1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/23/10.1063/1.4803530
1.
1. N. K. Terrett, M. Gardner, D. W. Gordon, R. J. Kobylecki, and J. Steele, Tetrahedron 51(30), 81358173 (1995).
http://dx.doi.org/10.1016/0040-4020(95)00467-M
2.
2. P. P. Pescarmona, J. C. van der Waal, I. E. Maxwell, and T. Maschmeyer, Catal. Lett. 63(1–2), 111 (1999).
http://dx.doi.org/10.1023/A:1019000601210
3.
3. L. A. Thompson and J. A. Ellman, Chem. Rev. 96(1), 555600 (1996).
http://dx.doi.org/10.1021/cr9402081
4.
4. R. B. Merrifield and J. M. Stewart, Nature 207(4996), 522 (1965).
http://dx.doi.org/10.1038/207522a0
5.
5. B. J. Chisholm and D. C. Webster, J. Coat. Technol. Res. 4(1), 112 (2007).
http://dx.doi.org/10.1007/s11998-007-9000-9
6.
6. R. A. Potyrailo and V. M. Mirsky, Chem. Rev. 108(2), 770813 (2008).
http://dx.doi.org/10.1021/cr068127f
7.
7. H. Koinuma and I. Takeuchi, Nature Mater. 3, 429438 (2004).
http://dx.doi.org/10.1038/nmat1157
8.
8. X. D. Xiang, X. D. Sun, G. Briceno, Y. L. Lou, K. A. Wang, H. Y. Chang, W. G. Wallace-Freedman, S. W. Chen, and P. G. Schultz, Science 268(5218), 17381740 (1995).
http://dx.doi.org/10.1126/science.268.5218.1738
9.
9. X. D. Xiang and P. G. Schultz, Physica C 282, 428430 (1997).
http://dx.doi.org/10.1016/S0921-4534(97)00297-9
10.
10. I. Takeuchi, R. B. van Dover and H. Koinuma, MRS Bull. 27(4), 301308 (2002).
http://dx.doi.org/10.1557/mrs2002.97
11.
11. A. Boettcher, G. Haase, and R. Thun, Z. Metallkd. 46(5), 386400 (1955).
12.
12. K. Kennedy, T. Stefansky, G. Davy, V. F. Zackay, and E. R. Parker, J. Appl. Phys. 36(12), 3808 (1965).
http://dx.doi.org/10.1063/1.1713952
13.
13. J. J. Hanak, J. Mater. Sci. 5(11), 964 (1970).
http://dx.doi.org/10.1007/BF00558177
14.
14. A. Boettcher and R. Thun, Z. Anorg. Allg. Chem. 283(1–6), 2648 (1956).
http://dx.doi.org/10.1002/zaac.19562830106
15.
15. R. W. Cahn, The Coming of Materials Science (Pergamon Press, Oxford, 2001).
16.
16. D. D. L. Chung, Functional Materials (World Scientific Publishing Company, Singapore, 2010).
17.
17. N. Boehmer, T. Roussiere, M. Kuba, and S. A. Schunk, Comb. Chem. High Throughput Screening 15(2), 123135 (2012).
http://dx.doi.org/10.2174/138620712798868400
18.
18. S. C. Fung and T. C. Ho, USA Patent No. 7390664 (2008).
19.
19. X. D. Xiang, H. Yang, G. Wang, and J. Melman, USA Patent No. 7704923 (2010).
20.
20. C. G. Lugmair, A. Hagemayer, L. Van Erden, A. F. Volpe, D. M. Lowe, and Y. Liu, USA Patent No. 7503515 (2009).
21.
21. B. E. Hayden, C. E. Lee, C. Mormiche, and D. Thompsett, USA Patent No. 7901835 (2011).
22.
22. J. C. Dellamorte, M. A. Barteau, and J. Lauterbach, Surf. Sci. 603(10–12), 17701775 (2009).
http://dx.doi.org/10.1016/j.susc.2008.11.056
23.
23. G. Kirsten and W. F. Maier, Appl. Surf. Sci. 223(1–3), 87101 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00911-5
24.
24. W. F. Maier, K. Stoewe, and S. Sieg, Angew. Chem., Int. Ed. 46(32), 60166067 (2007).
http://dx.doi.org/10.1002/anie.200603675
25.
25. J. M. Newsam and F. Schuth, Biotechnol. Bioeng. 61(4), 203216 (1999).
http://dx.doi.org/10.1002/(SICI)1097-0290(1998)61:4<203::AID-CC3>3.0.CO;2-V
26.
26. D. C. Webster, Macromol. Chem. Phys. 209(3), 237246 (2008).
http://dx.doi.org/10.1002/macp.200700558
27.
27. S. I. Woo, K. W. Kim, H. Y. Cho, K. S. Oh, M. K. Jeon, N. H. Tarte, T. S. Kim, and A. Mahmood, QSAR Comb. Sci. 24(1), 138154 (2005).
http://dx.doi.org/10.1002/qsar.200420061
28.
28. C. G. Simon and S. Lin-Gibson, Adv. Mater. 23(3), 369387 (2011).
http://dx.doi.org/10.1002/adma.201001763
29.
29. J. Genzer, Soft Matter Gradient Surfaces: Methods and Applications (John Wiley and Sons, 2012).
30.
30. X. D. Xiang and I. Takeuchi, Combinatorial Materials Synthesis (Marcel Dekker, Inc., New York, 2003).
31.
31. Z. H. Barber and M. G. Blamire, Mater. Sci. Technol. 24(7), 757770 (2008).
http://dx.doi.org/10.1179/174328408X293612
32.
32. J. N. Cawse, Experimental Design for Combinatorial and High Throughput Materials Development (John Wiley and Sons, New York, 2003).
33.
33. R. A. Potyrailo and E. J. Amis, High throughput analysis : a tool for combinatorial materials science (Kluwer Academic/Plenum Publishers, New York, 2003).
34.
34.See http://www.itrs.net/Links/2011ITRS/Home2011.htm for the International Technology Roadmap for Semiconductors (ITRS), which discusses future materials needs for the microelectronics industry (as well as many other needs) (2011).
35.
35. Z. Fresco, A. Karamcheti, N. Kalyankar, P. Zhang, and D. Srinivas, Solid State Technol. 50(10), 3943 (2007).
36.
36. M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, J. Appl. Phys. 90(5), 20572121 (2001).
http://dx.doi.org/10.1063/1.1385803
37.
37. D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp, Nature 399(6738), 758761 (1999).
http://dx.doi.org/10.1038/21602
38.
38. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89(10), 52435275 (2001).
http://dx.doi.org/10.1063/1.1361065
39.
39. R. B. van Dover, L. D. Schneemeyer, and R. M. Fleming, Nature 392(6672), 162164 (1998).
http://dx.doi.org/10.1038/32381
40.
40. T. Chikyow, K. Hasegawa, T. Tamori, K. Ohmori, N. Umezawa, K. Nakajima, K. Yamada, and H. Koinuma, in 2006 8th International Conference on Solid-State and Integrated Circuit Technology (IEEE Cat. No. 06EX1294) CD-ROM (2006), p. 6.
41.
41. K. Hasegawa, P. Ahmet, N. Okazaki, T. Hasegawa, K. Fujimoto, M. Watanabe, T. Chikyow, and H. Koinuma, Appl. Surf. Sci. 223(1–3), 229232 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00903-6
42.
42. T. Chikyow, K. Ohmori, T. Nagata, N. Umezawa, M. Haemori, M. Yoshitake, T. Hasegawa, H. Koinuma, K. Yamada, and IEEE, in 2008 International Symposium on Vlsi Technology, Systems and Applications (Vlsi-Tsa), Proceedings of Technical Program (2008), pp. 6667.
43.
43. N. Okazaki, P. Ahmet, T. Chikyow, H. Odagawa, Y. Cho, T. Fukumura, M. Kawasaki, M. Ohtani, H. Koinuma, and T. Hasegawa, in Combinatorial and Artificial Intelligence Methods in Materials Science Symposium (Materials Research Society Symposium Proceedings) (2002), Vol. 700, p. 119.
44.
44. N. Okazaki, S. Okazaki, H. Higuma, S. Miyashita, Y. Cho, J. Nishimura, T. Fukumura, M. Kawasaki, M. Murakami, Y. Yamamoto, Y. Matsumoto, H. Koinuma, and T. Hasegawa, Appl. Surf. Sci. 223(1–3), 196199 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00916-4
45.
45. M.-Y. Ho, H. Gong, G. D. Wilk, B. W. Busch, M. L. Green, P. M. Voyles, D. A. Muller, M. Bude, W. H. Lin, A. See, M. E. Loomans, S. K. Lahiri, and P. I. Raisanen, J. Appl. Phys. 93, 1477 (2003).
http://dx.doi.org/10.1063/1.1534381
46.
46. M. Y. Ho, H. Gong, G. D. Wilk, B. W. Busch, M. L. Green, W. H. Lin, A. See, S. K. Lahiri, M. E. Loomans, P. I. Raisanen, and T. Gustafsson, Appl. Phys. Lett. 81(22), 42184220 (2002).
http://dx.doi.org/10.1063/1.1522826
47.
47. D. Kukuruznyak, H. Reichert, K. Ohmori, P. Ahmet, and T. Chikyow, Adv. Mater. 20(20), 38273831 (2008).
http://dx.doi.org/10.1002/adma.200702234
48.
48. D. A. Kukuruznyak, H. Reichert, J. Okasinski, H. Dosch, T. Chikyow, J. Daniels, and V. Honkimaki, Appl. Phys. Lett. 91, 071916 (2007).
http://dx.doi.org/10.1063/1.2771539
49.
49. K. S. Chang, M. L. Green, J. R. Hattrick-Simpers, I. Takeuchi, J. S. Suehle, O. Celik, and S. De Gendt, IEEE Trans. Electron Devices 55(10), 26412647 (2008).
http://dx.doi.org/10.1109/TED.2008.2003091
50.
50. N. D. Bassim, P. K. Schenck, M. Otani, and H. Oguchi, Rev. Sci. Instrum. 78(7), 072203 (2007).
http://dx.doi.org/10.1063/1.2755783
51.
51. P. K. Schenck, N. D. Bassim, M. Otani, H. Oguchi, and M. L. Green, Appl. Surf. Sci. 254(3), 781784 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.05.086
52.
52. J. L. Klamo, P. K. Schenck, P. G. Burke, K. S. Chang, and M. L. Green, J. Appl. Phys. 107(5), 054101 (2010).
http://dx.doi.org/10.1063/1.3294607
53.
53. K. J. Hubbard and D. G. Schlom, J. Mater. Res. 11(11), 27572776 (1996).
http://dx.doi.org/10.1557/JMR.1996.0350
54.
54. K. S. Chang, M. L. Green, P. K. Schenck, I. Levin, and E. Venkatasubramanian, IEEE Trans. Electron Devices 59(12), 32123216 (2012).
http://dx.doi.org/10.1109/TED.2012.2216533
55.
55. S. Toyoda, J. Okabayashi, M. Komatsu, M. Oshima, D. I. Lee, S. Y. Sun, Y. Sun, P. A. Pianetta, D. Kukuruznyak, and T. Chikyow, J. Vac. Sci. Technol. A 28(1), 1619 (2010).
http://dx.doi.org/10.1116/1.3259869
56.
56. J. O. Choo, R. A. Adomaitis, L. Henn-Lecordier, Y. Cai, and G. W. Rubloff, Rev. Sci. Instrum. 76(6), 062217 (2005).
http://dx.doi.org/10.1063/1.1906183
57.
57. G. Hyett, M. A. Green, and I. P. Parkin, J. Am. Chem. Soc. 129(50), 1554115548 (2007).
http://dx.doi.org/10.1021/ja073355s
58.
58. B. Xia, F. Chen, S. A. Campbell, J. T. Roberts, and W. L. Gladfelter, Chem. Vap. Deposition 10(4), 195200 (2004).
http://dx.doi.org/10.1002/cvde.200306287
59.
59. M. Ritala and M. Leskela, in Handbook of Thin Film Materials: Deposition and Processing of Thin Films, edited by H. S. Nalwa (Academic Press, San Diego, 2002), Vol. 1.
60.
60. J. O. Choo, R. A. Adomaitis, G. W. Rubloff, L. Henn-Lecordier, and Y. J. Liu, AIChE J. 51(2), 572584 (2005).
http://dx.doi.org/10.1002/aic.10358
61.
61. Y. Cai, L. Henn-Lecordier, G. W. Rubloff, R. Sreenivasan, J.-O. Choo, and R. A. Adomaitis, J. Vac. Sci. Technol. B 25(4), 12881297 (2007).
http://dx.doi.org/10.1116/1.2753851
62.
62. K. S. Chang, M. L. Green, J. Suehle, E. M. Vogel, H. Xiong, J. Hattrick-Simpers, I. Takeuchi, O. Famodu, K. Ohmori, P. Ahmet, T. Chikyow, P. Majhi, B. H. Lee, and M. Gardner, Appl. Phys. Lett. 89(14), 142108 (2006).
http://dx.doi.org/10.1063/1.2357011
63.
63. P. Ahmet, Y. Z. Yoo, K. Hasegawa, H. Koinuma, and T. Chikyow, Appl. Phys. A: Mater. Sci. Process. 79(4–6), 837839 (2004).
http://dx.doi.org/10.1007/s00339-004-2627-9
64.
64. P. Ahmet, T. Nagata, D. Kukuruznyak, S. Yagyu, Y. Wakayama, M. Yoshitake, and T. Chikyow, Appl. Surf. Sci. 252(7), 24722476 (2006).
http://dx.doi.org/10.1016/j.apsusc.2005.05.078
65.
65. M. L. Green, K. S. Chang, S. DeGendt, T. Schram, and J. Hattrick-Simpers, Microelectron. Eng. 84(9–10), 22092212 (2007).
http://dx.doi.org/10.1016/j.mee.2007.04.128
66.
66. K. Ohmori, T. Chikyow, T. Hosoi, H. Watanabe, K. Nakajima, T. Adachi, A. Ishikawa, Y. Sugita, Y. Nara, Y. Ohji, K. Shiraishi, K. Yamabe, and K. Yamada, 2007 IEEE International Electron Devices Meeting - IEDM 2007, 345348.
67.
67. K. Ohmori, P. Ahmet, K. Shiraishi, K. Yamabe, H. Watanabe, Y. Akasaka, N. Umezawa, K. Nakajima, M. Yoshitake, T. Nakayama, K. S. Chang, K. Kakushima, Y. Nara, M. L. Green, H. Iwai, K. Yamada, and T. Chikyow, in 2006 8th International Conference on Solid-State and Integrated Circuit Technology (IEEE Cat. No. 06EX1294) CD-ROM (2006), p. 4.
68.
68. W. P. Bai, S. H. Bae, H. C. Wen, S. Mathew, L. K. Bera, N. Balasubramanian, N. Yamada, M. F. Li, and D. L. Kwong, IEEE Electron Device Lett. 26(4), 231233 (2005).
http://dx.doi.org/10.1109/LED.2005.844701
69.
69. K. Choi, H. N. Alshareef, H. C. Wen, H. Harris, H. Luan, Y. Senzaki, P. Lysaght, P. Majhi, and B. H. Lee, Appl. Phys. Lett. 89(3), 032113 (2006).
http://dx.doi.org/10.1063/1.2234288
70.
70. C. S. Park, B. J. Cho, and D. L. Kwong, IEEE Electron Device Lett. 24(5), 298300 (2003).
http://dx.doi.org/10.1109/LED.2003.812548
71.
71. Y. S. Suh, G. P. Heuss, J. H. Lee, and V. Misra, IEEE Electron Device Lett. 24(7), 439441 (2003).
http://dx.doi.org/10.1109/led.2003.814009
72.
72. H. N. Alshareef, K. Choi, H. C. Wen, H. Luan, H. Harris, Y. Senzaki, P. Majhi, B. H. Lee, R. Jammy, S. Aguirre-Tostado, B. E. Gnade, and R. M. Wallace, Appl. Phys. Lett. 88(7), 072108 (2006).
http://dx.doi.org/10.1063/1.2174836
73.
73. K. S. Chang, M. L. Green, I. Levin, J. R. Hattrick-Simpers, C. Jaye, D. A. Fischer, I. Takeuchi, and S. De Gendt, Appl. Phys. Lett. 96(19), 192114 (2010).
http://dx.doi.org/10.1063/1.3428788
74.
74. K. S. Chang, M. L. Green, I. Levin, and S. De Gendt, Scripta Materialia 68(5), 333336 (2013).
http://dx.doi.org/10.1016/j.scriptamat.2012.11.006
75.
75. Y. Xu, Ferro-electric Materials and Their Applications (Elsevier, North Holland, 1991).
76.
76. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys. 100(5), 051606 (2006).
http://dx.doi.org/10.1063/1.2336999
77.
77. S. A. Wilson, R. P. J. Jourdain, Q. Zhang, R. A. Dorey, C. R. Bowen, M. Willander, Q. U. Wahab, M. A.-h. Safaa, O. Nur, E. Quandt, C. Johansson, E. Pagounis, M. Kohl, J. Matovic, B. Samel, W. van der Wijngaart, E. W. H. Jager, D. Carlsson, Z. Djinovic, M. Wegener, C. Moldovan, R. Iosub, E. Abad, M. Wendlandt, C. Rusu, and K. Persson, Mater. Sci. Eng., R 56(1–6), 1129 (2007).
http://dx.doi.org/10.1016/j.mser.2007.03.001
78.
78. G. Srinivasan, in Annual Review of Materials Research, edited by D. R. R. M. Z. F. Clarke (2010), Vol. 40, pp. 153178.
79.
79. H. Chang, C. Gao, I. Takeuchi, Y. Yoo, J. Wang, P. G. Schultz, X. D. Xiang, R. P. Sharma, M. Downes, and T. Venkatesan, Appl. Phys. Lett. 72(17), 21852187 (1998).
http://dx.doi.org/10.1063/1.121316
80.
80. H. Y. Chang, K. M. Yu, Y. Dong, and X. D. Xiang, Appl. Phys. Lett. 81(11), 20622064 (2002).
http://dx.doi.org/10.1063/1.1501758
81.
81. C. Gao, B. Hu, I. Takeuchi, K. S. Chang, X. D. Xiang, and G. Wang, Meas. Sci. Technol. 16(1), 248260 (2005).
http://dx.doi.org/10.1088/0957-0233/16/1/033
82.
82. W. Chang, J. S. Horwitz, W.-J. Kim, J. M. Pond, S. W. Kirchoeffer, and D. B. Chrisey, in Materials Research Society Meeting, edited by R. E. Jones, R. W. Schwartz, S. R. Summerfelt, and I. K. Yoo (MRS, Warrendale, PA, 1999), Vol. 541, pp. 699.
83.
83. J. C. Booth, I. Takeuchi, and K. S. Chang, Appl. Phys. Lett. 87(8), 082908 (2005).
http://dx.doi.org/10.1063/1.2033139
84.
84. H. Minami, K. Itaka, P. Ahmet, D. Komiyama, T. Chikyow, M. Lippmaa, and H. Koinuma, Jpn. J. Appl. Phys., Part 2 41(2A), L149L151 (2002).
http://dx.doi.org/10.1143/JJAP.41.L149
85.
85. K. S. Chang, M. Aronova, O. Famodu, I. Takeuchi, S. E. Lofland, J. Hattrick-Simpers, and H. Chang, Appl. Phys. Lett. 79(26), 44114413 (2001).
http://dx.doi.org/10.1063/1.1427438
86.
86. G. He, T. Iijima, and H. Funakubo, J. Ceram. Soc. Jpn. 117(1365), 698702 (2009).
http://dx.doi.org/10.2109/jcersj2.117.698
87.
87. K. W. Kim, M. K. Jeon, K. S. Oh, T. S. Kim, Y. S. Kim, and S. I. Woo, Proc. Natl. Acad. Sci. U.S.A. 104(4), 11341139 (2007).
http://dx.doi.org/10.1073/pnas.0610146104
88.
88. M. Murakami, S. Fujino, S. H. Lim, L. G. Salamanca-Riba, M. Wuttig, I. Takeuchi, B. Varughese, H. Sugaya, T. Hasegawa, and S. E. Lofland, Appl. Phys. Lett. 88(11), 112505 (2006).
http://dx.doi.org/10.1063/1.2184892
89.
89. S. Fujino, M. Murakami, V. Anbusathaiah, S. H. Lim, V. Nagarajan, C. J. Fennie, M. Wuttig, L. Salamanca-Riba, and I. Takeuchi, Appl. Phys. Lett. 92(20), 202904 (2008).
http://dx.doi.org/10.1063/1.2931706
90.
90. G. Catalan and J. F. Scott, Adv. Mater. 21(24), 24632485 (2009).
http://dx.doi.org/10.1002/adma.200802849
91.
91. Y. M. Jin, Y. U. Wang, A. G. Khachaturyan, J. F. Li, and D. Viehland, Phys. Rev. Lett. 91(19), 19760111976014 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.197601
92.
92. D. Kan, L. Palova, V. Anbusathaiah, C. J. Cheng, S. Fujino, V. Nagarajan, K. M. Rabe, and I. Takeuchi, Adv. Funct. Mater. 20(7), 11081115 (2010).
http://dx.doi.org/10.1002/adfm.200902017
93.
93. D. Kan, R. Suchoski, S. Fujino, and I. Takeuchi, Integr. Ferroelectr. 111, 116124 (2009).
http://dx.doi.org/10.1080/10584581003591098
94.
94. J. L. Jones, A. Pramanick, and J. E. Daniels, Appl. Phys. Lett. 93(15), 152904 (2008).
http://dx.doi.org/10.1063/1.2999623
95.
95. J. E. Daniels, W. Jo, J. Roedel, V. Honkimaeki, and J. L. Jones, Acta Mater. 58(6), 21032111 (2010).
http://dx.doi.org/10.1016/j.actamat.2009.11.052
96.
96. W. Hu, X. Tan, and K. Rajan, Appl. Phys. A: Mater. Sci. Process. 99(2), 427431 (2010).
http://dx.doi.org/10.1007/s00339-010-5574-7
97.
97. C. A. F. Vaz, J. Hoffman, C. H. Anh, and R. Ramesh, Adv. Mater. 22(26–27), 29002918 (2010).
http://dx.doi.org/10.1002/adma.200904326
98.
98. M. Murakami, K. S. Chang, M. A. Aronova, C. L. Lin, M. H. Yu, J. H. Simpers, M. Wuttig, I. Takeuchi, C. Gao, B. Hu, S. E. Lofland, L. A. Knauss, and L. A. Bendersky, Appl. Phys. Lett. 87(11), 112901 (2005).
http://dx.doi.org/10.1063/1.2041825
99.
99. K. S. Chang, M. A. Aronova, C. L. Lin, M. Murakami, M. H. Yu, J. Hattrick-Simpers, O. O. Famodu, S. Y. Lee, R. Ramesh, M. Wuttig, I. Takeuchi, C. Gao, and L. A. Bendersky, Appl. Phys. Lett. 84(16), 30913093 (2004).
http://dx.doi.org/10.1063/1.1699474
100.
100. C. Gao, B. Hu, X. F. Li, C. H. Liu, M. Murakami, K. S. Chang, C. J. Long, M. Wuttig, and I. Takeuchi, Appl. Phys. Lett. 87(15), 153505 (2005).
http://dx.doi.org/10.1063/1.2093925
101.
101. N. M. Aimon, D. H. Kim, H. K. Choi, and C. A. Ross, Appl. Phys. Lett. 100(9), 092901 (2012).
http://dx.doi.org/10.1063/1.3690957
102.
102. J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, Cambridge, UK, 2010).
103.
103. M. H. Yu, J. Hattrick-Simpers, I. Takeuchi, J. Li, Z. L. Wang, J. P. Liu, S. E. Lofland, S. Tyagi, J. W. Freeland, D. Giubertoni, M. Bersani, and M. Anderle, J. Appl. Phys. 98(6), 063908 (2005).
http://dx.doi.org/10.1063/1.2042529
104.
104. T. Fukumura, M. Ohtani, M. Kawasaki, Y. Okimoto, T. Kageyama, T. Koida, T. Hasegawa, Y. Tokura, and H. Koinuma, Appl. Phys. Lett. 77(21), 34263428 (2000).
http://dx.doi.org/10.1063/1.1326847
105.
105. Y. K. Yoo and F. Tsui, MRS Bull. 27(4), 316323 (2002).
http://dx.doi.org/10.1557/mrs2002.99
106.
106. Y. K. Yoo, T. Ohnishi, G. Wang, F. Duewer, X. D. Xiang, Y. S. Chu, D. C. Mancini, Y. Q. Li, and R. C. O'Handley, Intermetallics 9(7), 541545 (2001).
http://dx.doi.org/10.1016/S0966-9795(01)00030-9
107.
107. O. O. Famodu, J. Hattrick-Simpers, M. Aronova, K. S. Chang, M. Murakami, M. Wuttig, T. Okazaki, Y. Furuya, L. A. Knauss, L. A. Bendersky, F. S. Biancaniello, and I. Takeuchi, Mater. Trans. 45(2), 173177 (2004).
http://dx.doi.org/10.2320/matertrans.45.173
108.
108. I. Takeuchi, O. O. Famodu, J. C. Read, M. A. Aronova, K. S. Chang, C. Craciunescu, S. E. Lofland, M. Wuttig, F. C. Wellstood, L. Knauss, and A. Orozco, Nature Mater. 2(3), 180184 (2003).
http://dx.doi.org/10.1038/nmat829
109.
109. M. Aronova, University of Maryland, 2000.
110.
110. Y. Matsumoto, H. Koinuma, T. Hasegawa, I. Takeuchi, F. Tsui, and Y. K. Yoo, MRS Bull. 28(10), 734739 (2003).
http://dx.doi.org/10.1557/mrs2003.215
111.
111. R. Takahashi, H. Kubota, M. Murakami, Y. Yamamoto, Y. Matsumoto, and H. Koinuma, J. Comb. Chem. 6(1), 5053 (2004).
http://dx.doi.org/10.1021/cc030038i
112.
112. Y. Yamamoto, R. Takahashi, Y. Matsumoto, T. Chikyow, and H. Koinuma, Appl. Surf. Sci. 223(1–3), 913 (2004).
http://dx.doi.org/10.1016/j.apsusc.2003.10.025
113.
113. Y. K. Yoo, F. Duewer, T. Fukumura, H. T. Yang, D. Yi, S. Liu, H. Y. Chang, T. Hasegawa, M. Kawasaki, H. Koinuma, and X. Xiang, Phys. Rev. B 63(22), 224421 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.224421
114.
114. R. Maezono, S. Ishihara, and N. Nagaosa, Phys. Rev. B 58(17), 1158311596 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.11583
115.
115. M. J. Turchinskaya, L. A. Bendersky, A. J. Shapiro, K. S. Chang, I. Takeuchi, and A. L. Roytburd, J. Mater. Res. 19(9), 25462548 (2004).
http://dx.doi.org/10.1557/JMR.2004.0327
116.
116. Y. Iwasaki, T. Fukumura, H. Kimura, A. Ohkubo, T. Hasegawa, Y. Hirose, T. Makino, K. Ueno, and M. Kawasaki, Appl. Phys. Express 3(10), 103001 (2010).
http://dx.doi.org/10.1143/APEX.3.103001
117.
117. R. A. Dunlap, J. M. Gaudet, and T. D. Hatchard, J. Magn. Magn. Mater. 320(21), 27302736 (2008).
http://dx.doi.org/10.1016/j.jmmm.2008.06.002
118.
118. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science 291(5505), 854856 (2001).
http://dx.doi.org/10.1126/science.1056186
119.
119. P. Murugan, R. V. Belosludov, H. Mizuseki, T. Nishimatsu, T. Fukumura, M. Kawasaki, and Y. Kawazoe, Meas. Sci. Technol. 16(1), 242247 (2005).
http://dx.doi.org/10.1088/0957-0233/16/1/032
120.
120. Y. Yamada, T. Fukumura, M. Ikeda, M. Ohtani, H. Toyosaki, A. Ohtomo, F. Matsukura, H. Ohno, and M. Kawasaki, J. Supercond. 18(1), 109113 (2005).
http://dx.doi.org/10.1007/s10948-005-2160-x
121.
121. J. J. Hanak and J. I. Gittleman, AIP Conf. Proc. 10, 961965 (1972).
122.
122. R. B. Vandover, M. Hong, E. M. Gyorgy, J. F. Dillon, and S. D. Albiston, J. Appl. Phys. 57(8), 38973899 (1985).
http://dx.doi.org/10.1063/1.334908
123.
123. D. Priyadarshini, P. Kondratyuk, J. B. Miller, and A. J. Gellman, J. Vac. Sci. Technol. A 30(1), 011503 (2012).
http://dx.doi.org/10.1116/1.3664078
124.
124. Y. K. Yoo, Q. Z. Xue, Y. S. Chu, S. F. Xu, U. Hangen, H. C. Lee, W. Stein, and X. D. Xiang, Intermetallics 14(3), 241247 (2006).
http://dx.doi.org/10.1016/j.intermet.2005.05.013
125.
125. R. M. Bozorth, Ferromagnetism (Wiley-IEEE Press, New Jersey, 1993).
126.
126. R. A. Degroot, F. M. Mueller, P. G. Vanengen, and K. H. J. Buschow, Phys. Rev. Lett. 50(25), 20242027 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.2024
127.
127. I. Takeuchi, O. O. Famodu, M. Aronova, and J. Hattrick-Simpers, in Proc. of the Eighth Intl. Symp. on Sputtering & Plasma Proc. (Japan, 2005), p. 201.
128.
128. V. A. Chernenko, E. Cesari, V. V. Kokorin, and I. N. Vitenko, Scr. Metall. Mater. 33(8), 12391244 (1995).
http://dx.doi.org/10.1016/0956-716X(95)00370-B
129.
129. S. J. Murray, M. Marioni, P. G. Tello, S. M. Allen, and R. C. O'Handley, J. Magn. Magn. Mater. 226, 945947 (2001).
http://dx.doi.org/10.1016/S0304-8853(00)00611-9
130.
130. M. Wuttig, L. H. Liu, K. Tsuchiya, and R. D. James, J. Appl. Phys. 87(9), 47074711 (2000).
http://dx.doi.org/10.1063/1.373135
131.
131. C. Wedel and K. Itagaki, J. Phase Equilib. 22(3), 324330 (2001).
http://dx.doi.org/10.1361/105497101770338833
132.
132. F. Tsui and P. A. Ryan, Appl. Surf. Sci. 189(3–4), 333338 (2002).
http://dx.doi.org/10.1016/S0169-4332(01)01020-0
133.
133. P. K. Muduli, W. C. Rice, L. He, B. A. Collins, Y. S. Chu, and F. Tsui, J. Phys. Condens. Matter 21(29), 296005 (2009).
http://dx.doi.org/10.1088/0953-8984/21/29/296005
134.
134. L. He, B. A. Collins, F. Tsui, and Y. S. Chu, J. Vac. Sci. Technol. B 29(3), 03C124 (2011).
http://dx.doi.org/10.1116/1.3567419
135.
135. J.-C. Zhao, M. R. Jackson, L. A. Peluso, and L. N. Brewer, MRS Bull. 27(4), 324329 (2002).
http://dx.doi.org/10.1557/mrs2002.100
136.
136. J. C. Zhao, Prog. Mater. Sci. 51(5), 557631 (2006).
http://dx.doi.org/10.1016/j.pmatsci.2005.10.001
137.
137. J. C. Zhao, J. Mater. Sci. 39(12), 39133925 (2004).
http://dx.doi.org/10.1023/B:JMSC.0000031472.25241.c5
138.
138. S. Huxtable, D. G. Cahill, V. Fauconnier, J. O. White, and J. C. Zhao, Nature Mater. 3(5), 298301 (2004).
http://dx.doi.org/10.1038/nmat1114
139.
139. X. Zheng, D. G. Cahill, and J.-C. Zhao, Acta Mater. 58(4), 12361241 (2010).
http://dx.doi.org/10.1016/j.actamat.2009.10.024
140.
140. J.-C. Zhao, X. Zheng, and D. G. Cahill, JOM 63(3), 4044 (2011).
http://dx.doi.org/10.1007/s11837-011-0044-z
141.
141. J.-C. Zhao, in Methods for Phase Diagram Determination (Elsevier, Amsterdam, 2007), pp. 246272.
142.
142. J. Unguris, R. J. Celotta, and D. T. Pierce, Phys. Rev. Lett. 67(1), 140143 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.140
143.
143. R. J. Celotta, D. T. Pierce, and J. Unguris, MRS Bull. 20(10), 3033 (1995).
144.
144. K. Yosida, Phys. Rev. 106(5), 893898 (1957).
http://dx.doi.org/10.1103/PhysRev.106.893
145.
145. M. A. Ruderman and C. Kittel, Phys. Rev. 96(1), 99102 (1954).
http://dx.doi.org/10.1103/PhysRev.96.99
146.
146. M. J. Kramer, R. W. McCallum, A. Anderson, and S. Constantinides, J. Met. 64(7), 752763 (2012).
147.
147. T. R. Gao, Y. Q. Wu, S. Fackler, I. Kierzewski, Y. Zhang, A. Mehta, M. J. Kramer, and I. Takeuchi, Appl. Phys. Lett. 102(2), 022419 (2013).
http://dx.doi.org/10.1063/1.4775581
148.
148. E. F. Kneller and R. Hawig, IEEE Trans. Magn. 27(4), 35883600 (1991).
http://dx.doi.org/10.1109/20.102931
149.
149. E. E. Fullerton, J. S. Jiang, and S. D. Bader, J. Magn. Magn. Mater. 200(1–3), 392404 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00376-5
150.
150. E. E. Fullerton, J. S. Jiang, M. Grimsditch, C. H. Sowers, and S. D. Bader, Phys. Rev. B 58(18), 1219312200 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.12193
151.
151. A. J. Zambano, H. Oguchi, I. Takeuchi, Y. Choi, J. S. Jiang, J. P. Liu, S. E. Lofland, D. Josell, and L. A. Bendersky, Phys. Rev. B 75(14), 144429 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.144429
152.
152. A. G. Khachaturyan and D. Viehland, Metall. Mater. Trans. A 38(13), 23172328 (2007).
http://dx.doi.org/10.1007/s11661-007-9252-0
153.
153. J. R. Hattrick-Simpers, D. Hunter, C. M. Craciunescu, K. S. Jang, M. Murakami, J. Cullen, M. Wuttig, I. Takeuchi, S. E. Lofland, L. Benderksy, N. Woo, R. B. Van Dover, T. Takahashi, and Y. Furuya, Appl. Phys. Lett. 93(10), 102507 (2008).
http://dx.doi.org/10.1063/1.2980034
154.
154. D. Hunter, W. Osborn, K. Wang, N. Kazantseva, J. Hattrick-Simpers, R. Suchoski, R. Takahashi, M. L. Young, A. Mehta, L. A. Bendersky, S. E. Lofland, M. Wuttig, and I. Takeuchi, Nat. Commun. 2, 27 (2011).
http://dx.doi.org/10.1038/ncomms1529
155.
155. J. R. Hattrick-Simpers, C. Jun, M. Murakami, A. Orozco, L. Knauss, R. J. Booth, E. W. Greve, S. E. Lofland, M. Wuttig, and I. Takeuchi, Appl. Surf. Sci. 254(3), 734737 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.07.104
156.
156. J. G. Bednorz and K. A. Muller, Z. Phys. B 64(2), 189193 (1986).
http://dx.doi.org/10.1007/BF01303701
157.
157. J. A. Clayhold, B. M. Kerns, M. D. Schroer, D. W. Rench, G. Logvenov, A. T. Bollinger, and I. Bozovic, Rev. Sci. Instrum. 79(3), 033908 (2008).
http://dx.doi.org/10.1063/1.2901622
158.
158. K. C. Hewitt, P. A. Casey, R. J. Sanderson, M. A. White, and R. Sun, Rev. Sci. Instrum. 76(9), 093906 (2005).
http://dx.doi.org/10.1063/1.2037947
159.
159. B. Knigge, A. Hoffmann, D. Lederman, D. C. Vier, S. Schultz, and I. K. Schuller, J. Appl. Phys. 81(5), 22912295 (1997).
http://dx.doi.org/10.1063/1.364281
160.
160. D. Lederman, D. C. Vier, D. Mendoza, J. Santamaria, S. Schultz, and I. K. Schuller, Appl. Phys. Lett. 66(26), 36773679 (1995).
http://dx.doi.org/10.1063/1.114138
161.
161. G. Logvenov, I. Sveklo, and I. Bozovic, Phys. C 460, 416419 (2007).
http://dx.doi.org/10.1016/j.physc.2007.03.408
162.
162. M. Saadat, A. E. George, and K. C. Hewitt, Phys. C 470, S59S61 (2010).
http://dx.doi.org/10.1016/j.physc.2009.11.157
163.
163. S. Pessaud, F. Gervais, C. Champeaux, P. Marchet, A. Catherinot, M. Licheron, J. L. Longuet, and F. Ravel, Mater. Sci. Eng., B 60(3), 205211 (1999).
http://dx.doi.org/10.1016/S0921-5107(99)00041-0
164.
164. J. Paglione and R. L. Greene, Nat. Phys. 6(9), 645658 (2010).
http://dx.doi.org/10.1038/nphys1759
165.
165. W. Wong-Ng, M. Otani, I. Levin, P. Schenck, Z. Yang, G. Liu, L. P. Cook, R. Feenstra, W. Zhang, and M. W. Rupich, Appl. Phys. Lett. 94(17), 171910 (2009).
http://dx.doi.org/10.1063/1.3127222
166.
166. J. Apte and Arasteh, D. , 2011.
167.
167. K. M. Brace, B. E. Hayden, A. E. Russell, and J. R. Owen, Adv. Mater. 18(24), 3253 (2006).
http://dx.doi.org/10.1002/adma.200600786
168.
168. M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky and J. Margot, Appl. Phys. Lett. 85(11), 19581960 (2004).
http://dx.doi.org/10.1063/1.1788883
169.
169. P. Jin and S. Tanemura, Jpn. J. Appl. Phys., Part 1 34(5A), 24592460 (1995).
http://dx.doi.org/10.1143/JJAP.34.2459
170.
170. W. Burkhardt, T. Christmann, S. Franke, W. Kriegseis, D. Meister, B. K. Meyer, W. Niessner, D. Schalch, and A. Scharmann, Thin Solid Films 402(1–2), 226231 (2002).
http://dx.doi.org/10.1016/S0040-6090(01)01603-0
171.
171. N. D. Bassim, P. K. Schenck, E. U. Donev, E. J. Heilweil, E. Cockayne, M. L. Green, and L. C. Feldman, Appl. Surf. Sci. 254(3), 785788 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.05.089
172.
172. K. Fujimoto, K. Onoda, M. Sato, H. Matsuo, T. Yamaguchi, and S. Ito, Mater. Sci. Eng., A 475(1–2), 5256 (2008).
http://dx.doi.org/10.1016/j.msea.2007.01.165
173.
173. X. D. Sun and X. D. Xiang, Appl. Phys. Lett. 72(5), 525527 (1998).
http://dx.doi.org/10.1063/1.120809
174.
174. J. S. Wang, Y. Yoo, C. Gao, I. Takeuchi, X. D. Sun, H. Y. Chang, X. D. Xiang, and P. G. Schultz, Science 279(5357), 17121714 (1998).
http://dx.doi.org/10.1126/science.279.5357.1712
175.
175. X. D. Sun, K. A. Wang, Y. Yoo, W. G. Wallace-Freedman, C. Gao, X. D. Xiang, and P. G. Schultz, Adv. Mater. 9(13), 1046 (1997).
http://dx.doi.org/10.1002/adma.19970091311
176.
176. E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, and X. D. Wu, Science 279(5352), 837839 (1998).
http://dx.doi.org/10.1126/science.279.5352.837
177.
177. X. D. Sun, C. Gao, J. S. Wang, and X. D. Xiang, Appl. Phys. Lett. 70(25), 33533355 (1997).
http://dx.doi.org/10.1063/1.119168
178.
178. E. Danielson, J. H. Golden, E. W. McFarland, C. M. Reaves, W. H. Weinberg, and X. D. Wu, Nature 389(6654), 944948 (1997).
http://dx.doi.org/10.1038/40099
179.
179. X.-D. Sun, P. G. Schultz, C. Gao, J. Wang, and X.-D. Xiang, Appl. Phys. Lett. 70(25), 33533355 (1997).
http://dx.doi.org/10.1063/1.119168
180.
180. E. D. Isaacs, M. Marcus, G. Aeppli, X. D. Xiang, X. D. Sun, P. Schultz, H. K. Kao, G. S. Cargill, and R. Haushalter, Appl. Phys. Lett. 73(13), 18201822 (1998).
http://dx.doi.org/10.1063/1.122293
181.
181. Y. Deng, J. D. Fowlkes, P. D. Rack, and J. M. Fitz-Gerald, Opt. Mater. 29(2–3), 183191 (2006).
http://dx.doi.org/10.1016/j.optmat.2005.08.024
182.
182. Y. Deng, Y. F. Guan, and P. D. Rack, Thin Solid Films 515(4), 17211726 (2006).
http://dx.doi.org/10.1016/j.tsf.2006.06.012
183.
183. A. Stein, S. W. Keller, and T. E. Mallouk, Science 259(5101), 15581564 (1993).
http://dx.doi.org/10.1126/science.259.5101.1558
184.
184. V. Z. Mordkovich, H. Hayashi, M. Haemori, T. Fukumura, and M. Kawasaki, Adv. Funct. Mater. 13(7), 519524 (2003).
http://dx.doi.org/10.1002/adfm.200304335
185.
185. T. X. Sun and G. E. Jabbour, MRS Bull. 27(4), 309315 (2002).
http://dx.doi.org/10.1557/mrs2002.98
186.
186. Y. Yoshioka and G. E. Jabbour, Abstr. Pap. -Am. Chem. Soc. 227, U561U562 (2004).
187.
187. Y. Yoshioka, P. D. Calvert, and G. E. Jabbour, Macromol. Rapid Commun. 26(4), 238246 (2005).
http://dx.doi.org/10.1002/marc.200400527
188.
188. J. Perrière, E. Millon, and V. Craciun, in Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials, edited by R. Eason (John Wiley & Sons, Inc., 2007).
189.
189. Y. Matsumoto, M. Murakami, Z. W. Jin, A. Ohtomo, M. Lippmaa, M. Kawasaki, and H. Koinuma, Jpn. J. Appl. Phys., Part 2 38(6AB), L603L605 (1999).
http://dx.doi.org/10.1143/JJAP.38.L603
190.
190. I. Takeuchi, W. Yang, K. S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, and L. A. Bendersky, J. Appl. Phys. 95(7), 38403840 (2004).
http://dx.doi.org/10.1063/1.1688815
191.
191. I. Takeuchi, W. Yang, K. S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, and L. A. Bendersky, J. Appl. Phys. 94(11), 73367340 (2003).
http://dx.doi.org/10.1063/1.1623923
192.
192. E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, MRS Bull. 32(3), 242247 (2007).
http://dx.doi.org/10.1557/mrs2007.29
193.
193. Q. Wang, J. Perkins, H. M. Branz, J. Alleman, C. Duncan, and D. Ginley, Appl. Surf. Sci. 189(3–4), 271276 (2002).
http://dx.doi.org/10.1016/S0169-4332(01)01024-8
194.
194. L. P. Yu and A. Zunger, Phys. Rev. Lett. 108(6), 068701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.068701
195.
195. T. R. Paudel, A. Zakutayev, S. Lany, M. d'Avezac, and A. Zunger, Adv. Funct. Mater. 21(23), 44934501 (2011).
http://dx.doi.org/10.1002/adfm.201101469
196.
196. A. Zakutayev, T. R. Paudel, P. F. Ndione, J. D. Perkins, S. Lany, A. Zunger, and D. S. Ginley, Phys. Rev. B 85(8), 085204 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.085204
197.
197. S. J. Henderson, J. A. Armstrong, A. L. Hector, and M. T. Weller, J. Mater. Chem. 15(15), 15281536 (2005).
http://dx.doi.org/10.1039/b415808c
198.
198. J. D. Perkins, M. P. Taylor, M. van Hest, C. W. Teplin, J. L. Alleman, M. S. Dabney, L. M. Gedvilas, B. M. Keyes, B. To, D. W. Readey, A. E. Delahoy, S. Guo, D. S. Ginley, and IEEE, in Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference—2005 (IEEE, New York, 2005), pp. 145147.
199.
199. M. P. Taylor, D. W. Readey, C. W. Teplin, M. van Hest, J. L. Alleman, M. S. Dabney, L. M. Gedvilas, B. M. Keyes, B. To, P. A. Parilla, J. D. Perkins, and D. S. Ginley, Macromol. Rapid Commun. 25(1), 344347 (2004).
http://dx.doi.org/10.1002/marc.200300231
200.
200. M. van Hest, M. S. Dabney, J. D. Perkins, D. S. Ginley, and M. P. Taylor, Appl. Phys. Lett. 87(3), 032111 (2005).
http://dx.doi.org/10.1063/1.1995957
201.
201. M. P. Taylor, D. W. Readey, C. W. Teplin, M. van Hest, J. L. Alleman, M. S. Dabney, L. M. Gedvilas, B. M. Keyes, B. To, J. D. Perkins, and D. S. Ginley, Meas. Sci. Technol. 16(1), 9094 (2005).
http://dx.doi.org/10.1088/0957-0233/16/1/012
202.
202. G. S. Heo, Y. Matsumoto, I. G. Gim, J. W. Park, G. Y. Kim, and T. W. Kim, Jpn. J. Appl. Phys. 49(3), 035801 (2010).
http://dx.doi.org/10.1143/JJAP.49.035801
203.
203. T. Koida and M. Kondo, J. Appl. Phys. 101(6), 063713 (2007).
http://dx.doi.org/10.1063/1.2712161
204.
204. D. W. Sheel, H. M. Yates, P. Evans, U. Dagkaldiran, A. Gordijn, F. Finger, Z. Remes, and M. Vanecek, Thin Solid Films 517(10), 30613065 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.11.121
205.
205. Z. Remes, M. Vanecek, H. M. Yates, P. Evans, and D. W. Sheel, Thin Solid Films 517(23), 62876289 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.02.109
206.
206. H. M. Yates, P. Evans, D. W. Sheel, Z. Remes, and M. Vanecek, Thin Solid Films 519(4), 13341340 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.09.037
207.
207. U. Dagkaldiran, A. Gordijn, F. Finger, H. M. Yates, P. Evans, D. W. Sheel, Z. Remes, and M. Vanecek, Mater. Sci. Eng., B 159–160, 69 (2009).
http://dx.doi.org/10.1016/j.mseb.2008.10.037
208.
208. J. D. Perkins, J. A. del Cueto, J. L. Alleman, C. Warmsingh, B. M. Keyes, L. M. Gedvilas, P. A. Parilla, B. To, D. W. Readey, and D. S. Ginley, Thin Solid Films 411(1), 152160 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00205-5
209.
209. A. Kurz and M. A. Aegerter, J. Sol-Gel Sci. Technol. 31(1–3), 267271 (2004).
http://dx.doi.org/10.1023/B:JSST.0000048001.35242.4b
210.
210. C. W. Gorrie, M. Reese, J. D. Perkins, M. van Hest, J. L. Alleman, M. S. Dabney, B. To, D. S. Ginley, and J. J. Berry, in Pvsc: 2008 33rd IEEE Photovoltaic Specialists Conference (IEEE, New York, 2008), Vol. 1–4, pp. 635637.
211.
211. K. Jung, W. K. Choi, S. J. Yoon, H. J. Kim, and J. W. Choi, Appl. Surf. Sci. 256(21), 62196223 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.03.144
212.
212. I. T. Jolliffe, Principal Component Analysis, 2nd ed. (Springer verlag, New York, 2002).
213.
213. D. A. Kukuruznyak, P. Ahmet, T. Chikyow, A. Yamamoto, and F. S. Ohuchi, Appl. Surf. Sci. 252(10), 38283832 (2006).
http://dx.doi.org/10.1016/j.apsusc.2005.05.073
214.
214. T. L. Chen, Y. Furubayashi, Y. Hirose, T. Hitosugi, T. Shimada, and T. Hasegawa, J. Phys. D: Appl. Phys. 40(19), 59615964 (2007).
http://dx.doi.org/10.1088/0022-3727/40/19/026
215.
215. X. A. Li, T. A. Gessert, and T. Coutts, Appl. Surf. Sci. 223(1–3), 138143 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00909-7
216.
216. S. Raoux and M. Wuttig, Phase Change Materials: Science and Applications (Springer-Verlag, 2008).
217.
217. J. Feinleib, J. Deneufvi, S. C. Moss, and S. Ovshinsky, Appl. Phys. Lett. 18(6), 254 (1971).
http://dx.doi.org/10.1063/1.1653653
218.
218. M. Wuttig and N. Yamada, Nature Mater. 6(11), 824832 (2007).
http://dx.doi.org/10.1038/nmat2009
219.
219. D. Ielmini and A. L. Lacaita, Mater. Today 14(12), 600607 (2011).
http://dx.doi.org/10.1016/S1369-7021(11)70301-7
220.
220. R. G. Neale, D. L. Nelson, and G. E. Moore, Electronics 43(20), 56 (1970).
221.
221. S. Ovshinsky, Phys. Rev. Lett. 21(20), 1450 (1968).
http://dx.doi.org/10.1103/PhysRevLett.21.1450
222.
222. N. Yamada, MRS Bull. 21(9), 4850 (1996).
223.
223. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, J. Appl. Phys. 69(5), 28492856 (1991).
http://dx.doi.org/10.1063/1.348620
224.
224. S. Kyrsta, R. Cremer, D. Neuschutz, M. Laurenzis, P. H. Bolivar, and H. Kurz, Thin Solid Films 398, 379384 (2001).
http://dx.doi.org/10.1016/s0040-6090(01)01384-0
225.
225. M. Laurenzis, A. Heinrici, P. H. Bolivar, H. Kurz, S. Krysta, and J. M. Schneider, IEE Proc. Sci. Meas. Technol. 151(6), 394397 (2004).
http://dx.doi.org/10.1049/ip-smt:20041082
226.
226. M. G. Kanatzidis, S. D. Mahanti, and T. P. Hogan, Chemistry, Physics, and Materials Science of Thermoelectric Materials: Beyond Bismuth Telluride (Plenum Publishers, New York, NY, 2003).
227.
227. D. M. Rowe, in CRC Handbooks (CRC Press, Boca Raton, FL, 1995).
228.
228. H. Minami, K. Itaka, H. Kawaji, Q. J. Wang, H. Koinuma, and M. Lippmaa, Appl. Surf. Sci. 197, 442447 (2002).
http://dx.doi.org/10.1016/S0169-4332(02)00359-8
229.
229. M. Otani, N. D. Lowhorn, P. K. Schenck, W. Wong-Ng, M. L. Green, K. Itaka, and H. Koinuma, Appl. Phys. Lett. 91, 132102 (2007).
http://dx.doi.org/10.1063/1.2789289
230.
230. M. Otani, E. L. Thomas, W. Wong-Ng, P. K. Schenck, K. S. Chang, N. D. Lowhorn, M. L. Green, and H. Ohguchi, Jpn. J. Appl. Phys. 48(5), 05EB02 (2009).
http://dx.doi.org/10.1143/JJAP.48.05EB02
231.
231. R. Funahashi, S. Urata, and M. Kitawaki, Appl. Surf. Sci. 223(1–3), 4448 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00899-7
232.
232. R. Funahashi, M. Mikami, S. Urata, M. Kitawaki, T. Kouuchi, and K. Mizuno, Meas. Sci. Technol. 16(1), 7080 (2005).
http://dx.doi.org/10.1088/0957-0233/16/1/010
233.
233. M. Watanabe, T. Kita, T. Fukumura, A. Ohtomo, K. Ueno, and M. Kawasaki, J. Comb. Chem. 10(2), 175178 (2008).
http://dx.doi.org/10.1021/cc700094a
234.
234. A. Yamamoto, H. Obara, and K. Ueno, in MRS Fall Meeting, edited by T. P. Hogan, J. Yang, R. Funahashi and T. Tritt (Materials Research Society, Boston, 2007), Vol. 1044, pp. 273278.
235.
235. X. Zheng, D. G. Cahill, P. Krasnochtchekov, R. S. Averback, and J. C. Zhao, Acta Mater. 55, 51775185 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.05.037
236.
236. R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, J. Mater. Chem. 21(27), 99389954 (2011).
http://dx.doi.org/10.1039/c0jm04225k
237.
237. W.-J. Zhang, J. Power Sources 196(1), 1324 (2011).
http://dx.doi.org/10.1016/j.jpowsour.2010.07.020
238.
238. M. D. Fleischauer, T. D. Hatchard, A. Bonakdarpour, and J. R. Dahn, Meas. Sci. Technol. 16(1), 212220 (2005).
http://dx.doi.org/10.1088/0957-0233/16/1/028
239.
239. M. D. Fleischauer, J. M. Topple, and J. R. Dahn, Electrochem. Solid State Lett. 8(2), A137A140 (2005).
http://dx.doi.org/10.1149/1.1850395
240.
240. E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin, and T. E. Mallouk, Science 280(5370), 17351737 (1998).
http://dx.doi.org/10.1126/science.280.5370.1735
241.
241. K. Fujimoto, T. Kato, S. Ito, S. Inoue, and M. Watanabe, Solid State Ion. 177(26–32), 26392642 (2006).
http://dx.doi.org/10.1016/j.ssi.2006.04.043
242.
242. M. D. Fleischauer, T. D. Hatchard, G. P. Rockwell, J. M. Topple, S. Trussler, S. K. Jericho, M. H. Jericho, and J. R. Dahn, J. Electrochem. Soc. 150(11), A1465A1469 (2003).
http://dx.doi.org/10.1149/1.1613670
243.
243. M. G. Sullivan, H. Utomo, P. J. Fagan, and M. D. Ward, Anal. Chem. 71(19), 43694375 (1999).
http://dx.doi.org/10.1021/ac990331y
244.
244. M. D. Fleischauer and J. R. Dahn, J. Electrochem. Soc. 151(8), A1216A1221 (2004).
http://dx.doi.org/10.1149/1.1768544
245.
245. K. Takada, K. Fujimoto, T. Sasaki, and M. Watanabe, Appl. Surf. Sci. 223(1–3), 210213 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00924-3
246.
246. J. F. Whitacre, W. C. West, and B. V. Ratnakumar, J. Electrochem. Soc. 150(12), A1676A1683 (2003).
http://dx.doi.org/10.1149/1.1622957
247.
247. A. D. Spong, G. Vitins, S. Guerin, B. E. Hayden, A. E. Russell, and J. R. Owen, J. Power Sources 119, 778783 (2003).
http://dx.doi.org/10.1016/s0378-7753(03)00252-0
248.
248. K. Suzuki, Y. Kuroiwa, S. Takami, M. Kubo, and A. Miyamoto, Appl. Surf. Sci. 189(3–4), 313318 (2002).
http://dx.doi.org/10.1016/S0169-4332(01)01009-1
249.
249. K. Fujimoto, K. Onoda, and S. Ito, Appl. Surf. Sci. 254(3), 704708 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.04.092
250.
250. K. Fujimoto, K. Takada, T. Sasaki, and M. Watanabe, Appl. Surf. Sci. 223(1–3), 4953 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00897-3
251.
251. G. Ceder, MRS Bull. 35(9), 693701 (2010).
http://dx.doi.org/10.1557/mrs2010.681
252.
252. M. K. Aydinol, A. F. Kohan, G. Ceder, K. Cho, and J. Joannopoulos, Phys. Rev. B 56(3), 13541365 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.1354
253.
253. G. Ceder, Y. M. Chiang, D. R. Sadoway, M. K. Aydinol, Y. I. Jang, and B. Huang, Nature 392(6677), 694696 (1998).
http://dx.doi.org/10.1038/33647
254.
254. K. S. Kang, Y. S. Meng, J. Breger, C. P. Grey, and G. Ceder, Science 311(5763), 977980 (2006).
http://dx.doi.org/10.1126/science.1122152
255.
255. M. Roberts and J. Owen, ACS Comb. Sci. 13(2), 126134 (2011).
http://dx.doi.org/10.1021/co100028m
256.
256. M. R. Roberts, G. Vitins, G. Denuault, and J. R. Owen, J. Electrochem. Soc. 157(4), A381A386 (2010).
http://dx.doi.org/10.1149/1.3294564
257.
257. T. D. Hatchard, J. R. Dahn, S. Trussler, M. Fleischauer, A. Bonakdarpour, J. R. Mueller-Neuhaus, and K. C. Hewitt, Thin Solid Films 443(1–2), 144150 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)01093-9
258.
258. K. Dini and R. A. Dunlap, J. Phys. F: Met. Phys. 16(12), 19171925 (1986).
http://dx.doi.org/10.1088/0305-4608/16/12/006
259.
259. A. Inoue, Y. Bizen, H. M. Kimura, T. Masumoto, and M. Sakamoto, J. Mater. Sci. 23(10), 36403647 (1988).
http://dx.doi.org/10.1007/BF00540507
260.
260. Z. B. Sun, X. D. Wang, X. P. Li, M. S. Zhao, Y. Li, Y. M. Zhu, and X. P. Song, J. Power Sources 182(1), 353358 (2008).
http://dx.doi.org/10.1016/j.jpowsour.2008.03.053
261.
261. A. D. W. Todd, R. E. Mar, and J. R. Dahn, J. Electrochem. Soc. 154(6), A597A604 (2007).
http://dx.doi.org/10.1149/1.2724741
262.
262. A. D. W. Todd, R. E. Mar, and J. R. Dahn, J. Electrochem. Soc. 153(10), A1998A2005 (2006).
http://dx.doi.org/10.1149/1.2257985
263.
263. J. Hassoun, G. Mulas, S. Panero, and B. Scrosati, Electrochem. Commun. 9(8), 20752081 (2007).
http://dx.doi.org/10.1016/j.elecom.2007.05.033
264.
264. Z. X. Chen, J. F. Qian, X. P. Ai, Y. H. Cao, and H. X. Yang, J. Power Sources 189(1), 730732 (2009).
http://dx.doi.org/10.1016/j.jpowsour.2008.08.027
265.
265. M. A. Al-Maghrabi, J. S. Thorne, R. J. Sanderson, J. N. Byers, J. R. Dahn, and R. A. Dunlap, J. Electrochem. Soc. 159(6), A711A719 (2012).
http://dx.doi.org/10.1149/2.075206jes
266.
266. N. Tamura, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino, and I. Yonezu, J. Power Sources 107(1), 4855 (2002).
http://dx.doi.org/10.1016/S0378-7753(01)00979-X
267.
267. M. Winter and J. O. Besenhard, Electrochim. Acta 45(1–2), 3150 (1999).
http://dx.doi.org/10.1016/S0013-4686(99)00191-7
268.
268. J. S. Thorne, R. J. Sanderson, J. R. Dahn, and R. A. Dunlap, J. Electrochem. Soc. 157(10), A1085A1091 (2010).
http://dx.doi.org/10.1149/1.3476311
269.
269. A. Zuettel, A. Remhof, A. Borgschulte, and O. Friedrichs, Philos. Trans. R. Soc. London, Ser. A 368(1923), 33293342 (2010).
http://dx.doi.org/10.1098/rsta.2010.0113
270.
270. L. Schlapbach and A. Zuttel, Nature 414(6861), 353358 (2001).
http://dx.doi.org/10.1038/35104634
271.
271. C. Wu, G. Wu, Z. Xiong, X. Han, H. Chu, T. He, and P. Chen, Chem. Mater. 22(1), 35 (2010).
http://dx.doi.org/10.1021/cm903167b
272.
272. J. E. Katz, T. R. Gingrich, E. A. Santori, and N. S. Lewis, Energy Environ. Sci. 2(1), 103112 (2009).
http://dx.doi.org/10.1039/b812177j
273.
273. A. Stepanovich, K. Sliozberg, W. Schuhmann, and A. Ludwig, Int. J. Hydrogen Energy 37(16), 1161811624 (2012).
http://dx.doi.org/10.1016/j.ijhydene.2012.05.039
274.
274. A. J. Leenheer and H. A. Atwater, J. Electrochem. Soc. 159(9), H752H757 (2012).
http://dx.doi.org/10.1149/2.022209jes
275.
275. M. Woodhouse and B. A. Parkinson, Chem. Soc. Rev. 38(1), 197210 (2009).
http://dx.doi.org/10.1039/b719545c
276.
276. I. P. Jain, P. Jain, and A. Jain, J. Alloys Compd. 503(2), 303339 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.04.250
277.
277. G. Sandrock, K. Gross, and G. Thomas, J. Alloys Compd. 339(1–2), 299308 (2002).
http://dx.doi.org/10.1016/S0925-8388(01)02014-X
278.
278. C. Weidenthaler, A. Pommerin, M. Felderhoff, B. Bogdanovic, and F. Schuth, Phys. Chem. Chem. Phys. 5(22), 51495153 (2003).
http://dx.doi.org/10.1039/b309409j
279.
279. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 7(11), 2254 (1968).
http://dx.doi.org/10.1021/ic50069a016
280.
280. D. J. Siegel, C. Wolverton, and V. Ozolins, Phys. Rev. B 76(13), 134102 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.134102
281.
281. J. J. Vajo, S. L. Skeith, and F. Mertens, J. Phys. Chem. B 109(9), 37193722 (2005).
http://dx.doi.org/10.1021/jp040769o
282.
282. P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin, and K. L. Tan, Nature 420(6913), 302304 (2002).
http://dx.doi.org/10.1038/nature01210
283.
283. G. P. Meisner, M. L. Scullin, M. P. Balogh, F. E. Pinkerton, and M. S. Meyer, J. Phys. Chem. B 110(9), 41864192 (2006).
http://dx.doi.org/10.1021/jp056019b
284.
284. Y. E. Filinchuk, K. Yvon, G. P. Meisner, F. E. Pinkerton, and M. P. Balogh, Inorg. Chem. 45(4), 14331435 (2006).
http://dx.doi.org/10.1021/ic0518226
285.
285. F. E. Pinkerton, G. P. Meisner, M. S. Meyer, M. P. Balogh, and M. D. Kundrat, J. Phys. Chem. B 109(1), 68 (2005).
http://dx.doi.org/10.1021/jp0455475
286.
286. W. F. Luo, J. Alloys Compd. 381(1–2), 284287 (2004).
http://dx.doi.org/10.1016/j.jallcom.2004.03.119
287.
287. J. Lu, Z. Z. Fang, Y. J. Choi, and H. Y. Sohn, J. Phys. Chem. C 111(32), 1212912134 (2007).
http://dx.doi.org/10.1021/jp0733724
288.
288. Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, T. Noritake, S. Towata, and S. Orimo, J. Alloys Compd. 404, 396398 (2005).
http://dx.doi.org/10.1016/j.jallcom.2004.10.089
289.
289. H. Y. Leng, T. Ichikawa, S. Hino, N. Hanada, S. Isobe, and H. Fujii, J. Phys. Chem. B 108(26), 87638765 (2004).
http://dx.doi.org/10.1021/jp048002j
290.
290. H. Wu, W. Zhou, T. J. Udovic, J. J. Rush, and T. Yildirim, Chem. Mater. 20(4), 12451247 (2008).
http://dx.doi.org/10.1021/cm703315e
291.
291. J. R. Hattrick-Simpers, J. E. Maslar, M. U. Niemann, C. Chiu, S. S. Srinivasan, E. K. Stefanakos, and L. A. Bendersky, Int. J. Hydrogen Energy 35(12), 63236331 (2010).
http://dx.doi.org/10.1016/j.ijhydene.2010.02.101
292.
292. S. S. Srinivasan, M. U. Niemann, J. R. Hattrick-Simpers, K. McGrath, P. C. Sharma, D. Y. Goswami, and E. K. Stefanakos, Int. J. Hydrogen Energy 35(18), 96469652 (2010).
http://dx.doi.org/10.1016/j.ijhydene.2010.06.061
293.
293. J. Yang, A. Sudik, D. J. Siegel, D. Halliday, A. Drews, R. O. Carter III, C. Wolverton, G. J. Lewis, J. W. A. Sachtler, J. J. Low, S. A. Faheem, D. A. Lesch, and V. Ozolins, Angew. Chem., Int. Ed. 47(5), 882887 (2008).
http://dx.doi.org/10.1002/anie.200703756
294.
294. G. Kresse and J. Hafner, Phys. Rev. B 47(1), 558561 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
295.
295. P. Villars and L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed. (ASM International, Materials Park, Ohio, 1991).
296.
296. G. Bergerhoff and I. D. Brown, Crystallographic Databases, edited by F. H. Allen, G. Bergerhoff, and R. Sievers (International Union of Crystallography, Chester, UK, 1987), pp. 7795.
297.
297.See http://www.fiz-karlsruhe.de/icsd.html (FIZ, Karlsruhe, Germany, 2012).
298.
298. S. V. Alapati, J. K. Johnson, and D. S. Sholl, J. Phys. Chem. B 110(17), 87698776 (2006).
http://dx.doi.org/10.1021/jp060482m
299.
299. S. V. Alapati, J. K. Johnson, and D. S. Sholl, J. Phys. Chem. C 111(4), 15841591 (2007).
http://dx.doi.org/10.1021/jp065117+
300.
300. S. V. Alapati, J. K. Johnson, and D. S. Sholl, Phys. Chem. Chem. Phys. 9(12), 14381452 (2007).
http://dx.doi.org/10.1039/b617927d
301.
301. S. V. Alapati, J. K. Johnson, and D. S. Sholl, J. Phys. Chem. C 112(14), 52585262 (2008).
http://dx.doi.org/10.1021/jp800630s
302.
302. H.-W. Li, K. Miwa, N. Ohba, T. Fujita, T. Sato, Y. Yan, S. Towata, M. W. Chen, and S. Orimo, Nanotechnology 20(20), 204013 (2009).
http://dx.doi.org/10.1088/0957-4484/20/20/204013
303.
303. H.-W. Li, Y. Yan, S.-I. Orimo, A. Zuettel, and C. M. Jensen, Energies 4(1), 185214 (2011).
http://dx.doi.org/10.3390/en4010185
304.
304. V. Ozolins, E. H. Majzoub, and C. Wolverton, J. Am. Chem. Soc. 131(1), 230237 (2009).
http://dx.doi.org/10.1021/ja8066429
305.
305. V. Ozolins, E. H. Majzoub, and C. Wolverton, Phys. Rev. Lett. 100(13), 135501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.135501
306.
306. C. Wolverton, D. J. Siegel, A. R. Akbarzadeh, and V. Ozolins, J. Phys. Condens. Matter 20(6), 064228 (2008).
http://dx.doi.org/10.1088/0953-8984/20/6/064228
307.
307. A. R. Akbarzadeh, C. Wolverton, and V. Ozolins, Phys. Rev. B 79(18), 184102 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.184102
308.
308. W. Q. Sun, C. Wolverton, A. R. Akbarzadeh, and V. Ozolins, Phys. Rev. B 83(6), 064112 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.064112
309.
309. R. Gremaud, C. P. Broedersz, A. Borgschulte, M. J. van Setten, H. Schreuders, M. Slaman, B. Dam, and R. Griessen, Acta Mater. 58(2), 658668 (2010).
http://dx.doi.org/10.1016/j.actamat.2009.09.044
310.
310. A. Ludwig, J. Cao, A. Savan, and M. Ehmann, J. Alloys Compd. 446, 516521 (2007).
http://dx.doi.org/10.1016/j.jallcom.2007.01.069
311.
311. N. C. Woo, B. G. Ng, and R. B. van Dover, Rev. Sci. Instrum. 78(7), 072208 (2007).
http://dx.doi.org/10.1063/1.2755779
312.
312. J. R. Hattrick-Simpers, W. S. Hurst, S. S. Srinivasan, and J. E. Maslar, Rev. Sci. Instrum. 82(3), 033103 (2011).
http://dx.doi.org/10.1063/1.3558693
313.
313. J. R. Hattrick-Simpers, K. Wang, L. Cao, C. Chiu, E. Heilweil, R. G. Downing, and L. A. Bendersky, J. Alloys Compd. 490(1–2), 4246 (2010).
http://dx.doi.org/10.1016/j.jallcom.2009.10.054
314.
314. G. Garcia, R. Domenech-Ferrer, F. Pi, J. Santiso, and J. Rodriguez-Viejo, J. Comb. Chem. 9(2), 230236 (2007).
http://dx.doi.org/10.1021/cc060131h
315.
315. C. H. Olk, in Materials and Technology for Hydrogen Economy, edited by G. A. Nazri, M. Nazri, R. Young, and P. Chen (Materials Research Society (MRS), 2004), Vol. 801, pp. 7588.
316.
316. R. Gremaud, C. P. Broedersz, D. M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J. H. Rector, B. Dam, and R. Griessen, Adv. Mater. 19(19), 2813 (2007).
http://dx.doi.org/10.1002/adma.200602560
317.
317. I. Giebels, J. Isidorsson, E. S. Kooij, A. Remhof, N. J. Koeman, J. H. Rector, A. T. M. van Gogh, and R. Griessen, J. Alloys Compd. 330, 875881 (2002).
http://dx.doi.org/10.1016/s0925-8388(01)01437-2
318.
318. C. H. Olk, G. G. Tibbetts, D. Simon, and J. J. Moleski, J. Appl. Phys. 94(1), 720725 (2003).
http://dx.doi.org/10.1063/1.1577815
319.
319. H. Oguchi, E. J. Heilweil, D. Josell, and L. A. Bendersky, J. Alloys Compd. 477(1–2), 815 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.10.053
320.
320. H. Oguchi, J. Hattrick-Simpers, I. Takeuchi, E. J. Heilweil, and L. A. Bendersky, Rev. Sci. Instrum. 80(7), 8 (2009).
http://dx.doi.org/10.1063/1.3184024
321.
321. H. Oguchi, Z. Tan, E. J. Heilweil, and L. A. Bendersky, Int. J. Hydrogen Energy 35(3), 12961299 (2010).
http://dx.doi.org/10.1016/j.ijhydene.2009.11.037
322.
322. J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijnaarden, J. P. Dekker, D. G. deGroot, and N. J. Koeman, Nature 380(6571), 231234 (1996).
http://dx.doi.org/10.1038/380231a0
323.
323. A. Borgschulte, W. Lohstroh, R. J. Westerwaal, H. Schreuders, J. H. Rector, B. Dam, and R. Griessen, J. Alloys Compd. 404, 699705 (2005).
http://dx.doi.org/10.1016/j.jallcom.2005.01.137
324.
324. A. Remhof and A. Borgschulte, ChemPhysChem 9(17), 24402455 (2008).
http://dx.doi.org/10.1002/cphc.200800573
325.
325. R. Gremaud, M. Slaman, H. Schreuders, B. Dam, and R. Griessen, Appl. Phys. Lett. 91(23), 231916 (2007).
http://dx.doi.org/10.1063/1.2821376
326.
326. R. J. Westertwaal, C. den Besten, M. Slaman, B. Dam, D. E. Nanu, A. J. Bottger, and W. G. Haije, Int. J. Hydrogen Energy 36(1), 10741082 (2011).
http://dx.doi.org/10.1016/j.ijhydene.2010.10.014
327.
327. A. Baldi, D. M. Borsa, H. Schreuders, J. H. Rector, T. Atmakidis, M. Bakker, H. A. Zondag, W. G. J. van Helden, B. Dam, and R. Griessen, Int. J. Hydrogen Energy 33(12), 31883192 (2008).
http://dx.doi.org/10.1016/j.ijhydene.2008.01.026
328.
328. A. Borgschulte, R. Gremaud, S. de Man, R. J. Westerwaal, J. H. Rector, B. Dam, and R. Griessen, Appl. Surf. Sci. 253(3), 14171423 (2006).
http://dx.doi.org/10.1016/j.apsusc.2006.02.017
329.
329. A. Borgschulte, J. H. Rector, H. Schreuders, B. Dam, and R. Griessen, Appl. Phys. Lett. 90(7), 071912 (2007).
http://dx.doi.org/10.1063/1.2695626
330.
330. B. Dam, R. Gremaud, C. Broedersz, and R. Griessen, Scr. Mater. 56(10), 853858 (2007).
http://dx.doi.org/10.1016/j.scriptamat.2007.01.011
331.
331. R. Gremaud, J. L. M. van Mechelen, H. Schreuders, M. Slaman, B. Dam, and R. Griessen, Int. J. Hydrogen Energy 34(21), 89518957 (2009).
http://dx.doi.org/10.1016/j.ijhydene.2009.08.051
332.
332. C. P. Broedersz, R. Gremaud, B. Dam, R. Griessen, and O. M. Lovvik, Phys. Rev. B 77(2), 024204 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.024204
333.
333. R. Gremaud, A. Borgschulte, C. Chacon, J. L. M. Van Mechelen, H. Schreuders, A. Zuttel, B. Hjorvarsson, B. Dam, and R. Griessen, Appl. Phys. A 84(1–2), 7785 (2006).
http://dx.doi.org/10.1007/s00339-006-3579-z
334.
334. R. Gremaud, A. Borgschulte, W. Lohstroh, H. Schreuders, A. Zuttel, B. Dam, and R. Griessen, J. Alloys Compd. 404, 775778 (2005).
http://dx.doi.org/10.1016/j.jallcom.2005.01.140
335.
335. E. Johansson, C. Chacon, C. Zlotea, Y. Andersson, and B. Hjorvarsson, J. Phys. Condens. Matter 16(43), 76497662 (2004).
http://dx.doi.org/10.1088/0953-8984/16/43/008
336.
336. L. R. Cao, J. R. Hattrick-Simpers, R. Bindel, B. E. Tomlin, R. Zeisler, R. Paul, L. A. Bendersky, and R. G. Downing, J. Radioanal. Nucl. Chem. 283(1), 6368 (2010).
http://dx.doi.org/10.1007/s10967-009-0058-y
337.
337. A. Ludwig, J. Cao, B. Dam, and R. Gremaud, Appl. Surf. Sci. 254(3), 682686 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.05.093
338.
338. G. J. Lewis, J. W. A. Sachtler, J. J. Low, D. A. Lesch, S. A. Faheem, P. M. Dosek, L. M. Knight, L. Halloran, C. M. Jensen, J. Yang, A. Sudik, D. J. Siegel, C. Wolverton, V. Ozolins, and S. Zhang, J. Alloys Compd. 446, 355359 (2007).
http://dx.doi.org/10.1016/j.jallcom.2007.04.028
339.
339. V. L. Smentkowski, J. P. Lemmon, and J. C. Zhao, in 205th Meeting, San Antonio, Texas (Electrochemical Society, 2004), Abstract 294.
340.
340. A. Sudik, J. Yang, D. J. Siegel, C. Wolverton, R. O. Carter III, and A. R. Drews, J. Phys. Chem. C 113(5), 20042013 (2009).
http://dx.doi.org/10.1021/jp807270y
341.
341. A. Borgschulte, R. Gremaud, Z. Lodziana, and A. Zuettel, Phys. Chem. Chem. Phys. 12(19), 50615066 (2010).
http://dx.doi.org/10.1039/c000229a
342.
342. A. Borgschulte, R. Gremaud, S. Kato, N. P. Stadie, A. Remhof, A. Zuettel, M. Matsuo, and S. I. Orimo, Appl. Phys. Lett. 97(3), 031916 (2010).
http://dx.doi.org/10.1063/1.3467260
343.
343. K. K. S. Singhal, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design, and Applications (Elsevier, Oxford, UK, 2003).
344.
344. E. S. Smotkin and R. R. Diaz-Morales, Ann. Rev. Mater. Res. 33, 557579 (2003).
http://dx.doi.org/10.1146/annurev.matsci.33.022802.090953
345.
345. W. Z. Zhu and S. C. Deevi, Mater. Sci. Eng., A 362(1–2), 228239 (2003).
http://dx.doi.org/10.1016/s0921-5093(03)00620-8
346.
346. A. B. Stambouli and E. Traversa, Renewable Sustainable Energy Rev. 6(5), 433455 (2002).
http://dx.doi.org/10.1016/S1364-0321(02)00014-X
347.
347. H. S. Liu, C. J. Song, L. Zhang, J. J. Zhang, H. J. Wang, and D. P. Wilkinson, J. Power Sources 155(2), 95110 (2006).
http://dx.doi.org/10.1016/j.jpowsour.2006.01.030
348.
348. V. Tripkovic, F. Abild-Pedersen, F. Studt, I. Cerri, T. Nagami, T. Bligaard, and J. Rossmeisl, ChemCatChem 4(2), 228235 (2012).
http://dx.doi.org/10.1002/cctc.201100308
349.
349. J. M. Gregoire, R. B. van Dover, J. Jin, F. J. DiSalvo, and H. D. Abruna, Rev. Sci. Instrum. 78(7), 072212 (2007).
http://dx.doi.org/10.1063/1.2755967
350.
350. J. S. Cooper and P. J. McGinn, J. Power Sources 163(1), 330338 (2006).
http://dx.doi.org/10.1016/j.jpowsour.2006.09.028
351.
351. K. Jambunathan, S. Jayaraman, and A. C. Hillier, Langmuir 20(5), 18561863 (2004).
http://dx.doi.org/10.1021/la035567i
352.
352. P. Strasser, J. Comb. Chem. 10(2), 216224 (2008).
http://dx.doi.org/10.1021/cc700166p
353.
353. W. C. Choi, J. D. Kim, and S. I. Woo, Catal. Today 74(3–4), 235240 (2002).
http://dx.doi.org/10.1016/S0920-5861(02)00026-3
354.
354. F. G. Welsch, K. Stoewe, and W. F. Maier, Catal. Today 159(1), 108119 (2011).
http://dx.doi.org/10.1016/j.cattod.2010.03.006
355.
355. D. F. A. Koch, D. A. J. Rand, and R. Woods, J. Electroanal. Chem. 70(1), 7386 (1976).
http://dx.doi.org/10.1016/S0022-0728(76)80263-X
356.
356. C. Gaudillere, P. Vernoux, C. Mirodatos, G. Caboche, and D. Farrusseng, Catal. Today 157(1–4), 263269 (2010).
http://dx.doi.org/10.1016/j.cattod.2010.02.062
357.
357. J. C. H. Rossiny, S. Fearn, J. A. Kilner, Y. Zhang, and L. Chen, Solid State Ion. 177(19–25), 17891794 (2006).
http://dx.doi.org/10.1016/j.ssi.2006.02.050
358.
358. B. Sung-Hyeon, T. F. Jaramillo, A. Kleiman-Shwarsctein, and E. W. McFarland, Meas. Sci. Technol. 16(1), 54 (2005).
http://dx.doi.org/10.1088/0957-0233/16/1/008
359.
359. S. Jayaraman and A. C. Hillier, J. Comb. Chem. 6(1), 2731 (2004).
http://dx.doi.org/10.1021/cc034030k
360.
360. M. Prochaska, J. Jin, D. Rochefort, L. Zhuang, F. J. DiSalvo, H. D. Abruna, and R. B. van Dover, Rev. Sci. Instrum. 77(5), 054104 (2006).
http://dx.doi.org/10.1063/1.2202919
361.
361. S. Jayaraman and A. C. Hillier, Meas. Sci. Technol. 16(1), 513 (2005).
http://dx.doi.org/10.1088/0957-0233/16/1/002
362.
362. X. M. Lin, L. Y. Zheng, G. M. Gao, Y. W. Chi, and G. N. Chen, Anal. Chem. 84(18), 77007707 (2012).
http://dx.doi.org/10.1021/ac300875x
363.
363. B. C. Shah and A. C. Hillier, J. Electrochem. Soc. 147(8), 30433048 (2000).
http://dx.doi.org/10.1149/1.1393645
364.
364. T. H. Muster, A. Trinchi, T. A. Markley, D. Lau, P. Martin, A. Bradbury, A. Bendavid, and S. Dligatch, Electrochim. Acta 56(27), 96799699 (2011).
http://dx.doi.org/10.1016/j.electacta.2011.09.003
365.
365. T. H. Muster, H. Sullivan, D. Lau, D. L. J. Alexander, N. Sherman, S. J. Garcia, T. G. Harvey, T. A. Markley, A. E. Hughes, P. A. Corrigan, A. M. Glenn, P. A. White, S. G. Hardin, J. Mardel, and J. M. C. Mol, Electrochim. Acta 67, 95103 (2012).
http://dx.doi.org/10.1016/j.electacta.2012.02.004
366.
366. T. H. Muster, A. E. Hughes, S. A. Furman, T. Harvey, N. Sherman, S. Hardin, P. Corrigan, D. Lau, F. H. Scholes, P. A. White, M. Glenn, J. Mardel, S. J. Garcia, and J. M. C. Mol, Electrochim. Acta 54(12), 34023411 (2009).
http://dx.doi.org/10.1016/j.electacta.2008.12.051
367.
367. R. X. Liu and E. S. Smotkin, J. Electroanal. Chem. 535(1–2), 4955 (2002).
http://dx.doi.org/10.1016/s0022-0728(02)01144-0
368.
368. B. C. Chan, R. X. Liu, K. Jambunathan, H. Zhang, G. Y. Chen, T. E. Mallouk, and E. S. Smotkin, J. Electrochem. Soc. 152(3), A594A600 (2005).
http://dx.doi.org/10.1149/1.1857772
369.
369. R. Z. Jiang, C. Rong, and D. Chu, J. Comb. Chem. 7(2), 272278 (2005).
http://dx.doi.org/10.1021/cc0498581
370.
370. R. Z. Jiang and D. Chu, J. Electroanal. Chem. 527(1–2), 137142 (2002).
http://dx.doi.org/10.1016/s0022-0728(02)00837-9
371.
371. Y. Zhang and P. J. McGinn, J. Power Sources 206, 2936 (2012).
http://dx.doi.org/10.1016/j.jpowsour.2012.01.016
372.
372. R. R. Diaz-Morales, R. X. Liu, E. Fachini, G. Y. Chen, C. U. Segre, A. Martinez, C. Cabrera, and E. S. Smotkin, J. Electrochem. Soc. 151(9), A1314A1318 (2004).
http://dx.doi.org/10.1149/1.1774185
373.
373. E. S. Smotkin, J. H. Jiang, A. Nayar, and R. X. Liu, Appl. Surf. Sci. 252(7), 25732579 (2006).
http://dx.doi.org/10.1016/j.apsusc.2005.08.115
374.
374. J. Jin, M. Prochaska, D. Rochefort, D. K. Kim, L. Zhuang, F. J. DiSalvo, R. B. Van Dover, and H. D. Abruna, Appl. Surf. Sci. 254(3), 653661 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.06.077
375.
375. K. Jambunathan and A. C. Hillier, J. Electrochem. Soc. 150(6), E312E320 (2003).
http://dx.doi.org/10.1149/1.1570823
376.
376. Y. H. Chu, Y. G. Shul, W. C. Choi, S. I. Woo, and H. S. Han, J. Power Sources 118(1–2), 334341 (2003).
http://dx.doi.org/10.1016/S0378-7753(03)00082-X
377.
377. S. Jayaraman and A. C. Hillier, J. Phys. Chem. B 107(22), 52215230 (2003).
http://dx.doi.org/10.1021/jp0274886
378.
378. J. F. Whitacre, T. Valdez, and S. R. Narayanan, J. Electrochem. Soc. 152(9), A1780A1789 (2005).
http://dx.doi.org/10.1149/1.1990129
379.
379. T. Kobayashi, A. Ueda, Y. Yamada, and H. Shioyama, Appl. Surf. Sci. 223(1–3), 102108 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00905-X
380.
380. S. Guerin, B. E. Hayden, C. E. Lee, C. Mormiche, J. R. Owen, A. E. Russell, B. Theobald, and D. Thompsett, J. Comb. Chem. 6(1), 149158 (2004).
http://dx.doi.org/10.1021/cc030113p
381.
381. H.-J. Kim, D.-Y. Kim, H. Han, and Y.-G. Shul, J. Power Sources 159(1), 484490 (2006).
http://dx.doi.org/10.1016/j.jpowsour.2005.10.101
382.
382. S. Jayaraman, S. H. Baeck, T. F. Jaramillo, A. Kleiman-Shwarsctein, and E. W. McFarland, Rev. Sci. Instrum. 76(6), 062227 (2005).
http://dx.doi.org/10.1063/1.1927007
383.
383. J. M. Gregoire, M. Kostylev, M. E. Tague, P. F. Mutolo, R. B. van Dover, F. J. DiSalvo, and H. D. Abruna, J. Electrochem. Soc. 156(1), B160B166 (2009).
http://dx.doi.org/10.1149/1.3021416
384.
384. M. K. Jeon, C. H. Lee, G. I. Park, and K. H. Kang, J. Power Sources 216, 400408 (2012).
http://dx.doi.org/10.1016/j.jpowsour.2012.05.107
385.
385. J. F. Whitacre, T. I. Valdez, and S. R. Narayanan, Electrochim. Acta 53(10), 36803689 (2008).
http://dx.doi.org/10.1016/j.electacta.2007.12.017
386.
386. G. Y. Chen, D. A. Delafuente, S. Sarangapani, and T. E. Mallouk, Catal. Today 67(4), 341355 (2001).
http://dx.doi.org/10.1016/S0920-5861(01)00327-3
387.
387. K. R. Lee, Y. Jung, and S. I. Woo, ACS Comb. Sci. 14(1), 1016 (2012).
http://dx.doi.org/10.1021/co200056d
388.
388. S. P. Jiang and S. H. Chan, J. Mater. Sci. 39(14), 44054439 (2004).
http://dx.doi.org/10.1023/B:JMSC.0000034135.52164.6b
389.
389. J. Beckers, C. Gaudillere, D. Farrusseng, and G. Rothenberg, Green Chem. 11(7), 921925 (2009).
http://dx.doi.org/10.1039/b900516a
390.
390. J. C. H. Rossiny, J. Julis, S. Fearn, J. A. Kilner, Y. Zhang, L. Chen, S. Yang, and J. R. G. Evans, Solid State Ion. 179(21–26), 10851089 (2008).
http://dx.doi.org/10.1016/j.ssi.2008.01.098
391.
391. S. Fearn, J. C. H. Rossiny, J. A. Kilner, Y. Zhang, and L. Chen, Appl. Surf. Sci. 252(19), 71597162 (2006).
http://dx.doi.org/10.1016/j.apsusc.2006.02.177
392.
392. J. P. Lemmon, V. Manivannan, T. Jordan, L. Hassib, O. Siclovan, M. Othon and M. Pilliod, paper presented at the MRS (Boston, 2003).
393.
393. T. Gebhardt, D. Music, T. Takahashi, and J. M. Schneider, Thin Solid Films 520(17), 54915499 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.04.062
394.
394. P. C. Collins, Ph.D., Ohio State University, 2004, ProQuest Dissertations And Theses, Publication Number: AAI3144861, ISBN: 9780496086047.
395.
395. Y. S. Chu, A. Tkachuk, S. Vogt, P. Ilinski, D. A. Walko, D. C. Mancini, E. M. Dufresne, L. He, and F. Tsui, Appl. Surf. Sci. 223(1–3), 175182 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00894-8
396.
396. A. Rar, J. J. Frafjord, J. D. Fowlkes, E. D. Specht, P. D. Rack, M. L. Santella, H. Bei, E. P. George, and G. M. Pharr, Meas. Sci. Technol. 16(1), 4653 (2005).
http://dx.doi.org/10.1088/0957-0233/16/1/007
397.
397. J. M. Gregoire, D. Dale, A. Kazimirov, F. J. DiSalvo, and R. B. van Dover, Rev. Sci. Instrum. 80(12), 123905 (2009).
http://dx.doi.org/10.1063/1.3274179
398.
398. S. Vogt, Y. S. Chu, A. Tkachuk, P. Ilinski, D. A. Walko, and F. Tsui, Appl. Surf. Sci. 223(1–3), 214219 (2004).
http://dx.doi.org/10.1016/S0169-4332(03)00895-X
399.
399. J. Sakurai, S. Hata, R. Yamauchi, and A. Shimokohbe, Jpn. J. Appl. Phys. Part 1 46(4A), 15901595 (2007).
http://dx.doi.org/10.1143/JJAP.46.1590
400.
400. L. A. Baumes, M. Moliner, N. Nicoloyannis, and A. Corma, Cryst. Eng. Commun. 10(10), 13211324 (2008).
http://dx.doi.org/10.1039/b812395k
401.
401. J. M. Gregoire, D. Dale, and R. B. van Dover, Rev. Sci. Instrum. 82(1), 015105 (2011).
http://dx.doi.org/10.1063/1.3505103
402.
402. C. J. Long, D. Bunker, X. Li, V. L. Karen, and I. Takeuchi, Rev. Sci. Instrum. 80(10), 103902 (2009).
http://dx.doi.org/10.1063/1.3216809
403.
403. C. J. Long, J. Hattrick-Simpers, M. Murakami, R. C. Srivastava, I. Takeuchi, V. L. Karen, and X. Li, Rev. Sci. Instrum. 78(7), 072217 (2007).
http://dx.doi.org/10.1063/1.2755487
404.
404. I. Takeuchi, C. J. Long, O. O. Famodu, M. Murakami, J. Hattrick-Simpers, G. W. Rubloff, M. Stukowski, and K. Rajan, Rev. Sci. Instrum. 76(6), 062223 (2005).
http://dx.doi.org/10.1063/1.1927079
405.
405. G. Barr, W. Dong, and C. J. Gilmore, J. Appl. Crystallogr. 37, 658664 (2004).
http://dx.doi.org/10.1107/S0021889804011173
406.
406. V. Chevrier and J. R. Dahn, Meas. Sci. Technol. 17(6), 13991404 (2006).
http://dx.doi.org/10.1088/0957-0233/17/6/017
407.
407. S. Ermon, R. Le Bras, C. Gomes, B. Selman, and R. B. van Dover, paper presented at the 15th International Conference on Theory and Applications of Satisfiability Testing, Trento, Italy, 2012.
408.
408. D. Kan, C. J. Long, C. Steinmetz, S. E. Lofland, and I. Takeuchi, J. Mater. Res. 27(21), 26912704 (2012).
http://dx.doi.org/10.1557/jmr.2012.314
409.
409.See http://www.whitehouse.gov/blog/2012/05/14/new-commitments-support-administration-s-materials-genome-initiative for highlights of the Materials Genome Initiative (MGI), a program whose goal is to reduce the time and cost of high technology materials' discovery, development and commercialization (2012).
410.
410. S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. J. Mehl, H. T. Stokes, D. O. Demchenko, and D. Morgan, Comput. Mater. Sci. 58, 218226 (2012).
http://dx.doi.org/10.1016/j.commatsci.2012.02.005
411.
411. R. V. Belosludov, S. Takami, M. Kubo, and A. Miyamoto, in Combinatorial Materials Synthesis, edited by X.-D. Xiang and I. Takeuchi (Marcel Dekker, New York, 2003).
412.
412. J. W. Bennett, K. F. Garrity, K. M. Rabe, and D. Vanderbilt, Phys. Rev. Lett. 109(16), 167602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.167602
413.
413. K. S. Yang, W. Setyawan, S. D. Wang, M. B. Nardelli, and S. Curtarolo, Nature Mater. 11(7), 614619 (2012).
http://dx.doi.org/10.1038/nmat3332
414.
414. S. Curtarolo, G. L. W. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, Nature Mater. 12(3), 191201 (2013).
http://dx.doi.org/10.1038/nmat3568
415.
415. D. C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications (Springer, New York, 2008).
416.
416. J. Cui, Y. S. Chu, O. O. Famodu, Y. Furuya, J. Hattrick-Simpers, R. D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Y. Zhang, and I. Takeuchi, Nature Mater. 5(4), 286290 (2006).
http://dx.doi.org/10.1038/nmat1593
417.
417. J. M. Ball and R. D. James, Philos. Trans. R. Soc. London, Ser. A 338(1650), 389450 (1992).
http://dx.doi.org/10.1098/rsta.1992.0013
418.
418. R. Zarnetta, R. Takahashi, M. L. Young, A. Savan, Y. Furuya, S. Thienhaus, B. Maass, M. Rahim, J. Frenzel, H. Brunken, Y. S. Chu, V. Srivastava, R. D. James, I. Takeuchi, G. Eggeler, and A. Ludwig, Adv. Funct. Mater. 20(12), 19171923 (2010).
http://dx.doi.org/10.1002/adfm.200902336
419.
419. R. Zarnetta, A. Savan, S. Thienhaus, and A. Ludwig, Appl. Surf. Sci. 254(3), 743748 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.03.074
420.
420. R. Zarnetta, P. J. S. Buenconsejo, A. Savan, S. Thienhaus, and A. Ludwig, Intermetallics 26, 98109 (2012).
http://dx.doi.org/10.1016/j.intermet.2012.03.044
421.
421. F. J. J. Vanloo, G. F. Bastin, and A. J. H. Leenen, J. Less-Common Met. 57(1), 111121 (1978).
http://dx.doi.org/10.1016/0022-5088(78)90167-4
422.
422. A. Dwivedi, T. J. Wyrobek, O. L. Warren, J. Hattrick-Simpers, O. O. Famodu, and I. Takeuchi, J. Appl. Phys. 104(7), 073501 (2008).
http://dx.doi.org/10.1063/1.2982091
423.
423. A. Ludwig, J. Cao, J. Brugger, and I. Takeuchi, Meas. Sci. Technol. 16(1), 111118 (2005).
http://dx.doi.org/10.1088/0957-0233/16/1/015
424.
424. Y. W. Lai, S. Hamann, M. Ehmann, and A. Ludwig, Rev. Sci. Instrum. 82(6), 063903 (2011).
http://dx.doi.org/10.1063/1.3600594
425.
425. S. Burger, C. Eberl, A. Siegel, A. Ludwig, and O. Kraft, Sci. Technol. Adv. Mater. 12(5), 054202 (2011).
http://dx.doi.org/10.1088/1468-6996/12/5/054202
426.
426. H.-J. Kim, J.-H. Han, R. Kaiser, K. H. Oh, and J. J. Vlassak, Rev. Sci. Instrum. 79(4), 045112 (2008).
http://dx.doi.org/10.1063/1.2912826
427.
427. P. J. McCluskey and J. J. Vlassak, Scr. Mater. 64(3), 264267 (2011).
http://dx.doi.org/10.1016/j.scriptamat.2010.10.008
428.
428. S. Semancik, in Combinatorial Materials Synthesis, edited by X. D. Xiang and I. Takeuchi (Marcel Dekker, Inc., New York, 2003), p. 469.
429.
429. R. A. Potyrailo and V. M. Mirsky, Combinatorial Methods for Chemical and Biological Sensors (Springer, Berlin, 2011).
430.
430. M. W. Barsoum, Prog. Solid State Chem. 28(1–4), 201281 (2000).
http://dx.doi.org/10.1016/S0079-6786(00)00006-6
431.
431. B. Manoun, S. K. Saxena, T. El-Raghy, and M. W. Barsoum, Appl. Phys. Lett. 88(20), 201902 (2006).
http://dx.doi.org/10.1063/1.2202387
432.
432. B. Manoun, S. K. Saxena, and M. W. Barsoum, Appl. Phys. Lett. 86(10), 101906 (2005).
http://dx.doi.org/10.1063/1.1875750
433.
433. S. E. Lofland, J. D. Hettinger, K. Harrell, P. Finkel, S. Gupta, M. W. Barsoum, and G. Hug, Appl. Phys. Lett. 84(4), 508510 (2004).
http://dx.doi.org/10.1063/1.1641177
434.
434. T. H. Scabarozi, S. Benjamin, B. Adamson, J. Applegate, J. Roche, E. Pfeiffer, C. Steinmetz, C. Lunk, M. W. Barsoum, J. D. Hettinger, and S. E. Lofland, Scr. Mater. 66(2), 8588 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2011.10.001
435.
435. T. H. Scabarozi, C. Gennaoui, J. Roche, T. Flemming, K. Wittenberger, P. Hann, B. Adamson, A. Rosenfeld, M. W. Barsoum, J. D. Hettinger, and S. E. Lofland, Appl. Phys. Lett. 95(10), 101907 (2009).
http://dx.doi.org/10.1063/1.3207748
436.
436. T. X. Sun, in Combinatorial Materials Synthesis, edited by X. D. Xiang and I. Takeuchi (Marcel Dekker, New York, 2003), pp. 141176.
437.
437. Y. Terada, K. Ohkubo, T. Mohri, and T. Suzuki, J. Appl. Phys. 81(5), 22632268 (1997).
http://dx.doi.org/10.1063/1.364254
438.
438. S. Eccarius, B. L. Garcia, C. Hebling, and J. W. Weidner, J. Power Sources 179(2), 723733 (2008).
http://dx.doi.org/10.1016/j.jpowsour.2007.11.102
439.
439. P. J. McCluskey, C. Zhao, O. Kfir, and J. J. Vlassak, Acta Mater. 59(13), 51165124 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.04.043
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/23/10.1063/1.4803530
Loading
/content/aip/journal/jap/113/23/10.1063/1.4803530
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/23/10.1063/1.4803530
2013-06-17
2014-11-27

Abstract

High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a “library” sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same “library” sample, they can be highly uniform with respect to fixed processing parameters. This article critically reviews the literature pertaining to applications of combinatorial materials science for electronic, magnetic, optical, and energy-related materials. It is expected that high throughput methodologies will facilitate commercialization of novel materials for these critically important applications. Despite the overwhelming evidence presented in this paper that high throughput studies can effectively inform commercial practice, in our perception, it remains an underutilized research and development tool. Part of this perception may be due to the inaccessibility of proprietary industrial research and development practices, but clearly the initial cost and availability of high throughput laboratory equipment plays a role. Combinatorial materials science has traditionally been focused on materials discovery, screening, and optimization to combat the extremely high cost and long development times for new materials and their introduction into commerce. Going forward, combinatorial materials science will also be driven by other needs such as materials substitution and experimental verification of materials properties predicted by modeling and simulation, which have recently received much attention with the advent of the Materials Genome Initiative. Thus, the challenge for combinatorial methodology will be the effective coupling of synthesis, characterization and theory, and the ability to rapidly manage large amounts of data in a variety of formats.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/23/1.4803530.html;jsessionid=3obfftkj8hoho.x-aip-live-02?itemId=/content/aip/journal/jap/113/23/10.1063/1.4803530&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/23/10.1063/1.4803530
10.1063/1.4803530
SEARCH_EXPAND_ITEM