1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Predicting the shock compression response of heterogeneous powder mixtures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/22/10.1063/1.4810929
1.
1. High-Pressure Research Applications in Geophysics, edited by M. H. Manghnani and S. Akimoto (Academic Press, New York, 1970).
2.
2. R. M. German, Powder Metallurgy Science (Metal Powder Industries Federation, New Jersey 1984).
3.
3. R. W. Heckel, Trans. Metallurg. Soc. AIME 221, 671675 (1961).
4.
4. A. R. Cooper, Jr. and L. E. Eaton, J. Am. Ceram. Soc. 45, 97101 (1962).
http://dx.doi.org/10.1111/j.1151-2916.1962.tb11092.x
5.
5. K. Kawikata and Y. Tsutsumi, Jpn. J. Appl. Phys. 4, 5663 (1965).
http://dx.doi.org/10.1143/JJAP.4.56
6.
6. K. Kawikata and K.-H. Lüdde, Powder Technol. 4, 6168 (1970).
7.
7. R. J. Roberts and R. C. Rowe, Chem. Eng. Sci. 42, 903911 (1987).
http://dx.doi.org/10.1016/0009-2509(87)80048-9
8.
8. C.-H. Park, S.-J. Park, H. N. Han, K. H. Oh, and K. W. Song, Powder Metall. 42, 269274 (1999).
http://dx.doi.org/10.1179/003258999665620
9.
9. M. W. Petrie and N. W. Page, J. Appl. Phys. 69, 35173524 (1991).
http://dx.doi.org/10.1063/1.348493
10.
10. N. W. Page, Shock Waves 4, 7380 (1994).
http://dx.doi.org/10.1007/BF01418570
11.
11. Ansys, Inc., autodyn, Release 12.0, Canonsburg, PA, 2009.
12.
12. CTH User's Manual and Input Instructions, CTH Development Project, Version 9.0, 2009.
13.
13. V. Kenkre, M. Endicott, S. Glass, and A. Hurd, J. Am. Ceram. Soc. 79, 30453054 (1996).
http://dx.doi.org/10.1111/j.1151-2916.1996.tb08076.x
14.
14. H. Fischmeister and E. Arzt, Powder Metall. 26, 8288 (1983).
15.
15. E. Arzt, Acta Metall. 30, 18831890 (1982).
16.
16. M. Meyers, S. Shang, and K. Hokamoto, in Shock Waves in Materials Science, edited by A. Sawaoka (Springer-Verlag, Tokyo, 1993).
17.
17. M. M. Carroll and A. C. Holt, J. Appl. Phys. 43, 16261636 (1972).
http://dx.doi.org/10.1063/1.1661372
18.
18. M. H. Rice and J. M. Walsh, J. Chem. Phys. 26, 824830 (1957).
http://dx.doi.org/10.1063/1.1743415
19.
19. R. G. McQueen, S. P. Marsh, and J. N. Fritz, J. Geophys. Res. 72, 49995036, doi:10.1029/JZ072i020p04999 (1967).
http://dx.doi.org/10.1029/JZ072i020p04999
20.
20. W. Kingery, H. Bowden, and D. Uhlmann, Introduction to Ceramics (Springer, New York, 1976), pp. 704767.
21.
21. M. J. Readey and F. M. Mahoney, Sandia Report No. SAND95-2374, 1995.
22.
22. F. Bauer, AIP Conf. Proc. 845, 11831186 (2006).
http://dx.doi.org/10.1063/1.2263535
23.
23. D. A. Fredenburg and N. N. Thadhani, J. Appl. Phys. 113, 043507 (2013).
http://dx.doi.org/10.1063/1.4788700
24.
24. D. A. Fredenburg, “ Shock compaction and impact response of thermite powder mixtures,” Ph.D. dissertation (Georgia Institute of Technology, 2010).
25.
25. S. Chen and G. T. Gray III, Metall. Mater. Trans. A 27, 29943006 (1996).
http://dx.doi.org/10.1007/BF02663849
26.
26. N. N. Thadhani, K. S. Vandersall, R. T. Russell, R. A. Graham, G. T. Holman, and M. U. Anderson, AIP Conf. Proc. 429, 553556 (1998).
http://dx.doi.org/10.1063/1.55700
27.
27. R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, in High-Velocity Impact Phenomena, edited by R. Kinslow (Academic Press, New York 1970), pp. 294419.
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/22/10.1063/1.4810929
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Target fixture for measuring the dynamic response of Ta + FeO, shown in the (a) top-down (rear), (b) side, and (c) exploded side view. In (b) and (c), impact occurs from left to right.

Image of FIG. 2.

Click to view

FIG. 2.

Results from dynamic compression experiments on 49% TMD mixture of Ta + FeO and microstructure of mixture pre-compressed to 49% TMD.

Image of FIG. 3.

Click to view

FIG. 3.

Results from dynamic compression experiments on 60% TMD mixture of Ta + BiO and microstructure of mixture pre-compressed to 60% TMD.

Image of FIG. 4.

Click to view

FIG. 4.

Results from dynamic compression experiments on 53% TMD mixture of Al + FeO. Pressures and specific volume calculated from toe-to-toe (10%) and half-max (50%) wave speeds, original shot numbers given in Thadhani

Image of FIG. 5.

Click to view

FIG. 5.

Model predictions for equivolumetric (1:1) and stoichiometric (3:7) volume ratios of Ta and FeO with TMD and experimental data for the equivolumetric mixture.

Tables

Generic image for table

Click to view

Table I.

Parameters derived from quasi-static compaction experiments on the Ta + FeO mixture for the and modified - models.

Generic image for table

Click to view

Table II.

Results of parallel plate impact experiments on the Ta + FeO powder mixture. Measured quantities are impact velocity, , initial porous density, , and shock velocity, , and calculated parameters are material velocity, , stress, , and shock compressed volume, . Uncertainties in impact velocity are less than 0.1% for all experiments. All shots impacted with Cu impactor with exception of shot numbers with *, indicating use of composite W-6Ni-4Cu impactor.

Generic image for table

Click to view

Table III.

Parameters derived from quasi-static compaction experiments on the Ta + BiO mixture for the and modified - models.

Loading

Article metrics loading...

/content/aip/journal/jap/113/22/10.1063/1.4810929
2013-06-14
2014-04-24

Abstract

A model framework for predicting the dynamic shock-compression response of heterogeneous powder mixtures using readily obtained measurements from quasi-static tests is presented. Low-strain-rate compression data are first analyzed to determine the region of the bulk response over which particle rearrangement does not contribute to compaction. This region is then fit to determine the densification modulus of the mixture, , an newly defined parameter describing the resistance of the mixture to yielding. The measured densification modulus, reflective of the diverse yielding phenomena that occur at the meso-scale, is implemented into a rate-independent formulation of the -α model, which is combined with an isobaric equation of state to predict the low and high stress dynamic compression response of heterogeneous powder mixtures. The framework is applied to two metal + metal-oxide (thermite) powder mixtures, and good agreement between the model and experiment is obtained for all mixtures at stresses near and above those required to reach full density. At lower stresses, rate-dependencies of the constituents, and specifically those of the matrix constituent, determine the ability of the model to predict the measured response in the incomplete compaction regime.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/22/1.4810929.html;jsessionid=8h2pj1tktm8c.x-aip-live-06?itemId=/content/aip/journal/jap/113/22/10.1063/1.4810929&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Predicting the shock compression response of heterogeneous powder mixtures
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/22/10.1063/1.4810929
10.1063/1.4810929
SEARCH_EXPAND_ITEM