1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Sensing glucose concentrations at GHz frequencies with a fully embedded Biomicro-electromechanical system (BioMEMS)
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/24/10.1063/1.4811351
1.
1. A. Hierlemann, Proc. Chem. 1, 5 (2009).
http://dx.doi.org/10.1016/j.proche.2009.07.002
2.
2. R. Thewes, “CMOS sensor arrays for bio molecule diagnostics,” in 17th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES), Wroclaw (2010), pp. 1720.
3.
3. S. Kim, D. Baek, J.-Y. Kim, S.-J. Choi, M.-L. Seol, and Y.-K. Choi, Appl. Phys. Lett. 101, 073703 (2012).
http://dx.doi.org/10.1063/1.4745769
4.
4. T. Scully, Nature 485, S2 (2012).
http://dx.doi.org/10.1038/485S2a
5.
5. A. Heller and B. Feldman, Chem. Rev. 108, 2482 (2008).
http://dx.doi.org/10.1021/cr068069y
6.
6. D. A. Gough, L. S. Kumosa, T. L. Routh, J. T. Lin, and J. Y. Lucisano, Sci. Trans. Med. 2, 42ra53 (2010).
http://dx.doi.org/10.1126/scitranslmed.3001148
7.
7. S. Mansouri and J. S. Schultz, Nat. Biotechnol. 2, 885 (1984).
http://dx.doi.org/10.1038/nbt1084-885
8.
8. U. Beyer, D. Schäfer, A. Thomas, H. Aulich, U. Haueter, B. Reihl, and R. Ehwald, Diabetol. 44, 416 (2001).
http://dx.doi.org/10.1007/s001250051637
9.
9. R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, J. Diab. Sci. Technol. 1, 218 (2007).
10.
10. J. S. Schultz, S. Mansouri, and I. J. Goldstein, Diab. Care 5, 245 (1982).
http://dx.doi.org/10.2337/diacare.5.3.245
11.
11. R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, Diab. Technol. Therap. 8, 296 (2006).
http://dx.doi.org/10.1089/dia.2006.8.296
12.
12. R. Ballerstadt, A. Kholodnykh, C. Evans, A. Boretsky, M. Motamedi, A. Gowda, and R. McNichols, Anal. Chem. 79, 6965 (2007).
http://dx.doi.org/10.1021/ac0707434
13.
13. J. K. Nielsen, J. S. Christiansen, J. S. Kristensen, H. O. Toft, L. L. Hansen, S. Aasmul, and K. Gregorius, J. Diab. Sci. Technol. 3, 98 (2009).
14.
14. R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. LeBlanc, IEEE J. Solid-State Circuits 9, 256 (1974).
http://dx.doi.org/10.1109/JSSC.1974.1050511
15.
15. G. E. Moore, Electronics 38, 114 (1965).
16.
16. K. Chen, C. Hu, P. Fang, M. R. Lin, and D. L. Wollesen, IEEE Trans. Electr. Dev. 44, 1556 (1997).
http://dx.doi.org/10.1109/16.622616
17.
17. G. Gabriel, S. Gabriel, E. H. Grant, B. S. J. Halstead, and D. M. P. Mingos, Chem. Soc. Rev. 27, 213 (1998).
http://dx.doi.org/10.1039/a827213z
18.
18. S. Koneshan, J. C. Rasaiah, R. M. Lynden-Bell, and S. H. Lee, J. Phys. Chem. B 102, 4193 (1998).
http://dx.doi.org/10.1021/jp980642x
19.
19. J. Israelachvili, Intermolecular and Surface Forces (Academic Press, Amsterdam, 1991).
20.
20. M. O. J. Olson and I. E. Liener, Biochem. 6, 3801 (1967).
http://dx.doi.org/10.1021/bi00864a025
21.
21. R. Ballerstädt and R. Ehwald, Biosens. Bioelectron. 9, 557 (1994).
http://dx.doi.org/10.1016/0956-5663(94)80048-0
22.
22. E. Bogner, K. Dominizi, P. Hagl, E. Bertagnolli, M. Wirth, F. Gabor, W. Brezna, and H. D. Wanzenboeck, Acta Biomater. 2, 229 (2006).
http://dx.doi.org/10.1016/j.actbio.2005.10.006
23.
23. A. H. D. Graham, C. R. Bowen, J. Taylor, and J. Robbins, Biomed. Microdevices 11, 1091 (2009).
http://dx.doi.org/10.1007/s10544-009-9326-4
24.
24. B. Jang and A. Hassibi, IEEE Trans. Ind. Electron. 56, 979 (2009).
http://dx.doi.org/10.1109/TIE.2008.2011450
25.
25. H. Hämmerle, K. Kobuch, K. Kohler, W. Nisch, H. Sachs, and M. Stelzle, Biomaterials 23, 797 (2002).
http://dx.doi.org/10.1016/S0142-9612(01)00185-5
26.
26. M. Birkholz, K.-E. Ehwald, D. Wolansky, I. Costina, C. Baristiran-Kaynak, M. Fröhlich, H. Beyer, A. Kapp, and F. Lisdat, Surf. Coat. Technol. 204, 2055 (2010).
http://dx.doi.org/10.1016/j.surfcoat.2009.09.075
27.
27. M. Fröhlich, M. Birkholz, K.-E. Ehwald, P. Kulse, O. Fursenko, and J. Katzer, IOP Conf. Ser.: Mater. Sci. Eng. 41, 012022 (2012).
http://dx.doi.org/10.1088/1757-899X/41/1/012022
28.
28. W. W. Jang, J. O. Lee, J.-B. Yoon, M.-S. Kim, J.-M. Lee, S.-M. Kim, K.-H. Cho, D.-W. Kim, D. Park, and W.-S. Lee, Appl. Phys. Lett. 92, 103110 (2008).
http://dx.doi.org/10.1063/1.2892659
29.
29. W. W. Jang, J.-B. Yoon, M.-S. Kim, J.-M. Lee, S.-M. Kim, E.-J. Yoon, K.-H. Cho, S.-Y. Lee, I.-H. Choi, D.-W. Kim, and D. Park, Solid-State Electron 52, 1578 (2008).
http://dx.doi.org/10.1016/j.sse.2008.06.026
30.
30. M. Birkholz, K.-E. Ehwald, P. Kulse, J. Drews, M. Fröhlich, U. Haak, M. Kaynak, E. Matthus, K. Schulz, and D. Wolansky, Adv. Funct. Mater. 21, 1652 (2011).
http://dx.doi.org/10.1002/adfm.201002062
31.
31. G. Abadias, Surf. Coat. Technol. 202, 2223 (2008).
http://dx.doi.org/10.1016/j.surfcoat.2007.08.029
32.
32. R. J. Baker, H. W. Li, and D. E. Boyce, CMOS—Circuit Design, Layout, and Simulation (IEEE Press, New York, 1998), pp. 209and.
33.
33. K. L. Ekinci, small 1, 786 (2005).
http://dx.doi.org/10.1002/smll.200500077
34.
34. A. K. Gupta, P. R. Nair, D. Akin, M. R. Ladisch, S. Broyles, M. A. Alam, and R. Bashir, Proc. Natl. Acad. Sci. 103, 13362 (2006).
http://dx.doi.org/10.1073/pnas.0602022103
35.
35. J. L. Arlett, E. B. Myers, and M. L. Roukes, Nat. Nanotechnol. 6, 203 (2011).
http://dx.doi.org/10.1038/nnano.2011.44
36.
36. L. M. Bellan, D. Wu, and R. S. Langer, WIRE Nanomed. Nanotech. 3, 229 (2011).
http://dx.doi.org/10.1002/wnan.136
37.
37. S. Kuenzi, E. Meurville, and P. Ryser, Sens. Actuators B 146, 1 (2010).
http://dx.doi.org/10.1016/j.snb.2009.12.029
38.
38. A. P. Brokaw, IEEE J. Solid State Circuits 9, 388 (1974).
http://dx.doi.org/10.1109/JSSC.1974.1050532
39.
39. D. Knoll, B. Heinemann, R. Barth, K. Blum, J. Borngräber, J. Drews, K.-E. Ehwald, G. Fischer, A. Fox, T. Grabolla, U. Haak, W. Höppner, F. Korndörfer, B. Kuck, S. Marschmeyer, H. Richter, H. Rücker, P. Schley, D. Schmidt, R. Scholz, B. Senapati, B. Tillack, W. Winkler, D. Wolansky, C. Wolf, H.-E. Wulf, Y. Yamamoto, and P. Zaumseil, “A Modular, Low-Cost SiGe:C BiCMOS Process Featuring High-fT and High-BVCEO Transistors,” in Bipolar/BICMOS Circuits and Technology Meeting (IEEE, Montreal, 2004), pp. 241244.
40.
40. M. Birkholz, C. Genzel, and T. Jung, J. Appl. Phys. 96, 7202 (2004).
http://dx.doi.org/10.1063/1.1814413
41.
41. T. Meissner and F. J. Wentz, IEEE Trans. Geosci. Rem. Sens. 42, 1836 (2004).
http://dx.doi.org/10.1109/TGRS.2004.831888
42.
42. M. H. Sharqawy, J. H. Lienhard, and S. M. Zubair, Desal. Seaw. Treat. 16, 354 (2010).
http://dx.doi.org/10.5004/dwt.2010.1079
43.
43. K. Monkos, Biochim. Biophys. Acta 1339, 304 (1997).
http://dx.doi.org/10.1016/S0167-4838(97)00013-7
44.
44. K. Monkos, Biophys. Chem. 85, 7 (2000).
http://dx.doi.org/10.1016/S0301-4622(00)00127-7
45.
45. T. Basmer, P. Kulse, and M. Birkholz, Biomed. Tech. 55, P43 (2010).
46.
46. M. Birkholz, K.-E. Ehwald, M. Fröhlich, P. Kulse, T. Basmer, R. Ehwald, T. Guschauski, U. Stoll, H. Siegel, S. Schmaderer, J. Szeponik, and D. Zahn, “Minimal-invasiver Blutzuckersensor,” in Sensoren und Messsysteme 2012, Nürnberg (GMA ITG VDI/VDE) (2012), pp. 177187.
47.
47. L. Litronik, Batterietechnologie GmbH (2010).
48.
48. T. Basmer, D. Genschow, M. Fröhlich, and M. Birkholz, Biomed. Tech. 57, 259 (2012).
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/24/10.1063/1.4811351
Loading
/content/aip/journal/jap/113/24/10.1063/1.4811351
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/24/10.1063/1.4811351
2013-06-26
2014-07-30

Abstract

The progressive scaling in semiconductor technology allows for advanced miniaturization of intelligent systems like implantable biosensors for low-molecular weight analytes. A most relevant application would be the monitoring of glucose in diabetic patients, since no commercial solution is available yet for the continuous and drift-free monitoring of blood sugar levels. We report on a biosensor chip that operates via the binding competition of glucose and dextran to concanavalin A. The sensor is prepared as a fully embedded micro-electromechanical system and operates at GHz frequencies. Glucose concentrations derive from the assay viscosity as determined by the deflection of a 50 nm TiN actuator beam excited by quasi-electrostatic attraction. The GHz detection scheme does not rely on the resonant oscillation of the actuator and safely operates in fluidic environments. This property favorably combines with additional characteristics—(i) measurement times of less than a second, (ii) usage of biocompatible TiN for bio-milieu exposed parts, and (iii) small volume of less than 1 mm—to qualify the sensor chip as key component in a continuous glucose monitor for the interstitial tissue.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/24/1.4811351.html;jsessionid=5mplpkdfp1lng.x-aip-live-02?itemId=/content/aip/journal/jap/113/24/10.1063/1.4811351&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Sensing glucose concentrations at GHz frequencies with a fully embedded Biomicro-electromechanical system (BioMEMS)
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/24/10.1063/1.4811351
10.1063/1.4811351
SEARCH_EXPAND_ITEM