/10.1143/JJAP.49.061101
274.
274. W. R. Buessem, L. E. Cross, and A. K. Goswami, J. Am. Ceram. Soc. 49, 33 (1966).
http://dx.doi.org/10.1111/j.1151-2916.1966.tb13144.x
275.
275. Z. Zao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, Phys. Rev. B 70, 024107 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.024107
276.
276. L. Curecheriu, M. T. Buscaglia, V. Buscaglia, Z. Zhao, and L. Mitoseriu, Appl. Phys. Lett. 97, 242909 (2010).
http://dx.doi.org/10.1063/1.3526375
277.
277. D. A. Hall and M. M. Ben-Omran, J. Phys.: Condens. Matter 10, 9129 (1998).
http://dx.doi.org/10.1088/0953-8984/10/40/016
278.
278. G. Arlt, D. Hennings, and G. de With, J. Appl. Phys. 58, 1619 (1985).
http://dx.doi.org/10.1063/1.336051
279.
279. S. Tsunekawa, S. Ito, T. Mori, K. Ishikawa, Z. Q. Li, and Y. Kawazoe, Phys. Rev. B 62, 3065 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.3065
280.
280. C. H. Ahn, K. M. Rabe, and J. M. Triscone, Science 303, 488 (2004).
http://dx.doi.org/10.1126/science.1092508
281.
281. S. M. Hu, J. Appl. Phys. 70, R53 (1991).
http://dx.doi.org/10.1063/1.349282
282.
282. S. M. Hu, J. Appl. Phys. 66, 2741 (1989).
http://dx.doi.org/10.1063/1.344194
283.
283. J. N. Goodier, Philos. Mag. 7, 1017 (1937).
284.
284. R. D. Mindlin and D. H. Cheng, J. Appl. Phys. 21, 926 (1950).
http://dx.doi.org/10.1063/1.1699785
285.
285. R. D. Mindlin and D. H. Cheng, J. Appl. Phys. 21, 931 (1950).
http://dx.doi.org/10.1063/1.1699786
286.
286. B. Sen, Quart. Appl. Math. 8, 365 (1951).
287.
287. B. Bridge, J. Mater. Sci. Lett. 8, 695 (1989).
http://dx.doi.org/10.1007/BF01730446
288.
288. Yu. A. Parmenov and S. N. Chaika, Sov. Microelectron. 16, 139 (1987).
289.
289. A. A. Gorbatsevich, Yu. A. Parmenov, A. A. Reznik, and S. N. Chaika, Sov. Microelectron. 18, 225 (1989).
290.
290. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York, 1977).
291.
291. W. Cochran, Adv. Phys. 9, 387 (1960).
http://dx.doi.org/10.1080/00018736000101229
292.
292. R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59, 673 (1951).
http://dx.doi.org/10.1103/PhysRev.59.673
293.
293. W. Cochran, Z. Kristallogr. 112, 465 (1959).
http://dx.doi.org/10.1524/zkri.1959.112.1-6.465
294.
294. W. Cochran and R. A. Cowley, J. Phys. Chem. Solids 23, 447 (1962).
http://dx.doi.org/10.1016/0022-3697(62)90084-7
295.
295. P. R. Andrade and S. P. S. Porto, Ann. Rev. Mater. Sci. 4, 287 (1974).
http://dx.doi.org/10.1146/annurev.ms.04.080174.001443
296.
296. G. Burns and F. H. Dacol, Phys. Rev. B 18, 5750 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.5750
297.
297. H. Vogt, J. A. Sanjurjo, and G. Rossbroich, Phys. Rev. B 26, 5904 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.5904
298.
298. H. Presting, J. A. Sanjurjo, and H. Vogt, Phys. Rev. B 28, 6097 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.6097
299.
299. N. Choudhury, S. L. Chaplot, K. R. Rao, and S. Ghose, Pramana J. Phys. 30, 423 (1988).
http://dx.doi.org/10.1007/BF02935597
300.
300. T. Ohno, D. Suzuki, and T. Ida, Kona 1, 195 (2004).
301.
301. A. M. Prokhorov and Yu. S. Kuz‘minov, Physics and Chemistry of Crystalline Lithium Niobate (Adam Hilger, Bristol, UK, 1990).
302.
302. M. E. Lines and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarendon Press, Oxford, UK, 1977).
303.
303. L. O. Svaasand, M. Eriksrud, G. Nakken, and A. P. Grande, J. Cryst. Growth 22, 230 (1974).
http://dx.doi.org/10.1016/0022-0248(74)90099-2
304.
304. P. F. Bordui, C. D. Bird, R. Blachman, R. G. Schlecht, and C. I. Zanelli, in Proceedings of the 13th Sagamore Army Materials Research Conference, edited by T. V. Hayes (Materials Technology Laboratory, Watertown, MA, 1991), p. 103.
305.
305. J. G. Bergman, A. Ashkin, A. A. Ballman, J. M. Dziedzic, H. J. Levinstein, and R. G. Smith, Appl. Phys. Lett. 12, 92 (1968).
http://dx.doi.org/10.1063/1.1651912
306.
306. L. Kovacs, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wohlecke, Appl. Phys. Lett. 70, 2801 (1997).
http://dx.doi.org/10.1063/1.119056
307.
307. K. Yamada, H. Takemura, Y. Inoue, T. Omi, and S. Matsumura, Jpn. J. Appl. Phys., Part 1 26(26-2 ) 219 (1987).
http://dx.doi.org/10.1143/JJAP.26.1811
308.
308. R. S. Weis and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).
http://dx.doi.org/10.1007/BF00614817
309.
309. P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, J. Appl. Phys. 71, 875 (1992).
http://dx.doi.org/10.1063/1.351308
310.
310. S. Sankaranarayanan and V. R. Bhethanabotla, Sens. J. IEEE 9, 329 (2009).
http://dx.doi.org/10.1109/JSEN.2009.2013505
311.
311. R. Tucoulou, F. de Bergevin, O. Mathon, and D. Roshchupkin, Phys. Rev. B 64, 134108 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.134108
312.
312. N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa, and M. Sato, J. Solid State Chem. 118, 148 (1995).
http://dx.doi.org/10.1006/jssc.1995.1323
313.
313. H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer, Phys. Rev. B 44, 4877 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.4877
314.
314. Y.-L. Chen, J.-J. Xu, X.-J. Chen, Y.-F. Kong, and G.-Y. Zhang, Opt. Commun. 188, 359 (2001).
http://dx.doi.org/10.1016/S0030-4018(00)01137-8
315.
315. V. Gopalan and T. E. Mitchell, J. Appl. Phys. 83, 941 (1998).
http://dx.doi.org/10.1063/1.366782
316.
316. V. Gopalan, V. Dierolf, and D. A. Scrymgeour, Ann. Rev. Mater. Res. 37, 449 (2007).
http://dx.doi.org/10.1146/annurev.matsci.37.052506.084247
317.
317. V. Gopalan, T. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998).
http://dx.doi.org/10.1063/1.121491
318.
318. E. N. Ivanova, N. A. Sergeev, and A. V. Yatsenko, Kristallografiya 43, 337 (1998).
319.
319. A. V. Yatsenko, E. N. Ivanova, and N. A. Sergeev, Physica B 240, 254 (1997).
http://dx.doi.org/10.1016/S0921-4526(97)00415-8
320.
320. V. Grachev and G. Malovichko, Phys. Rev. B 62, 7779 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.7779
321.
321. H. Donneberg, S. M. Tomlinson, C. R. A. Catlow, and O. F. Schirmer, Phys. Rev. B 40, 11909 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.11909
322.
322. G. S. Zhdanov, E. V. Kolontsova, A. E. Korneev, and S. A. Ivanov, Ferroelectrics 21, 463 (1978).
http://dx.doi.org/10.1080/00150197808237298
323.
323. S. A. Ivanov, A. E. Korneev, E. V. Kolontsova, and Y. N. Venevtsev, Kristallografiya 23, 1071 (1978).
324.
324. N. Zotov, F. Frey, H. Boysen, H. Lehnert, A. Hornsteiner, B. Strauss, R. Sonntag, H. M. Mayer, F. Güthoff, and D. Hohlwein, Acta Crystallogr. B 51, 961 (1995).
http://dx.doi.org/10.1107/S0108768195004216
325.
325. K. Nassau and M. E. Lines, J. Appl. Phys. 41, 533 (1970).
http://dx.doi.org/10.1063/1.1658708
326.
326. S. Yao, X. Hu, T. Yan, H. Liu, J. Wang, X. Qin, and Y. Chen, J. Appl. Cryst. 43, 276 (2010).
http://dx.doi.org/10.1107/S0021889809055459
327.
327. M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, G. Pierattini, F. Caccavale, D. Callejo, and A. Morbiato, Opt. Express 13, 5416 (2005).
http://dx.doi.org/10.1364/OPEX.13.005416
328.
328. P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, and M. Musolino, Opt. Laser Eng. 45, 380 (2007).
http://dx.doi.org/10.1016/j.optlaseng.2005.05.007
329.
329. N. V. Sidorov, M. N. Palatnikov, K. Bormanis, and A. Sternberg, Ferroelectrics 285, 311 (2003).
http://dx.doi.org/10.1080/00150190390206158
330.
330. U. Schlarb, S. Klauer, M. Wesselmann, K. Betzler, and M. Wöhlecke, Appl. Phys. A 56, 311 (1993).
http://dx.doi.org/10.1007/BF00324348
331.
331. S. Kojima, Jpn. J. Appl. Phys., Part 1 32, 4373 (1993).
http://dx.doi.org/10.1143/JJAP.32.4373
332.
332. A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, J. Phys.: Condens. Matter 9, 9687 (1997).
http://dx.doi.org/10.1088/0953-8984/9/44/022
333.
333. R. Mouras, P. Bourson, M. Fontana, and G. Boulon, Opt. Commun. 197, 439 (2001).
http://dx.doi.org/10.1016/S0030-4018(01)01446-8
334.
334. Y. Zhang, L. Guilbert, and P. Bourson, Appl. Phys. B 78, 355 (2004).
http://dx.doi.org/10.1007/s00340-004-1402-0
335.
335. D. Zhang, X. Chen, Y. Wang, D. Zhu, B. Wu, and G. Lan, J. Phys. Chem. Solids 63, 345 (2002).
http://dx.doi.org/10.1016/S0022-3697(01)00154-8
336.
336. M.-L. Hu, C.-T. Chia, J. Y. Chang, W.-S. Tse, and J.-T. Yu, Mater. Chem. Phys. 78, 358 (2003).
http://dx.doi.org/10.1016/S0254-0584(02)00015-9
337.
337. M. Quintanilla, E. M. Rodriguez, E. Cantelar, F. Cussó, and C. Domingo, Opt. Express 18, 5449 (2010).
http://dx.doi.org/10.1364/OE.18.005449
338.
338. V. Dierolf and C. Sandmann, Appl. Phys. B 78, 363 (2004).
http://dx.doi.org/10.1007/s00340-003-1377-2
339.
339. V. Dierolf, C. Sandmann, S. Kim, V. Gopalan, and K. Polgar, J. Appl. Phys. 93, 2295 (2003).
http://dx.doi.org/10.1063/1.1538333
340.
340. S. Kim, V. Gopalan, and B. Steiner, Appl. Phys. Lett. 77, 2051 (2000).
http://dx.doi.org/10.1063/1.1312854
341.
341. G. Berth, W. Hahn, V. Wiedemeier, A. Zrenner, S. Sanna, and W. G. Schmidt, Ferroelectrics 420, 44 (2011).
http://dx.doi.org/10.1080/00150193.2011.594774
342.
342. P. Capek, G. Stone, V. Dierolf, C. Althouse, and V. Gopolan, Phys. Status solidi C 4, 830 (2007).
http://dx.doi.org/10.1002/pssc.200673720
343.
343. G. K. Teal, M. Sparks, and E. Buehler, Phys. Rev. 81, 637 (1951).
http://dx.doi.org/10.1103/PhysRev.81.637
344.
344. J. Aleksic, P. Zielke, and J. A. Szymczyk, Ann. N.Y. Acad. Sci. 972, 158 (2002).
http://dx.doi.org/10.1111/j.1749-6632.2002.tb04567.x
345.
345. W. Zhu and G. Pezzotti, J. Appl. Phys. 109, 073502 (2011).
http://dx.doi.org/10.1063/1.3559871
346.
346. S.-E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804 (1997).
http://dx.doi.org/10.1063/1.365983
347.
347. K. K. Durbin, J. C. Hicks, S.-E. Park, and T. R. Shrout, J. Appl. Phys. 87, 8159 (2000).
http://dx.doi.org/10.1063/1.373512
348.
348. B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, I. E. Cross, and S.-E. Park, Appl. Phys. Lett. 74, 2059 (1999).
http://dx.doi.org/10.1063/1.123756
349.
349. B. Noheda, D. E. Cox, G. Shirane, R. Guo, B. Jones, and I. E. Cross, Phys. Rev. B 63, 014103 (2000).
http://dx.doi.org/10.1103/PhysRevB.63.014103
350.
350. H. X. Fu and R. E. Cohen, Nature 403, 281 (2000).
http://dx.doi.org/10.1038/35002022
351.
351. R. Guo, L. E. Cross, S.-E. Park, B. Noheda, D. E. Cox, and G. Shirane, Phys. Rev. Lett. 84, 5423 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5423
352.
352. L. Bellaiche, A. Garcia, and D. Vanderbilt, Phys. Rev. Lett. 84, 5427 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5427
353.
353. D. Vanderbilt and M. H. Cohen, Phys. Rev. B 63, 094108 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.094108
354.
354. Z. G. Ye, B. Noheda, M. Dong, D. Cox, and G. Shirane, Phys. Rev. B 64, 184114 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.184114
355.
355. B. Noheda, D. E. Cox, G. Shirane, J. Gao, and Z. G. Ye, Phys. Rev. B 66, 054104 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.054104
356.
356. B. Noheda, D. E. Cox, G. Shirane, S. E. Park, L. E. Cross, and Z. Zhong, Phys. Rev. Lett. 86, 3891 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3891
357.
357. B. Noheda, Z. Zhong, D. E. Cox, G. Shirane, S. E. Park, and P. Rehrig, Phys. Rev. B 65, 224101 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.224101
358.
358. A. K. Singh and D. Pandey, J. Phys.: Condens. Matter 13, L931 (2001).
http://dx.doi.org/10.1088/0953-8984/13/48/102
359.
359. H. Cao, F. M. Bai, N. G. Wang, J. F. Li, D. Viehland, G. Y. Xu, and G. Shirane, Phys. Rev. B 72, 064104 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.064104
360.
360. J. M. Kiat, Y. Uesu, B. Dkhil, M. Matsuda, C. Malibert, and G. Calvarin, Phys. Rev. B 65, 064106 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.064106
361.
361. A. K. Singh, D. Pandey, and O. Zaharko, Phys. Rev. B 68, 172103 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.172103
362.
362. G. Xu, H. Luo, H. Xu, and Z. Yin, Phys. Rev. B 64, 020102R (2001).
http://dx.doi.org/10.1103/PhysRevB.64.020102
363.
363. C. S. Tu, I. C. Shih, V. H. Schmidt, and R. Chien, Appl. Phys. Lett. 83, 1833 (2003).
http://dx.doi.org/10.1063/1.1602558
364.
364. D. Viehland and J. F. Li, J. Appl. Phys. 92, 7690 (2002).
http://dx.doi.org/10.1063/1.1524016
365.
365. V. A. Shuvaeva, A. M. Glazer, and D. Zekria, J. Phys.: Condens. Matter 17, 5709 (2005).
http://dx.doi.org/10.1088/0953-8984/17/37/009
366.
366. E. B. Araújo, in Advances in Ceramics—Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment, edited by C. Sikalidis (InTech, Rijeka, Croatia, 2011), Chap. 3.
367.
367. T. R. Shrout and S. L. Swartz, Mater. Res. Bull. 18, 663 (1983).
http://dx.doi.org/10.1016/0025-5408(83)90091-0
368.
368. S.-E. Park and T. R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1140 (1997).
http://dx.doi.org/10.1109/58.655639
369.
369. K. Wasa, S. Ito, K. Nakamura, T. Matsunaga, I. Kanno, T. Suzuki, H. Okino, T. Yamamoto, S. H. Seo, and D. Y. Noh, Appl. Phys. Lett. 88, 122903 (2006).
http://dx.doi.org/10.1063/1.2188588
370.
370. R. Zhang and W. Cao, Appl. Phys. Lett. 85, 6380 (2004).
http://dx.doi.org/10.1063/1.1842365
371.
371. R. Zhang, B. Jiang, and W. Cao, J. Appl. Phys. 90, 3471 (2001).
http://dx.doi.org/10.1063/1.1390494
372.
372. R. F. Service, Science 275, 1878 (1997).
http://dx.doi.org/10.1126/science.275.5308.1878
373.
373. Z. Yin, H. Luo, P. Wang, and G. Xu, Ferroelectrics 299, 207 (1999).
http://dx.doi.org/10.1080/00150199908224341
374.
374. X. Wan, H. L. W. Chan, C. L. Choy, X. Zhao, and H. Luo, J. Appl. Phys. 96, 1387 (2004).
http://dx.doi.org/10.1063/1.1767287
375.
375. X. Zhao, X. Wu, L. Liu, H. Luo, N. Neumann, and P. Yu, Phys. Status Solidi A 208, 1061 (2011).
http://dx.doi.org/10.1002/pssa.201000051
376.
376. G. S. Xu, H. S. Luo, Y. P. Guo, Y. Q. Gao, H. Q. Xu, Z. Y. Qi, W. Z. Zhong, and Z. W. Yin, Solid State Commun. 120, 321 (2001).
http://dx.doi.org/10.1016/S0038-1098(01)00387-8
377.
377. Y. Yang, Y. L. Liu, L. Y. Zhang, K. Zhu, S. Y. Ma, G. G. Siu, Z. K. Xu, and H. Luo, J. Raman Spectrosc. 41, 1735 (2010).
http://dx.doi.org/10.1002/jrs.2600
378.
378. P. Bao, F. Yan, X. Lu, J. Zhu, H. Shen, Y. Wang, and H. Luo, Appl. Phys. Lett. 88, 092905 (2006).
http://dx.doi.org/10.1063/1.2177370
379.
379. S. Keller, T. Löchte, B. Dippel, and B. Schrader, Fresenius’ J. Anal. Chem. 346, 863 (1993).
http://dx.doi.org/10.1007/BF00321306
380.
380. J. A. Stuart Williams and W. Bonawi-Tan, J. Manuf. Systems 23, 299 (2004).
http://dx.doi.org/10.1016/S0278-6125(04)80042-6
381.
381. L. Ashton and R. Goodacre, Eur. Pharm. Rev. 16, 46 (2011).
382.
382. X. Cao, Z.-Q. Wen, A. Vance, and G. Torraca, Appl. Spectrosc. 63, 830 (2009).
http://dx.doi.org/10.1366/000370209788701026
383.
383. A. Piegari and J. Bulir, Appl. Opt. 45, 3768 (2006).
http://dx.doi.org/10.1364/AO.45.003768
384.
384. A. Piegari, A. K. Sytchkova, J. Bulir, B. Harnisch, and A. Wuttig, Proc. SPIE 7101, 710113 (2008).
http://dx.doi.org/10.1117/12.797286
385.
385. L. B. Glebov, in Encyclopedia of Smart Materials 2, edited by M. Schwartz (John Wiley & Sons, New York, 2002), p. 770.
386.
386. InGaAs Camera, Synchrotron Radiat. News 25, 34 (2012).
387.
387. T. Trupke, R. A. Bardos, and M. D. Abbott, Appl. Phys. Lett. 87, 1841021 (2005).
http://dx.doi.org/10.1063/1.2119411
388.
388. J. A. Giesecke, W. Warta, M. C. Schubert, B. Michl, and F. Schindler, Sol. Energy Mater. Sol. Cells 95, 10111018 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.12.016
389.
389. T. Trupke, B. Mitchell, J. W. Weber, W. McMillan, R. A. Bardos, and R. Kroeze, Energy Proc. 15, 135146 (2012).
http://dx.doi.org/10.1016/j.egypro.2012.02.016
390.
390. F. Yan, S. Johnston, K. Zaunbrecher, M. Al-Jassim, O. Sidelkheir, and K. Ounadjela, Phys. Status Solidi RRL 6, 190192 (2012).
http://dx.doi.org/10.1002/pssr.201206068
391.
391. C. H. Perry and D. B. Hall, Phys. Rev. Lett. 15, 700 (1965).
http://dx.doi.org/10.1103/PhysRevLett.15.700
392.
392. A. Hüller, Z. Phys. 220, 145 (1969).
http://dx.doi.org/10.1007/BF01394744
393.
393. B. Jannot, L. Gnininvi, and G. Godefroy, Ferroelectrics 37, 669 (1981).
http://dx.doi.org/10.1080/00150198108223517
394.
394. Ph. Ghosez, X. Gonze, and J. P. Michenaud, Ferroelectrics 206, 205 (1998).
http://dx.doi.org/10.1080/00150199808009159
395.
395. Ph. Ghosez, X. Gonze, and J. P. Michenaud, Ferroelectrics 220, 1 (1999).
http://dx.doi.org/10.1080/00150199908007992
396.
396. M. Uludogan and T. Cagin, Turk. J. Phys. 30, 277 (2006).
397.
397. G. Shirane, B. C. Frazer, V. J. Minkiewicz, and J. A. Leake, Phys. Rev. Lett. 19, 234 (1967).
http://dx.doi.org/10.1103/PhysRevLett.19.234
398.
398. J. M. Zhang, Y. Zhang, K. W. Xu, and V. Ji, J. Chem. Crystallogr. 38, 733 (2008).
http://dx.doi.org/10.1007/s10870-008-9370-6
399.
399. J. M. Zhang, Y. Zhang, K. W. Xu, and V. Ji, Thin Solids Films 515, 7020 (2007).
http://dx.doi.org/10.1016/j.tsf.2007.01.045
400.
400. Y. Li and D. Y. Chung, Phys. Status Solidi A 46, 603 (1978).
http://dx.doi.org/10.1002/pssa.2210460225
401.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/21/10.1063/1.4803740
Loading
/content/aip/journal/jap/113/21/10.1063/1.4803740
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/21/10.1063/1.4803740
2013-06-03
2014-10-01

Abstract

Raman spectroscopy represents an insightful characterization tool in electronics, which comprehensively suits the technological needs for locally and quantitatively assessing crystal structures, domain textures, crystallographic misalignments, and residual stresses in piezoelectric materials and related devices. Recent improvements in data processing and instrumental screening of large sampling areas have provided Raman spectroscopic evaluations with rejuvenating effectiveness and presently give spin to increasingly wider and more sophisticated experimental explorations. However, the physics underlying the Raman effect represents an issue of deep complexity and its applicative development to non-cubic crystallographic structures can yet be considered in its infancy. This review paper revisits some applicative aspects of the physics governing Raman emission from crystalline matter, exploring the possibility of disentangling the convoluted dependences of the Raman spectrum on crystal orientation and mechanical stress. Attention is paid to the technologically important class of piezoelectric materials, for which working algorithms are explicitly worked out in order to quantitatively extract both structural and mechanical information from polarized Raman spectra. Systematic characterizations of piezoelectric materials and devices are successively presented as applications of the developed equations. The Raman response of complex crystal structures, described here according to a unified formalism, is interpreted as a means for assessing both crystallographic textures and stress-related issues in the three-dimensional space (thus preserving their vectorial and tensorial nature, respectively). Statistical descriptions of domain textures based on orientation distribution functions are also developed in order to provide a link between intrinsic single-crystal data and data collected on polycrystalline (partly textured) structures. This paper aims at providing rigorous spectroscopic foundations to Raman approaches dealing with the analyses of functional behavior and structural reliability of piezoelectric devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/21/1.4803740.html;jsessionid=oy6ohyiusyq5.x-aip-live-06?itemId=/content/aip/journal/jap/113/21/10.1063/1.4803740&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Raman spectroscopy of piezoelectrics
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/21/10.1063/1.4803740
10.1063/1.4803740
SEARCH_EXPAND_ITEM