1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Experimental demonstration of direct terahertz detection at room-temperature in AlGaN/GaN asymmetric nanochannels
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/3/10.1063/1.4775406
1.
1. Sensing with THz Radiation, edited by D. Mittleman (Springer-Verlag, Berlin, 2003).
2.
2. R. Appleby and H. B. Wallace, IEEE Trans. Antennas Propag. 55, 2944 (2007).
http://dx.doi.org/10.1109/TAP.2007.908543
3.
3. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, J. Opt. Soc. B 7, 2006 (1990).
http://dx.doi.org/10.1364/JOSAB.7.002006
4.
4. M. Tonouchi, Nat. Photonics 1(2 ), 97105 (2007).
http://dx.doi.org/10.1038/nphoton.2007.3
5.
5. M. Feiginov, C. Sydlo, O. Cojocari, and Peter Meissner, Appl. Phys. Lett. 99, 233506 (2011).
http://dx.doi.org/10.1063/1.3667191
6.
6. S. Hargreaves and R. A. J. Lewis, J. Mater. Sci.: Mater. Electron. 18(Suppl. 1 ), 299 (2007).
http://dx.doi.org/10.1007/s10854-007-9220-x
7.
7. N. Karpowicz, H. Zhong, J. Xu, K. I. Lin, J. S. Hwang, and X. C. Zhang, Proc. SPIE 5727, 132 (2005).
http://dx.doi.org/10.1117/12.590539
8.
8. A. Dobroiu, M. Yamashita, Y. N. Ohshima, Y. Morita, C. Otani, and K. Rawase, Appl. Opt. 43, 5637 (2004).
http://dx.doi.org/10.1364/AO.43.005637
9.
9. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, IEEE Photonics Technol. Lett. 18, 1415 (2006).
http://dx.doi.org/10.1109/LPT.2006.877220
10.
10. T. L. Hwang, S. E. Scharz, and D. B. Rutledge, Appl. Phys. Lett. 34, 773 (1979).
http://dx.doi.org/10.1063/1.90669
11.
11. E. N. Grossman and A. J. Miller, Proc. SPIE 5077, 62 (2003).
http://dx.doi.org/10.1117/12.488198
12.
12. H.-W. Hübers, IEEE J. Sel. Top. Quantum Electron. 14, 378 (2008).
http://dx.doi.org/10.1109/JSTQE.2007.913964
13.
13. M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, Nano Lett. 12, 96 (2012).
http://dx.doi.org/10.1021/nl2030486
14.
14. M. Dyakonov and M. S. Shur, Phys. Rev. Lett. 71, 2465 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.2465
15.
15. A. M. Song, M. Missous, P. Omling, A. R. Peaker, L. Samuelson, and W. Seifert, Appl. Phys. Lett. 83, 1881 (2003).
http://dx.doi.org/10.1063/1.1606881
16.
16. C. Balocco, A. M. Song, M. Aberg, A. Forchel, T. Gonzalez, J. Mateos, I. Maximov, M. Missous, A. Rezazadeh, J. Saijets, L. Samuelson, D. Wallin, K. Williams, L. Worshech, and H. Q. Xu, Nano Lett. 5, 1423 (2005).
http://dx.doi.org/10.1021/nl050779g
17.
17. C. Balocco, S. R. Kasjoo, X. F. Lu, L. Q. Zhang, Y. Alimi, S. Winnerl, and A. M. Song, Appl. Phys. Lett. 98, 223501 (2011).
http://dx.doi.org/10.1063/1.3595414
18.
18. A. Íñiguez-de-la-Torre, I. Íñiguez-de-la-Torre, J. Mateos, T. González, P. Sangaré, M. Faucher, B. Grimbert, V. Brandli, G. Ducournau, and C. Gaquière, J. Appl. Phys. 111, 113705 (2012).
http://dx.doi.org/10.1063/1.4724350
19.
19. J. Mateos, B. G. Vasallo, D. Pardo, and T. Gonzalez, Appl. Phys. Lett. 86, 212103 (2005).
http://dx.doi.org/10.1063/1.1931051
20.
20. J. Mateos, B. G. Vasallo, D. Pardo, T. González, J. S. Galloo, Y. Roelens, S. Bollaert, and A. Cappy, Nanotechnology 14, 117 (2003).
http://dx.doi.org/10.1088/0957-4484/14/2/303
21.
21. D. Sawdai, D. Pavlidis, and D. Cui, IEEE Trans. Electron Devices 46, 1302 (1999).
http://dx.doi.org/10.1109/16.772468
22.
22. S. J. Pearton and D. P. Norton, Plasma Processes Polym. 2, 16 (2005).
http://dx.doi.org/10.1002/ppap.200400035
23.
23. G. M. Dunn and M. J. Kearney, Semicond. Sci. Technol. 18, 794 (2003).
http://dx.doi.org/10.1088/0268-1242/18/8/313
24.
24. I. Iñiguez-de-la-Torre, J. Mateos, D. Pardo, A. M. Song, and T. Gonzalez, Appl. Phys. Lett. 94, 093512 (2009).
http://dx.doi.org/10.1063/1.3095845
25.
25. R. G. Wilson, C. B. Vartuli, C. R. Abernathy, S. J. Pearton, and J. M. Zavada, Solid-State Electron. 38, 1329 (1995).
http://dx.doi.org/10.1016/0038-1101(94)00251-A
26.
26. B. Boudart, Y. Guhel, J. C. Pesant, P. Dhamelincourt, and M. A. Poisson, J. Raman Spectrosc. 33, 283 (2002).
http://dx.doi.org/10.1002/jrs.856
27.
27. J. F. Ziegler and J. P. Biersack, The Stopping and Range of Ions in Matter (Pergamon, New-York, 1977), Vols. 2–6.
28.
28. G. Farhi, E. Saracco, J. Beerens, D. Morris, S. A. Charlebois, and J. P. Raskin, Solid-State Electron. 51, 1245 (2007).
http://dx.doi.org/10.1016/j.sse.2007.07.013
29.
29. L. A. Majewski, C. Balocco, R. King, S. Whitelegg, and A. M. Song, Mater. Sci. Eng., B 147, 289 (2008).
http://dx.doi.org/10.1016/j.mseb.2007.08.031
30.
30. J. Kettle, M. Perks, and R. T. Hoyle, Electron. Lett. 45, 79 (2009).
http://dx.doi.org/10.1049/el:20092309
31.
31. V. Kaushal, I. Iñiguez-de-la-Torre, T. González, J. Mateos, B. Lee, V. Misra, and M. Margala, IEEE Electron Device Lett. 33, 1120 (2012).
http://dx.doi.org/10.1109/LED.2012.2197669
32.
32. A. Van der Ziel, Noise: Sources, Characterization, Measurement (Prentice-Hall, Englewood Cliff, NJ, 1970).
33.
33. Q. Zhou, K.-Y. Wong, W. Chen, and K. J. Chen, IEEE Microw. Wirel. Compon. Lett. 20, 277 (2010).
http://dx.doi.org/10.1109/LMWC.2010.2045591
34.
34. M. Bareib, B. N. Tiwari, A. Hochmeister, G. Jegert, U. Zschieschang, H. Klauk, B. Fabel, G. Scarpa, G. Koblmuller, G. H. Bernstein, W. Porod, and P. Lugli, IEEE Trans. Microwave Theory Tech. 59, 2751 (2011).
http://dx.doi.org/10.1109/TMTT.2011.2160200
35.
35. A. M. Cowley and H. O. Sorensen, IEEE Trans. Microwave Theory Tech. 14, 588 (1966).
http://dx.doi.org/10.1109/TMTT.1966.1126337
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/3/10.1063/1.4775406
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Three-dimensional geometry of the SSDs. (b) “Top view” geometry as considered in the MC simulations.

Image of FIG. 2.

Click to view

FIG. 2.

SEM view of an array of 16 nanochannels.

Image of FIG. 3.

Click to view

FIG. 3.

Comparison of the measured I-V curve (blue stars) with the one obtained with MC simulation (black circles) corresponding to the device shown in the inset (SEM view: the length and width of the channel are about 1 μm and 90 nm, respectively).

Image of FIG. 4.

Click to view

FIG. 4.

Comparison of the measured (blue stars) and MC simulated extrinsic responsivity of one single GaN nanochannel. The MC results calculated using the experimental value of the characteristic impedance of the coplanar line accesses (plotted in the inset), shown in black symbols, can be compared with those obtained using real values for Z 0 corresponding to ideal lines of Z 0 = 50 Ω (white circles) and Z 0 = 75 Ω (white triangles). Measured responsivities in the 160–220 GHz range are affected by noise due to a power-limitation associated to the WR 5.1 extender used as a source.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Dependence of the zero-bias conductance as a function of the projected width, W, of the ion implanted SSDs. (b) Comparison of the I-V curves of arrays of 16 ion implanted (W = 200 nm) and etched (W = 90 nm) SSDs for approximately the same WEFF of about 30 nm.

Image of FIG. 6.

Click to view

FIG. 6.

Zero bias intrinsic responsivity of arrays of 16 implanted SSDs withdifferent projected channel widths W, from 150 nm to 200 nm. Measurements for the array of etched SSDs with W = 90 nm are also shown for comparison.

Image of FIG. 7.

Click to view

FIG. 7.

Comparison of the nonlinearity of the arrays of 16 SSDs fabricated by ion implantation (W = 200 nm, green line, and W = 175 nm, red line) and etching (W = 90 nm, black line). (a) I-V characteristic fitted with a fifth order-order polynomial, (b) resistance, (c) nonlinearity, and (d) curvature coefficient γ.

Loading

Article metrics loading...

/content/aip/journal/jap/113/3/10.1063/1.4775406
2013-01-15
2014-04-24

Abstract

The potentialities of AlGaN/GaN nanodevices as THz detectors are analyzed. Nanochannels with broken symmetry (so called self switching diodes) have been fabricated for the first time in this material system using both recess-etching and ion implantation technologies. The responsivities of both types of devices have been measured and explained using Monte Carlo simulations and non linear analysis. Sensitivities up to 100 V/W are obtained at 0.3 THz with a 280 pW/Hz1/2 noise equivalent power.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/3/1.4775406.html;jsessionid=2dsax1qa3paxo.x-aip-live-01?itemId=/content/aip/journal/jap/113/3/10.1063/1.4775406&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Experimental demonstration of direct terahertz detection at room-temperature in AlGaN/GaN asymmetric nanochannels
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/3/10.1063/1.4775406
10.1063/1.4775406
SEARCH_EXPAND_ITEM