1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Mechanisms of boron diffusion in silicon and germanium
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/3/10.1063/1.4763353
1.
1. N. E. B. Cowern, K. T. F. Janssen, G. F. A. van de Walle, and D. J. Gravesteijn, Phys. Rev. Lett. 65, 2434 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.2434
2.
2. B. Sadigh, T. J. Lenosky, S. K. Theiss, M.-J. Caturla, T. Diaz de la Rubia, and M. A. Foad, Phys. Rev. Lett. 83, 4341 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.4341
3.
3. W. Windl, M. M. Bunea, R. Stumpf, S. T. Dunham, and M. P. Masquelier, Phys. Rev. Lett. 83, 4345 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.4345
4.
4. P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, C. S. Rafferty, G. H. Gilmer, M. Jaraiz, J. M. Poate, H. S. Luftman, and T. E. Haynes, J. Appl. Phys. 81, 6031 (1997).
http://dx.doi.org/10.1063/1.364452
5.
5. See www.itrs.net for future technology requirements of the semiconductor industry.
6.
6. F. Severac, F. Cristiano, E. Bedel-Pereira, P. F. Fazzini, J. Boucher, W. Lerch, and S. Hamm, J. Appl. Phys. 107, 123711 (2010).
http://dx.doi.org/10.1063/1.3446844
7.
7. W. Lerch, S. Paul, J. Niess, S. McCoy, J. Gelpey, F. Cristiano, F. Severac, P. Fazzini, A. Martinez-Limia, P. Pichler, H. Kheyrandish, and D. Bolze, Mater. Sci. Eng. B 154-155, 3 (2008).
http://dx.doi.org/10.1016/j.mseb.2008.08.017
8.
8. B. J. Pawlak, W. Vandervorst, A. J. Smith, N. E. B. Cowern, B. Colombeau, and X. Pages, Appl. Phys. Lett. 86, 101913 (2005).
http://dx.doi.org/10.1063/1.1882756
9.
9. K. Sekar, W. Krull, K. Huet, C. Boniface, and J. Venturini, AIP Conf. Proc. 1321, 101104 (2011).
http://dx.doi.org/10.1063/1.3548321
10.
10. V. C. Venezia et al., Mater. Sci. Eng. B 124-125, 245 (2005).
http://dx.doi.org/10.1016/j.mseb.2005.08.079
11.
11. S. Mirabella et al., Phys. Rev. Lett. 100, 155901 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.155901
12.
12. A. Mattoni and L. Colombo, Phys. Rev. B 69, 045204 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.045204
13.
13. D. De Salvador, G. Bisognin, M. Di Marino, E. Napolitani, A. Carnera, H. Graoui, M. A. Foad, F. Boscherini, and S. Mirabella, Appl. Phys. Lett. 89, 241901 (2006).
http://dx.doi.org/10.1063/1.2402905
14.
14. D. De Salvador, E. Napolitani, G. Bisognin, M. Pesce, A. Carnera, E. Bruno, G. Impellizzeri, and S. Mirabella, Phys. Rev. B 81, 045209 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.045209
15.
15. N. E. B. Cowern et al., arXiv:1210.2902v2 (2012).
16.
16. C. Claeys and E. Simoen, Germanium-Based Technologies—From Materials to Devices (Elsevier, Amsterdam, 2007).
17.
17. S. Uppal et al., J. Appl. Phys. 90, 4293 (2001).
http://dx.doi.org/10.1063/1.1402664
18.
18. H. Bracht and S. Brotzmann, Mater. Sci. Semicond. Process. 9, 471 (2006) and references therein.
http://dx.doi.org/10.1016/j.mssp.2006.08.041
19.
19. S. Mirabella et al., Appl. Phys. Lett. 92, 251909 (2008).
http://dx.doi.org/10.1063/1.2949088
20.
20. P. A. Stolk et al., J. Appl. Phys. 75, 7266 (1994) and references therein.
http://dx.doi.org/10.1063/1.356662
21.
21. L. Pelaz et al., J. Appl. Phys. 96, 5947 (2004) and references therein.
http://dx.doi.org/10.1063/1.1808484
22.
22. S. T. Pantelides, Phys. Rev. Lett. 57, 2979 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.2979
23.
23. P. C. Kelires and J. Tersoff, Phys. Rev. Lett. 61, 562 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.562
24.
24. R. Biswas et al., Phys. Rev. Lett. 63, 1491 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1491
25.
25. M. Stutzmann and D. K. Biegelsen, Phys. Rev. B 40, 9834 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.9834
26.
26. S. Roorda, S. Doorn, W. C. Sinke, P. M. L. O. Scholte, and E. vanLoenen, Phys. Rev. Lett. 62, 1880 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.1880
27.
27. S. Roorda et al., Phys. Rev. B 44, 3702 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.3702
28.
28. K. Laaziri et al., Phys. Rev. Lett. 82, 3460 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3460
29.
29. J. M. Poate et al., Nucl. Instrum. Methods Phys. Res. B 19/20, 480 (1987).
http://dx.doi.org/10.1016/S0168-583X(87)80095-2
30.
30. A. Polman et al., Appl. Phys. Lett. 57, 1230 (1990).
http://dx.doi.org/10.1063/1.103493
31.
31. S. Coffa et al., Phys. Rev. B 45, 8355 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.8355
32.
32. I. Santos et al., Phys. Rev. B 83, 153201 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.153201
33.
33. R. Duffy et al., Appl. Phys. Lett. 84, 4283 (2004).
http://dx.doi.org/10.1063/1.1751225
34.
34. G. N. Graves et al., Phys. Rev. B 45, 6517 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.6517
35.
35. G. N. Graves et al., Nucl. Instrum. Methods Phys. Res. B 80/81, 966 (1993).
http://dx.doi.org/10.1016/0168-583X(93)90717-K
36.
36. G. Muller et al., Philos. Mag. B 69, 177 (1994).
http://dx.doi.org/10.1080/01418639408240102
37.
37. G. Muller et al., Philos. Mag. B 73, 245 (1996).
http://dx.doi.org/10.1080/01418639609365822
38.
38. G. Muller, Curr. Opin. Solid State Mater. Sci. 3, 364 (1998).
http://dx.doi.org/10.1016/S1359-0286(98)80046-6
39.
39. J. M. Jacques et al., Appl. Phys. Lett. 82, 3469 (2003).
http://dx.doi.org/10.1063/1.1576508
40.
40. P. M. Fahey, P. B. Griffin, and J. D. Plummer, Rev. Mod. Phys. 61, 289 (1989).
http://dx.doi.org/10.1103/RevModPhys.61.289
41.
41. S. M. Myers and D. M. Follstaedt, J. Appl. Phys. 79, 1337 (1996).
http://dx.doi.org/10.1063/1.361031
42.
42. N. Bernstein, J. L. Feldman, and M. Fornari, Phys. Rev. B 74, 205202 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.205202
43.
43. I. Martin-Bragado and N. Zographos, Solid-State Electron. 55, 25 (2011).
http://dx.doi.org/10.1016/j.sse.2010.08.008
44.
44. R. B. Fair and P. N. Pappas, J. Electrochem. Soc. 122, 1241 (1975).
http://dx.doi.org/10.1149/1.2134434
45.
45. S. M. Hu, J. Appl. Phys. 45, 1567 (1974).
http://dx.doi.org/10.1063/1.1663459
46.
46. D. A. Antoniadis and I. Moskowitz, J. Appl. Phys. 53, 6788 (1982).
http://dx.doi.org/10.1063/1.330067
47.
47. U. Goesele and T. Y. Tan, in Defects in Semiconductors II, edited by S. Mahajan and J. W. Corbett (North-Holland, New York, 1983), p. 45.
48.
48. T. Y. Tan and U. Goesele, Appl. Phys. A 37, 1 (1985).
http://dx.doi.org/10.1007/BF00617863
49.
49. H.-J. Gossmann, T. E. Haynes, P. A. Stolk, D. C. Jacobson, G. H. Gilmer, J. M. Poate, H. S. Luftam, T. K. Mogi, and M. O. Thompson, Appl. Phys. Lett. 71, 3862 (1997).
http://dx.doi.org/10.1063/1.120527
50.
50. A. Ural, P. B. Griffin, and J. D. Plummer, Appl. Phys. Lett. 73, 1706 (1998).
http://dx.doi.org/10.1063/1.122252
51.
51. U. Gösele, P. Laveant, R. Scholz, N. Engler, and P. Werner, in Si Front-End Processing-Physics and Technology of Dopant-Defect Interactions II, Mater. Res. Soc. Symp. Proc. Vol. 610, edited by A. Agarwal et al. (Material Research Society, Warrendale, 2000).
52.
52. C. S. Nichols, C. G. Van de Walle, and S. T. Pantelides, Phys. Rev. Lett. 62, 1049 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.1049
53.
53. J. Zhu, T. Diaz de la Rubia, L. H. Yang, C. Mailhiot, and G. H. Gilmer, Phys. Rev. B 54, 4741 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.4741
54.
54. P. Alippi, L. Colombo, P. Ruggerone, A. Sieck, G. Seifert, and Th. Frauenheim, Phys. Rev. B 64, 075207 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.075207
55.
55. I. Martin-Bragado, P. Castrillo, M. Jaraiz, R. Pinacho, J. E. Rubio, and J. Barbolla, Phys. Rev. B 72, 35202 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.035202
56.
56. N. E. B. Cowern, G. F. A. van de Walle, D. J. Gravesteijn, and C. J. Vriezema, Phys. Rev. Lett. 67, 212 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.212
57.
57. M. D. Giles, J. Electrochem. Soc. 138, 1160 (1991).
http://dx.doi.org/10.1149/1.2085734
58.
58. D. J. Eaglesham, P. A. Stolk, H.-J. Gossmann, T. E. Haynes, and J. M. Poate, Nucl. Instrum. Methods B 106, 1919 (1995).
http://dx.doi.org/10.1016/0168-583X(95)00703-2
59.
59. M. E. Law, G. H. Gilmer, and M. Jaraìz, Mater. Res. Soc. Bull. 25, 45 (2000).
http://dx.doi.org/10.1557/mrs2000.98
60.
60. W. K. Hofker, H. W. Werner, D. P. Oosthoek, and H. A. M. de-Grefte, Appl. Phys. 2, 165 (1973).
http://dx.doi.org/10.1007/BF00889509
61.
61. W. K. Hofker, H. W. Werner, D. P. Oosthoek, and N. J. Cowman, Appl. Phys. 4, 125 (1974).
http://dx.doi.org/10.1007/BF00884267
62.
62. A. E. Michel, W. Rausch, P. A. Ronsheim, and R. H. Kasti, Appl. Phys. Lett. 50, 416 (1987).
http://dx.doi.org/10.1063/1.98160
63.
63. N. E. B. Cowern, G. F. A. Van de Walle, P. C. Zalm, and D. W. E. Vandenhoudt, Appl. Phys. Lett. 65, 2981 (1994).
http://dx.doi.org/10.1063/1.112483
64.
64. D. J. Eaglesham, P. A. Stolk, H. J. Gossmann, and J. M. Poate, Appl. Phys. Lett. 65, 2305 (1994).
http://dx.doi.org/10.1063/1.112725
65.
65. S. C. Jain, W. Schoenmaker, R. Lindsay, P. A. Stolk, S. Decoutere, M. Willander, and H. E. Maes, J. Appl. Phys. 91, 8919 (2002).
http://dx.doi.org/10.1063/1.1471941
66.
66. D. De Salvador, E. Napolitani, S. Mirabella, G. Bisognin, G. Impellizzeri, A. Carnera, and F. Priolo, Phys. Rev. Lett. 97, 255902 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.255902
67.
67. E. Napolitani, D. De Salvador, R. Storti, A. Carnera, S. Mirabella, and F. Priolo, Phys. Rev. Lett. 93, 055901 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.055901
68.
68. E. Napolitani, D. De Salvador, M. Pesce, A. Carnera, S. Mirabella, and F. Priolo, J. Vac. Sci. Technol. B 24, 394 (2006).
http://dx.doi.org/10.1116/1.2137335
69.
69. P. Pichler, Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon, edited by S. Selberherr (Springer, NewYork, 2004).
70.
70. H. Bracht, H. H. Silvestri, I. D. Sharp, and E. E. Haller, Phys. Rev. B 75, 035211 (2007) and references therein.
http://dx.doi.org/10.1103/PhysRevB.75.035211
71.
71. W. Windl, Appl. Phys. Lett. 98, 202104 (2008).
http://dx.doi.org/10.1063/1.2936081
72.
72. S. Solmi, F. Baruffaldi, and R. Canteri, J. Appl. Phys. 69, 2135 (1991).
http://dx.doi.org/10.1063/1.348740
73.
73. N. E. B. Cowern, K. T. F. Janssen, H. F. F. Jobs, J. Appl. Phys. 66, 6191 (1990).
http://dx.doi.org/10.1063/1.346910
74.
74. N. E. B. Cowern, A. Cacciato, J. S. Custer, F. W. Saris, and W. Vanderwost, Appl. Phys. Lett. 68, 1150 (1996).
http://dx.doi.org/10.1063/1.115706
75.
75. T. E. Haynes, D. J. Eaglesham, P. A. Stolk, H.-J. Gossmann, D. C. Jacobson, and J. M. Poate, Appl. Phys. Lett. 69, 1376 (1996).
http://dx.doi.org/10.1063/1.117441
76.
76. M. B. Huang and I. V. Mitchell, J. Appl. Phys. 85, 174 (1999).
http://dx.doi.org/10.1063/1.369466
77.
77. G. Mannino, N. E. B. Cowern, F. Roozeboom, and J. G. M. Van Berkum, Appl. Phys. Lett. 76, 855 (2000).
http://dx.doi.org/10.1063/1.125607
78.
78. S. Solmi, M. Bersani, M. Sbetti, J. Lundsgaard Hansen, and A. Nylandsted Larsen, J. Appl. Phys. 88, 4547 (2000).
http://dx.doi.org/10.1063/1.1311826
79.
79. L. Pelaz, M. Jaraiz, G. H. Gilmer, H.-J. Gossmann, C. S. Rafferty, D. J. Eaglesham, and J. M. Poate, Appl. Phys. Lett. 70, 2285 (1997).
http://dx.doi.org/10.1063/1.118839
80.
80. L. Pelaz, G. H. Gilmer, H.-J. Gossmann, C. S. Rafferty, M. Jaraiz, and J. Barbolla, Appl. Phys. Lett. 74, 3657 (1999).
http://dx.doi.org/10.1063/1.123213
81.
81. W. Luo, P. B. Rasband, P. Clancy, and B. W. Roberts, J. Appl. Phys. 84, 2476 (1998).
http://dx.doi.org/10.1063/1.368451
82.
82. M. J. Caturla, M. D. Johnson, and T. D. de la Rubia, Appl. Phys. Lett. 72, 2736 (1998).
http://dx.doi.org/10.1063/1.121075
83.
83. X.-Y. Liu, W. Windl, and M. P. Masquelier, Appl. Phys. Lett. 77, 2018 (2000).
http://dx.doi.org/10.1063/1.1313253
84.
84. T. J. Lenosky, B. Sadigh, S. K. Theiss, M. J. Caturla, and T. D. de la Rubia, Appl. Phys. Lett. 77, 1834 (2000).
http://dx.doi.org/10.1063/1.1310627
85.
85. W. Luo and P. Clancy, J. Appl. Phys. 89, 1596 (2001).
http://dx.doi.org/10.1063/1.1335644
86.
86. S. Chakravarti and S. T. Dunham, J. Appl. Phys. 89, 3650 (2001).
http://dx.doi.org/10.1063/1.1352576
87.
87. P. Alippi, P. Ruggerone, and L. Colombo, Phys. Rev. B 69, 125205 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.125205
88.
88. M. Cogoni, A. Mattoni, B. P. Uberuaga, A. F. Voter, and L. Colombo Appl. Phys. Lett. 87, 191912 (2005).
http://dx.doi.org/10.1063/1.2130385
89.
89. M. Aboy, L. Pelaz, L. A. Marques, P. Lopez, and J. Barbolla, J. Appl. Phys. 97, 103520 (2005).
http://dx.doi.org/10.1063/1.1904159
90.
90. F. Cristiano, X. Hebras, N. Cherkashin, A. Claverie, W. Lerch, and S. Paul, Appl. Phys. Lett. 83, 5407 (2003).
http://dx.doi.org/10.1063/1.1637440
91.
91. S. Boninelli, S. Mirabella, E. Bruno, F. Priolo, F. Cristiano, A. Claverie, D. De Salvador, G. Bisognin, and E. Napolitani, Appl. Phys. Lett. 91, 031905 (2007).
http://dx.doi.org/10.1063/1.2757145
92.
92. E. Bruno, S. Mirabella, G. Impellizzeri, F. Priolo, F. Giannazzo, V. Raineri, E. Napolitani, Appl. Phys. Lett. 87, 133110 (2005).
http://dx.doi.org/10.1063/1.2061867
93.
93. A. D. Lilak, M. E. Law, L. Radic, K. S. Jones, and M. Clark, Appl. Phys. Lett. 81, 2244 (2002).
http://dx.doi.org/10.1063/1.1508438
94.
94. F. Severac et al., J. Appl. Phys. 105, 043711 (2009).
http://dx.doi.org/10.1063/1.3079505
95.
95. T. Clarysse, J. Bogdanowicz, J. Goossens, A. Moussa, E. Rosseel, W. Vandervorst, D. H. Petersen, R. Lin, P. F. Nielsen, O. Hansen, G. Merklin, N. S. Bennett, and N. E. B. Cowern, Mater. Sci. Eng. B 154-155, 24 (2008).
http://dx.doi.org/10.1016/j.mseb.2008.09.038
96.
96. M. Aboy, L. Pelaz, E. Bruno, S. Mirabella, and S. Boninelli, J. Appl. Phys. 110, 073524 (2011).
http://dx.doi.org/10.1063/1.3639280
97.
97. S. Mirabella, E. Bruno, F. Priolo, D. De Salvador, E. Napolitani, A. V. Drigo, and A. Carnera, Appl. Phys. Lett. 83, 680 (2003).
http://dx.doi.org/10.1063/1.1594264
98.
98. D. De Salvador, E. Napolitani, G. Bisognin, A. Carnera, E. Bruno, S. Mirabella, G. Impellizzeri, F. Priolo, Appl. Phys. Lett. 87, 221902 (2005).
http://dx.doi.org/10.1063/1.2126128
99.
99. F. A. Trumbore, Bell Syst. Technol. J. 39, 205 (1960).
100.
100. J. Vanhellemont and E. Simoen, J. Electrochem. Soc. 154, H572 (2007).
http://dx.doi.org/10.1149/1.2732221
101.
101. A. Satta, E. Simoen, T. Clarisse, T. Janssens, A. Benedetti, B. De Jaeger, M. Meuris, and W. Vandervorst, Appl. Phys. Lett. 87, 172109 (2005).
http://dx.doi.org/10.1063/1.2117631
102.
102. Y.-L. Chao, S. Prussin, J. C. S. Woo, and R. Scholz, Appl. Phys. Lett. 87, 142102 (2005).
http://dx.doi.org/10.1063/1.2076440
103.
103. L. A. Edelman, M. S. Phen, K. S. Jones, R. G. Elliman, and L. M. Rubin, Appl. Phys. Lett. 92, 172108 (2008).
http://dx.doi.org/10.1063/1.2919085
104.
104. S. Uppal et al., J. Appl. Phys. 96, 1376 (2004).
http://dx.doi.org/10.1063/1.1766090
105.
105. A. Chroneos, B. P. Uberuaga, and R. W. Grimes, J. Appl. Phys. 102, 083707 (2007).
http://dx.doi.org/10.1063/1.2798875
106.
106. C. Janke, R. Jones, S. Oberg, and P. R. Briddon, Phys. Rev. B 77, 075208 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075208
107.
107. P. Delugas and V. Fiorentini, Phys. Rev. B 69, 085203 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.085203
108.
108. E. Bruno, S. Mirabella, G. G. Scapellato, G. Impellizzeri, A. Terrasi, F. Priolo, E. Napolitani, D. De Salvador, M. Mastromatteo, and A. Carnera, Phys. Rev. B 80, 033204 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.033204
109.
109. H. Bracht, S. Schneider, J. N. Klug, C. Y. Liao, J. Lundsgaard Hansen, E. E. Haller, A. Nylandsted Larsen, D. Bougeard, M. Posselt, and C. Wündisch, Phys. Rev. Lett. 103, 255501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.255501
110.
110. E. Napolitani, G. Bisognin, E. Bruno, M. Mastromatteo, G. G. Scapellato, S. Boninelli, D. De Salvador, S. Mirabella, C. Spinella, A. Carnera, and F. Priolo, Appl. Phys. Lett. 96, 201906 (2010).
http://dx.doi.org/10.1063/1.3429084
111.
111. S. Koffel, N. Cherkashin, F. Houdellier, M. J. Hytch, G. Benassayag, P. Scheiblin, and A. Claverie, J. Appl. Phys. 105, 126110 (2009).
http://dx.doi.org/10.1063/1.3153985
112.
112. G. Bisognin, S. Vangelista, and E. Bruno, Mater. Sci. Eng., B 154-155, 64 (2008).
http://dx.doi.org/10.1016/j.mseb.2008.08.002
113.
113. S. Decoster and A. Vantomme, J. Phys. D: Appl. Phys. 42, 165404 (2009).
http://dx.doi.org/10.1088/0022-3727/42/16/165404
114.
114. S. Uppal et al., Physica B 308-310, 525528 (2001).
http://dx.doi.org/10.1016/S0921-4526(01)00752-9
115.
115. J. F. Ziegler, J. P. Biresack, and U. Littmark, The Stopping and the Range of Ions in Solids (Pergamon, New York, 1985).
116.
116. E. Bruno, S. Mirabella, G. G. Scapellato, G. Impellizzeri, A. Terrasi, F. Priolo, E. Napolitani, D. De Salvador, M. Mastromatteo, and A. Carnera, Thin Solid Films 518, 2386 (2010).
http://dx.doi.org/10.1016/j.tsf.2009.09.173
117.
117. G. G. Scapellato, S. Boninelli, E. Napolitani, E. Bruno, A. J. Smith, S. Mirabella, M. Mastromatteo, D. De Salvador, R. Gwilliam, C. Spinella, A. Carnera, and F. Priolo, Phys. Rev. B 84, 024104 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.024104
118.
118. G. G. Scapellato, E. Bruno, A. J. Smith, E. Napolitani, D. De Salvador, S. Mirabella, M. Mastromatteo, A. Carnera, R. Gwilliam, and F. Priolo, Nucl. Instrum. Methods Phys. Res. B 282, 811 (2012).
http://dx.doi.org/10.1016/j.nimb.2011.08.041
119.
119. H. Kageshima, M. Uematsu, and K. Shiraishi, Microelectron. Eng. 59, 301 (2001).
http://dx.doi.org/10.1016/S0167-9317(01)00614-1
120.
120. A. Molle, Md. N. K. Bhuiyan, G. Tallarida, and M. Fanciulli, Appl. Phys. Lett. 89, 083504 (2006).
http://dx.doi.org/10.1063/1.2337543
121.
121. S. K. Wang, K. Kita, C. H. Lee, T. Tabata, T. Nishimura, K. Nagashio, and A. Toriumi, J. Appl. Phys. 108, 054104 (2010).
http://dx.doi.org/10.1063/1.3475990
122.
122. N. Cowern and C. Rafferty, Mater. Res. Soc. Bull. 25, 39 (2000).
http://dx.doi.org/10.1557/mrs2000.97
123.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/3/10.1063/1.4763353
Loading
/content/aip/journal/jap/113/3/10.1063/1.4763353
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/3/10.1063/1.4763353
2013-01-16
2014-08-28

Abstract

B migration in Si and Ge matrices raised a vast attention because of its influence on the production of confined, highly p- doped regions, as required by the miniaturization trend. In this scenario, the diffusion of B atoms can take place under severe conditions, often concomitant, such as very large concentration gradients, non-equilibrium point defect density, amorphous-crystalline transition, extrinsic doping level, co-doping, B clusters formation and dissolution, ultra-short high-temperature annealing. In this paper, we review a large amount of experimental work and present our current understanding of the B diffusion mechanism, disentangling concomitant effects and describing the underlying physics. Whatever the matrix, B migration in amorphous (α-) or crystalline (c-) Si, or c-Ge is revealed to be an indirect process, activated by point defects of the hosting medium. In α-Si in the 450-650 °C range, B diffusivity is 5 orders of magnitude higher than in c-Si, with a transient longer than the typical amorphous relaxation time. A quick B precipitation is also evidenced for concentrations larger than 2 × 1020 B/cm3. B migration in α-Si occurs with the creation of a metastable mobile B, jumping between adjacent sites, stimulated by dangling bonds of α-Si whose density is enhanced by B itself (larger B density causes higher B diffusivity). Similar activation energies for migration of B atoms (3.0 eV) and of dangling bonds (2.6 eV) have been extracted. In c-Si, B diffusion is largely affected by the Fermi level position, occurring through the interaction between the negatively charged substitutional B and a self-interstitial (I) in the neutral or doubly positively charged state, if under intrinsic or extrinsic (p-type doping) conditions, respectively. After charge exchanges, the migrating, uncharged BI pair is formed. Under high n-type doping conditions, B diffusion occurs also through the negatively charged BI pair, even if the migration is depressed by Coulomb pairing with n-type dopants. The interplay between B clustering and migration is also modeled, since B diffusion is greatly affected by precipitation. Small (below 1 nm) and relatively large (5-10 nm in size) BI clusters have been identified with different energy barriers for thermal dissolution (3.6 or 4.8 eV, respectively). In c-Ge, B motion is by far less evident than in c-Si, even if the migration mechanism is revealed to be similarly assisted by Is. If Is density is increased well above the equilibrium (as during ion irradiation), B diffusion occurs up to quite large extents and also at relatively low temperatures, disclosing the underlying mechanism. The lower B diffusivity and the larger activation barrier (4.65 eV, rather than 3.45 eV in c-Si) can be explained by the intrinsic shortage of Is in Ge and by their large formation energy. B diffusion can be strongly enhanced with a proper point defect engineering, as achieved with embedded GeO2 nanoclusters, causing at 650 °C a large Is supersaturation. These aspects of B diffusion are presented and discussed, modeling the key role of point defects in the two different matrices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/3/1.4763353.html;jsessionid=u0tr8esarep4.x-aip-live-03?itemId=/content/aip/journal/jap/113/3/10.1063/1.4763353&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Mechanisms of boron diffusion in silicon and germanium
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/3/10.1063/1.4763353
10.1063/1.4763353
SEARCH_EXPAND_ITEM