banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Electrical control of the spin polarization of a current in “pure-carbon” systems based on partially hydrogenated graphene nanoribbon
Rent this article for


Image of FIG. 1.
FIG. 1.

(a) Schematic illustration of two-terminal device constructed by infinite 5-ZGNR. (b)–(d) The corresponding spin-dependent bandstructure, density of states, and transmission spectrum for 5-ZGNR in FM state, respectively. The zero of energy is set to be the Fermi level, which is defined as the average of the Fermi levels of the two leads.

Image of FIG. 2.
FIG. 2.

(a)–(h) Spin-dependent electronic transmission spectra for (a) bare and (b)–(h) partially hydrogenated 5-ZGNRs with different hydrogenation geometries. The left and right panels show the corresponding configurations and their isovalue surfaces of the spin charge density magnetization (i.e., up-spin charge density minus down-spin charge density). Red (dark) and blue (light) represent positive (spin-up polarized) and negative (spin-down polarized) values, respectively, with the isovalue of . The isovalue surfaces exhibit spherical geometries around atoms, where large size indicates large magnetization (near-edge atoms) and small size indicates small magnetization (inner atoms). For clarity, balls for atoms are not shown, and the shaded region is passivated by hydrogen atoms. (i) Take the configuration in (h) as an example to show the structural optimization. The scattering region shown in (i) is considered to be a periodic configuration for optimization, and the unit cell is shown by the gray and solid box. During the optimization, the atoms outside the red and dashed box are frozen, meanwhile, the atoms within that box (including the shaded region) are fully relaxed until all the forces are less than 0.02 eV/Å. This would stabilize the whole hydrogenation area (shaded region), including its edges. After optimization, the left and right sides of the scattering region are contacted with semi-infinite GNR electrodes to calculate the transport properties. (j) The three-dimensional and enlarged views of the configuration in (h).

Image of FIG. 3.
FIG. 3.

Left and right panels show the structures of 5-ZGNRs with two different hydrogenation geometries [(a) and (b)], corresponding spin charge density magnetizations [(c) and (d)] and transmission spectra [(e) and (f)].

Image of FIG. 4.
FIG. 4.

(a) Schematic illustration (top and side views) of three-terminal ZGNR device with rectangular hydrogenation in FM state. The carbon atoms within the middle shaded region are passivated by hydrogen atoms. (b)–(d) The corresponding spin-dependent transmission spectra for , 0.8, and −0.8 V, respectively.

Image of FIG. 5.
FIG. 5.

(a) The spin-dependent currents under bias of 10 mV between left and right leads vary with for the device shown in Fig. 4 . (b) The corresponding spin polarization of the current varies with .

Image of FIG. 6.
FIG. 6.

The spin-dependent transmission spectra for two-terminal N-ZGNR device with different widths (N) and different hydrogenation geometries. Left and right panels give out corresponding structures [only the scattering region is shown, and its left and right are connected with semi-infinite bare ZGNRs like Fig. 1(a) ]. The carbon atoms within the shaded region are passivated by hydrogen atoms. (a)–(d) for  = 5, (e)–(g) for  = 4, and (h)–(j) for  = 6, 7, and 8, respectively.


Generic image for table
Table I.

Transmission eigenchannels and the corresponding eigenvalues for bare [Fig. 1(a) ] and partially hydrogenated 5-ZGNR [Fig. 3(b) ].


Article metrics loading...


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electrical control of the spin polarization of a current in “pure-carbon” systems based on partially hydrogenated graphene nanoribbon