Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/113/3/10.1063/1.4775768
1.
1. P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, Appl. Phys. Lett. 87, 243107 (2005).
http://dx.doi.org/10.1063/1.2146063
2.
2. R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y.-S. Oei, T. de Vries, E.-J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, Jpn. J. Appl. Phys. Part 1 45, 6544 (2006).
http://dx.doi.org/10.1143/JJAP.45.6544
3.
3. C. Gilfert, V. Ivanov, N. Oehl, M. Yacob, and J. P. Reithmaier, Appl. Phys. Lett. 98, 201102 (2011).
http://dx.doi.org/10.1063/1.3590727
4.
4. R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, IEEE Photon. Technol. Lett. 14, 735 (2002).
http://dx.doi.org/10.1109/LPT.2002.1003076
5.
5. S. Farad, Z. Wasilewski, J. McCaffrey, S. Raymond, and S. Charbonneau, Appl. Phys. Lett. 68, 991 (1996).
http://dx.doi.org/10.1063/1.116122
6.
6. H. Saito, K. Nishi, and S. Sugou, Appl. Phys. Lett. 78, 267 (2001).
http://dx.doi.org/10.1063/1.1339846
7.
7. M. Pelton and Y. Yamamoto, Phys. Rev. A 59, 2418 (1999).
http://dx.doi.org/10.1103/PhysRevA.59.2418
8.
8. E.-T. Kim, A. Madhukar, Z. Ye, and J. C. Campbell, Appl. Phys. Lett. 84, 3277 (2004).
http://dx.doi.org/10.1063/1.1719259
9.
9. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, Science 290, 2282 (2000).
http://dx.doi.org/10.1126/science.290.5500.2282
10.
10. Y. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Science 295, 102 (2002).
http://dx.doi.org/10.1126/science.1066790
11.
11. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, Nature 419, 594 (2002).
http://dx.doi.org/10.1038/nature01086
12.
12. R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, New J. Phys. 8, 29 (2006).
http://dx.doi.org/10.1088/1367-2630/8/2/029
13.
13. N. Akopian, N. A. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, Phys. Rev. Lett. 96, 130501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.130501
14.
14. R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, New J. Phys. 9, 315 (2007).
http://dx.doi.org/10.1088/1367-2630/9/9/315
15.
15. B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, Appl. Phys. Lett. 86, 101908 (2005).
http://dx.doi.org/10.1063/1.1872213
16.
16. M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, Appl. Phys. Lett. 86, 201111 (2005).
http://dx.doi.org/10.1063/1.1922573
17.
17. S. Ganapathy, X. Q. Zhang, I. Suemune, K. Uesugi, H. Kumano, B. J. Kim, and T.-Y. Seong, Jpn. J. Appl. Phys. Part 1 42, 5598 (2003).
http://dx.doi.org/10.1143/JJAP.42.5598
18.
18. E. S. Semenova, R. Hostein, G. Patriarche, O. Mauguin, L. Largeau, I. Robert-Philip, A. Beveratos, and A. Lemaîtria, J. Appl. Phys. 103, 103533 (2008).
http://dx.doi.org/10.1063/1.2927496
19.
19. M. Strauss, S. Höfling, and A. Forchel, Nanotechnology 20, 505601 (2009).
http://dx.doi.org/10.1088/0957-4484/20/50/505601
20.
20. J. Brault, M. Gendry, O. Marty, M. Pitaval, J. Olivares, G. Grenet, and G. Hollinger, Appl. Surf. Sci. 162–163, 584 (2000).
http://dx.doi.org/10.1016/S0169-4332(00)00254-3
21.
21. H. Yang, X. Mu, I. B. Zotova, Y. J. Ding, and G. J. Salamo, J. Appl. Phys. 91, 3925 (2002).
http://dx.doi.org/10.1063/1.1448862
22.
22. K. Akahane, N. Yamamoto, and M. Tsuchiya, Appl. Phys. Lett. 93, 041121 (2008).
http://dx.doi.org/10.1063/1.2968211
23.
23. S. Fréchengues, V. Drouot, N. Bertru, B. Lambert, A. Loualiche, and A. Le Corre, J. Cryst. Growth 201/202, 1180 (1999).
http://dx.doi.org/10.1016/S0022-0248(99)00022-6
24.
24. G. G. Tarasov, Yu. I. Mazur, Z. Ya. Zhuchenko, A. Maaßdorf, D. Mickel, J. W. Tomm, H. Kissel, C. Walther, and W. T. Masselink, J. Appl. Phys. 88, 7162 (2000).
http://dx.doi.org/10.1063/1.1323516
25.
25. Yu. I. Mazur, Zh. M. Wang, G. G. Tarasov, M. Xiao, G. J. Salamo, J. W. Tomm, V. Talalaev, and H. Kissel, Appl. Phys. Lett. 86, 063102 (2005).
http://dx.doi.org/10.1063/1.1861980
26.
26. S. Sanguinetti, M. Henini, Alessi M. Grassi, M. Capizzi, P. Frigeri, and S. Franchi, Phys. Rev. B 60, 8276 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.8276
27.
27. R. Heitz, I. Mukhametzhanov, A. Madhukar, A. Hoffmann, and D. Bimberg, J. Electron. Mater 28, 520 (1999).
http://dx.doi.org/10.1007/s11664-999-0105-z
28.
28. C. Hermannstädter, N. A. Jahan, J.-H. Huh, H. Sasakura, K. Akahane, M. Sasaki, and I. Suemune, New J. Phys. 14, 023037 (2012).
http://dx.doi.org/10.1088/1367-2630/14/2/023037
29.
29. I. N. Stranski and L. Krastanow, Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2B 146, 797 (1938).
30.
30. R. Arians, T. Kümmell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, Appl. Phys. Lett. 90, 101114 (2007).
http://dx.doi.org/10.1063/1.2710787
31.
31. E. W. Bogaart, J. E. M. Haverkort, T. Mano, T. Van Lippen, R. Nötzel, and J. H. Wolter, Phys. Rev. B 72, 195301 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.195301
32.
32. T. Kümmell, R. Weigand, G. Bacher, A. Forchel, K. Leonardi, D. Hommel, and H. Selke, Appl. Phys. Lett. 73, 3105 (1998).
http://dx.doi.org/10.1063/1.122687
33.
33. W.-M. Schulz, R. Roßbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, Phys. Rev. B 79, 035329 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.035329
34.
34. P. Dawson, O. Rubel, S. D. Baranovskii, K. Pierz, P. Thomas, and E. O. Göbel, Phys. Rev. B 72, 235301 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.235301
35.
35. G. Bacher, C. Hartmann, H. Schweizer, T. Held, G. Mahler, and H. Nickel, Phys. Rev. B 47, 9545 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.9545
36.
36. X. L. Zhou, Y. H. Chen, J. Q. Liu, B. Xu, X. L. Ye, and Z. G. Wang, Physica E 42, 2455 (2010).
http://dx.doi.org/10.1016/j.physe.2010.06.008
37.
37. P. Podemski, R. Kudraweic, J. Misiewicz, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel, Appl. Phys. Lett. 89, 151902 (2006).
http://dx.doi.org/10.1063/1.2358312
38.
38. Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, J. Appl. Phys. 84, 3342 (1998).
http://dx.doi.org/10.1063/1.368490
39.
39. S. Khatsevich, D. H. Rich, E.-T. Kim, and A. Madhukar, J. Appl. Phys. 97, 123520 (2005).
http://dx.doi.org/10.1063/1.1935743
40.
40. W. D. Yang, R. R. Lowe-Webb, H. Lee, and P. C. Sercel, Phys. Rev. B 56, 13314 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.13314
41.
41. M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, Opt. Exp. 16(17), 1277112776 (2008).
http://dx.doi.org/10.1364/OE.16.012771
42.
42. A. K. Nowak, E. Gallardo, D. Sarkar, D. Sanvitto, H. P. van der Meulen, J. M. Calleja, J. M. Ripalda, L. González, and Y. González, Physica E 42, 2509 (2010).
http://dx.doi.org/10.1016/j.physe.2010.02.025
43.
43. K. Akahane, N. Ohtani, Y. Okada, and M. Kawabe, J. Crystal Growth 245, 31 (2002).
http://dx.doi.org/10.1016/S0022-0248(02)01701-3
44.
44. K. Akahane, N. Yamamoto, N. Ohtani, Y. Okada, and M. Kawabe, J. Crystal Growth 256, 7 (2003).
http://dx.doi.org/10.1016/S0022-0248(03)01312-5
45.
45. K. Akahane, N. Yamamoto, and T. Kawanishi, Phys. Status Solidi A 208, 425 (2011).
http://dx.doi.org/10.1002/pssa.201000432
46.
46. G. Balakrishnan, S. Huang, T. J. Rotter, A. Stintz, L. R. Dawson, K. J. Malloy, H. Xu, and D. L. Huffaker, Appl. Phys. Lett. 84, 2058 (2004).
http://dx.doi.org/10.1063/1.1669067
47.
47. M. A. Herman and H. Sitter, Molecular Beam Epitaxy (Springer, Berlin, 1989).
48.
48. J. Brault, M. Gendry, G. Grenet, G. Hollinger, Y. Desières, and T. Benyattou, Appl. Phys. Lett. 73, 2932 (1998).
http://dx.doi.org/10.1063/1.122634
49.
49. S. Hinooda, S. Fréchengues, B. Lambert, S. Loualiche, M. Paillard, X. Marie, and T. Amand, Appl. Phys. Lett. 75, 3530 (1999).
http://dx.doi.org/10.1063/1.125378
50.
50. Z. L. Yuan, E. R. A. D. Foo, J. F. Fyan, D. J. Mowbray, M. S. Skolnick, and M. Hopkinson, Phys. Status Solidi A 178, 345 (2000).
http://dx.doi.org/10.1002/1521-396X(200003)178:1<345::AID-PSSA345>3.0.CO;2-Q
51.
51. G. Gelinas, A. Lanacer, R. Leonnelli, R. A. Masut, and P. J. Poole, Phys. Rev. B 81, 235426 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.235426
52.
52. E. C. Le Ru, J. Fack, and R. Murray, Phys. Rev. B 67, 245318 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.245318
53.
53. P. Michler, A. Hangleiter, M. Moser, M. Geiger, and F. Scholz, Phys. Rev. B 46, 7280 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.7280
54.
54. P. Ester, L. Lackmann, Vasconcellos S. Michaelis de, M. C. Hübner, A. Zrenner, and M. Bichler, Appl. Phys. Lett. 91, 111110 (2007).
http://dx.doi.org/10.1063/1.2784173
55.
55. W.-H. Chang, H. Lin, S.-Y. Wang, C.-H. Lin, S.-J. Cheng, and M.-C. Lee, Phys. Rev. B 77, 245314 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.245314
56.
56. C. Hermannstädter, G. J. Beirne, M. Witzany, M. Heldmaier, J. Peng, G. Bester, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, Phys. Rev. B 82, 085309 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085309
57.
57. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
http://dx.doi.org/10.1063/1.1368156
58.
58. P. Borri, W. Langbein, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, Phys. Rev. B 71, 115328 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.115328
59.
59. G. Rainò, G. Visimberga, A. Salhi, M. De Vittorio, and A. Passaseo, Appl. Phys. Lett. 90, 111907 (2007).
http://dx.doi.org/10.1063/1.2713347
60.
60. A. Patanè, A. Polimeni, M. Henini, L. Eaves, P. C. Main, and G. Hill, J. Appl. Phys. 85, 625 (1999).
http://dx.doi.org/10.1063/1.369417
61.
61. X. Mu, Y. J. Ding, B. S. Ooi, and M. Hopkinson, Appl. Phys. Lett. 89, 181924 (2006).
http://dx.doi.org/10.1063/1.2374801
62.
62. A. Melliti, M. A. Maaref, F. Hassen, M. Hijiri, H. Maaref, J. Tignon, and B. Sermage, Solid State Commun. 128, 213 (2003).
http://dx.doi.org/10.1016/j.ssc.2003.08.020
63.
63. G. Rainò, A. Salhi, V. Tasco, R. Intartagila, R. Congolani, Y. Rouillard, E. Tournié, and M. DeGiorgi, Appl. Phys. Lett. 92, 101931 (2008).
http://dx.doi.org/10.1063/1.2894586
64.
64. T. S. Shamirzaev, D. S. Abramkin, A. V. Nenashev, K. S. Zhuravlev, F. Trojánek, B. Dzurňák, and P. Malý, Nanotechnology 21, 155703 (2010).
http://dx.doi.org/10.1088/0957-4484/21/15/155703
65.
65. K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu, and Y. Arakawa, Physica E 26, 185 (2005).
http://dx.doi.org/10.1016/j.physe.2004.08.049
66.
66. J.-H. Huh, C. Hermannstädter, K. Akahane, H. Sasakura, N. A. Jahan, M. Sasaki, and I. Suemune, Jpn. J. Appl. Phys. Part 1 50, 06GG02 (2011).
http://dx.doi.org/10.1143/JJAP.50.06GG02
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/3/10.1063/1.4775768
Loading
/content/aip/journal/jap/113/3/10.1063/1.4775768
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/3/10.1063/1.4775768
2013-01-16
2016-05-28

Abstract

InAs quantum dots (QDs) grown on InP substrates can be used as light emitters in the telecommunication bands. In this paper, we present optical characterization of high-density circular quantum dots (QDots) grown on InP(311)B substrates and elongated dots (QDashes) grown on InP(001) substrates. We study the charge carrier transfer and luminescence thermal quenching mechanisms of the QDots and QDashes by investigating the temperature dependence of their time-integrated and time-resolved photoluminescence properties. This results in two different contributions of the thermal activation energies. The larger activation energies are attributed to the carrier escape to the barrier layer and the wetting layer (WL) from QDots and QDashes, respectively. The smaller activation energies are found to be originated from inter-dot/dash carrier transfer via coupled excited states. The variation of the average oscillator strength associated with the carrier re-distribution is discussed. The relation of the two activation energies is also quantitatively studied with the measurements of excited-state and ground-state energy separations. Finally, we show an approach to isolate individual quantum dots or dashes in a suitable nanostructure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/3/1.4775768.html;jsessionid=8KxgawARr5xAGaPQMHtbuNt3.x-aip-live-06?itemId=/content/aip/journal/jap/113/3/10.1063/1.4775768&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/113/3/10.1063/1.4775768&pageURL=http://scitation.aip.org/content/aip/journal/jap/113/3/10.1063/1.4775768'
Right1,Right2,Right3,