Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Hierlemann, Proc. Chem. 1, 5 (2009).
2. R. Thewes, “CMOS sensor arrays for bio molecule diagnostics,” in 17th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES), Wroclaw (2010), pp. 1720.
3. S. Kim, D. Baek, J.-Y. Kim, S.-J. Choi, M.-L. Seol, and Y.-K. Choi, Appl. Phys. Lett. 101, 073703 (2012).
4. T. Scully, Nature 485, S2 (2012).
5. A. Heller and B. Feldman, Chem. Rev. 108, 2482 (2008).
6. D. A. Gough, L. S. Kumosa, T. L. Routh, J. T. Lin, and J. Y. Lucisano, Sci. Trans. Med. 2, 42ra53 (2010).
7. S. Mansouri and J. S. Schultz, Nat. Biotechnol. 2, 885 (1984).
8. U. Beyer, D. Schäfer, A. Thomas, H. Aulich, U. Haueter, B. Reihl, and R. Ehwald, Diabetol. 44, 416 (2001).
9. R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, J. Diab. Sci. Technol. 1, 218 (2007).
10. J. S. Schultz, S. Mansouri, and I. J. Goldstein, Diab. Care 5, 245 (1982).
11. R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, Diab. Technol. Therap. 8, 296 (2006).
12. R. Ballerstadt, A. Kholodnykh, C. Evans, A. Boretsky, M. Motamedi, A. Gowda, and R. McNichols, Anal. Chem. 79, 6965 (2007).
13. J. K. Nielsen, J. S. Christiansen, J. S. Kristensen, H. O. Toft, L. L. Hansen, S. Aasmul, and K. Gregorius, J. Diab. Sci. Technol. 3, 98 (2009).
14. R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. LeBlanc, IEEE J. Solid-State Circuits 9, 256 (1974).
15. G. E. Moore, Electronics 38, 114 (1965).
16. K. Chen, C. Hu, P. Fang, M. R. Lin, and D. L. Wollesen, IEEE Trans. Electr. Dev. 44, 1556 (1997).
17. G. Gabriel, S. Gabriel, E. H. Grant, B. S. J. Halstead, and D. M. P. Mingos, Chem. Soc. Rev. 27, 213 (1998).
18. S. Koneshan, J. C. Rasaiah, R. M. Lynden-Bell, and S. H. Lee, J. Phys. Chem. B 102, 4193 (1998).
19. J. Israelachvili, Intermolecular and Surface Forces (Academic Press, Amsterdam, 1991).
20. M. O. J. Olson and I. E. Liener, Biochem. 6, 3801 (1967).
21. R. Ballerstädt and R. Ehwald, Biosens. Bioelectron. 9, 557 (1994).
22. E. Bogner, K. Dominizi, P. Hagl, E. Bertagnolli, M. Wirth, F. Gabor, W. Brezna, and H. D. Wanzenboeck, Acta Biomater. 2, 229 (2006).
23. A. H. D. Graham, C. R. Bowen, J. Taylor, and J. Robbins, Biomed. Microdevices 11, 1091 (2009).
24. B. Jang and A. Hassibi, IEEE Trans. Ind. Electron. 56, 979 (2009).
25. H. Hämmerle, K. Kobuch, K. Kohler, W. Nisch, H. Sachs, and M. Stelzle, Biomaterials 23, 797 (2002).
26. M. Birkholz, K.-E. Ehwald, D. Wolansky, I. Costina, C. Baristiran-Kaynak, M. Fröhlich, H. Beyer, A. Kapp, and F. Lisdat, Surf. Coat. Technol. 204, 2055 (2010).
27. M. Fröhlich, M. Birkholz, K.-E. Ehwald, P. Kulse, O. Fursenko, and J. Katzer, IOP Conf. Ser.: Mater. Sci. Eng. 41, 012022 (2012).
28. W. W. Jang, J. O. Lee, J.-B. Yoon, M.-S. Kim, J.-M. Lee, S.-M. Kim, K.-H. Cho, D.-W. Kim, D. Park, and W.-S. Lee, Appl. Phys. Lett. 92, 103110 (2008).
29. W. W. Jang, J.-B. Yoon, M.-S. Kim, J.-M. Lee, S.-M. Kim, E.-J. Yoon, K.-H. Cho, S.-Y. Lee, I.-H. Choi, D.-W. Kim, and D. Park, Solid-State Electron 52, 1578 (2008).
30. M. Birkholz, K.-E. Ehwald, P. Kulse, J. Drews, M. Fröhlich, U. Haak, M. Kaynak, E. Matthus, K. Schulz, and D. Wolansky, Adv. Funct. Mater. 21, 1652 (2011).
31. G. Abadias, Surf. Coat. Technol. 202, 2223 (2008).
32. R. J. Baker, H. W. Li, and D. E. Boyce, CMOS—Circuit Design, Layout, and Simulation (IEEE Press, New York, 1998), pp. 209and.
33. K. L. Ekinci, small 1, 786 (2005).
34. A. K. Gupta, P. R. Nair, D. Akin, M. R. Ladisch, S. Broyles, M. A. Alam, and R. Bashir, Proc. Natl. Acad. Sci. 103, 13362 (2006).
35. J. L. Arlett, E. B. Myers, and M. L. Roukes, Nat. Nanotechnol. 6, 203 (2011).
36. L. M. Bellan, D. Wu, and R. S. Langer, WIRE Nanomed. Nanotech. 3, 229 (2011).
37. S. Kuenzi, E. Meurville, and P. Ryser, Sens. Actuators B 146, 1 (2010).
38. A. P. Brokaw, IEEE J. Solid State Circuits 9, 388 (1974).
39. D. Knoll, B. Heinemann, R. Barth, K. Blum, J. Borngräber, J. Drews, K.-E. Ehwald, G. Fischer, A. Fox, T. Grabolla, U. Haak, W. Höppner, F. Korndörfer, B. Kuck, S. Marschmeyer, H. Richter, H. Rücker, P. Schley, D. Schmidt, R. Scholz, B. Senapati, B. Tillack, W. Winkler, D. Wolansky, C. Wolf, H.-E. Wulf, Y. Yamamoto, and P. Zaumseil, “A Modular, Low-Cost SiGe:C BiCMOS Process Featuring High-fT and High-BVCEO Transistors,” in Bipolar/BICMOS Circuits and Technology Meeting (IEEE, Montreal, 2004), pp. 241244.
40. M. Birkholz, C. Genzel, and T. Jung, J. Appl. Phys. 96, 7202 (2004).
41. T. Meissner and F. J. Wentz, IEEE Trans. Geosci. Rem. Sens. 42, 1836 (2004).
42. M. H. Sharqawy, J. H. Lienhard, and S. M. Zubair, Desal. Seaw. Treat. 16, 354 (2010).
43. K. Monkos, Biochim. Biophys. Acta 1339, 304 (1997).
44. K. Monkos, Biophys. Chem. 85, 7 (2000).
45. T. Basmer, P. Kulse, and M. Birkholz, Biomed. Tech. 55, P43 (2010).
46. M. Birkholz, K.-E. Ehwald, M. Fröhlich, P. Kulse, T. Basmer, R. Ehwald, T. Guschauski, U. Stoll, H. Siegel, S. Schmaderer, J. Szeponik, and D. Zahn, “Minimal-invasiver Blutzuckersensor,” in Sensoren und Messsysteme 2012, Nürnberg (GMA ITG VDI/VDE) (2012), pp. 177187.
47. L. Litronik, Batterietechnologie GmbH (2010).
48. T. Basmer, D. Genschow, M. Fröhlich, and M. Birkholz, Biomed. Tech. 57, 259 (2012).

Data & Media loading...


Article metrics loading...



The progressive scaling in semiconductor technology allows for advanced miniaturization of intelligent systems like implantable biosensors for low-molecular weight analytes. A most relevant application would be the monitoring of glucose in diabetic patients, since no commercial solution is available yet for the continuous and drift-free monitoring of blood sugar levels. We report on a biosensor chip that operates via the binding competition of glucose and dextran to concanavalin A. The sensor is prepared as a fully embedded micro-electromechanical system and operates at GHz frequencies. Glucose concentrations derive from the assay viscosity as determined by the deflection of a 50 nm TiN actuator beam excited by quasi-electrostatic attraction. The GHz detection scheme does not rely on the resonant oscillation of the actuator and safely operates in fluidic environments. This property favorably combines with additional characteristics—(i) measurement times of less than a second, (ii) usage of biocompatible TiN for bio-milieu exposed parts, and (iii) small volume of less than 1 mm—to qualify the sensor chip as key component in a continuous glucose monitor for the interstitial tissue.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd