1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Plasma processing of low-k dielectrics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/4/10.1063/1.4765297
1.
1. K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, “ Low dielectric constant materials for microelectronics,”. J. Appl. Phys. 93, 8793 (2003).
http://dx.doi.org/10.1063/1.1567460
2.
2. A. Grill, “ Low and ultralow dielectric constant films prepared by plasma-enhanced chemical vapor deposition,” in Dielectric Films for Advanced Microelectronics, edited by M. Baklanov, M. Green, and K. Maex (Wiley, 2007), p. 1.
3.
3. G. Dubois, R. D. Miller, and W. Volksen, “ Spin-on dielectric materials,” in Dielectric Films for Advanced Microelectronics, edited by M. Baklanov, M. Green, and K. Maex (Wiley, 2007), p. 33.
4.
4. T. Tatsumi, “ Control of reactive plasmas for low-k/Cu integration,”. Appl. Surf. Sci. 253, 6716 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.02.008
5.
5. R. J. O. M. Hoofman, G. J. A. M. Verheijden, J. Michelon, F. Iacopi, Y. Travaly, M. R. Baklanov, Zs. Tőkei, and G. P. Beyer, “ Challenges in the implementation of low-k dielectrics in the back-end of line,” Microelectron. Eng. 80, 337344 (2005).
http://dx.doi.org/10.1016/j.mee.2005.04.088
6.
6. V. McGahay, “ Porous dielectrics in microelectronic: Wiring applications,” Materials 3, 536 (2010).
http://dx.doi.org/10.3390/ma3010536
7.
7. H.-C. Tsai, Y.-S. Chang, and S.-Y. Chang, “ Effect of plasma treatments on interface adhesion between SiOCH ultra-low-k film and SiCN etch stop layer,” Microelectron. Eng. 85, 1658 (2008).
http://dx.doi.org/10.1016/j.mee.2008.04.017
8.
8. S.-H. Rhee, Y. Du, and P. S. Ho, “ Thermal stress characteristics of Cu/oxide and Cu/low-k submicron interconnect structures,” J. Appl. Phys. 93, 3926 (2003).
http://dx.doi.org/10.1063/1.1560851
9.
9. J.-M. Paik, H. Park, and Y.-C. Joo, “ Effect of low-k dielectric on stress and stress-induced damage in Cu interconnects,” Microelectron. Eng. 71, 348 (2004).
http://dx.doi.org/10.1016/j.mee.2004.02.094
10.
10. V. Jousseaume, A. Zenasni, O. Gourhant, L. Favennec, and M. R. Baklanov, in Ultra-Low-k by CVD: Deposition and Curing. Advanced Interconnects for ULSI Technology, edited by M. R. Baklanov, P. Ho, and E. Zschech (Wiley, 2012).
11.
11. A. Grill and D. A. Neumayer, “ Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization,” J. Appl. Phys. 94(10 ), 6697 (2003).
http://dx.doi.org/10.1063/1.1618358
12.
12. A. M. Urbanowicz, “ Study of origin, impact and solutions of processing damage in low dielectric constant materials for advanced interconnect applications,” Ph.D. dissertation (IMEC and Katholieke Universiteit Leuven, 2010).
13.
13. A. M. Urbanowicz, K. Vanstreels, P. Verdonck, D. Shamiryan, S. De Gendt, and M. R. Baklanov, “ Improving mechanical robustness of ultralow-k SiOCH plasma enhanced chemical vapor deposition glasses by controlled porogen decomposition prior to UV-hardening,” J. Appl. Phys. 107, 104122 (2010).
http://dx.doi.org/10.1063/1.3428958
14.
14. J. Lubguban, Jr., T. Rajagopalan, N. Mehta, B. Lahlouh, S. L. Simon, and S. Gangopadhyaya, “ Low-k organosilicate films prepared by tetravinyltetramethylcyclotetrasiloxane,” J. Appl. Phys. 92, 1033 (2002).
http://dx.doi.org/10.1063/1.1483916
15.
15. L. Prager, P. Marsik, J. W. Gerlach, M. R. Baklanov, S. Naumov, L. Pistol, D. Schneider, L. Wennrich, P. Verdonck, and M. R. Buchmeiser, “ Effect of pressure on efficiency of UV curing of CVD-derived low-k material at different wavelengths,” Microelectron. Eng. 85, 2094 (2008).
http://dx.doi.org/10.1016/j.mee.2008.04.039
16.
16. D. R. Lide, Handbook of Chemistry and Physics (Chemical Rubber Publishing Company, 19931994).
17.
17. A. Friedman, Plasma Chemistry (Cambridge University Press, Cambridge, 2008), p. 224.
18.
18. R. J. Shul and S. J. Pearton, Handbook of Advanced Plasma Processing Techniques (Springer, 2000), p. 10.
19.
19. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd ed. (Wiley, New York, 2005).
20.
20. E. Amanatides and D. Mataras, “ Frequency variation under constant power conditions in hydrogen radio frequency discharges,” J. Appl. Phys. 89, 1556 (2001).
http://dx.doi.org/10.1063/1.1337597
21.
21. E. Abdel-Fattah and H. Sugai, “ Influence of excitation frequency on the electron distribution function in capacitively coupled discharges in argon and helium,” Jpn. J. Appl. Phys. 42, 6569 (2003).
http://dx.doi.org/10.1143/JJAP.42.6569
22.
22. A. Perret, P. Chabert, J. Jolly, and J.-P. Booth, “ Ion energy uniformity in high-frequency capacitive discharges,” Appl. Phys. Lett. 86, 021501 (2005).
http://dx.doi.org/10.1063/1.1848183
23.
23. T. V. Rakhimova, O. V. Braginsky, V. V. Ivanov, T. K. Kim, J. T. Kong, A. S. Kovalev, D. V. Lopaev, Yu. A. Mankelevich, O. V. Proshina, and A. N. Vasilieva, “ Experimental and theoretical study of rf plasma at low and high frequency,” IEEE Trans. Plasma Sci. 34, 867 (2006).
http://dx.doi.org/10.1109/TPS.2006.875849
24.
24. Z. Bi, Y. Liu, W. Jiang, X. Xu, and Y. Wang, “ A brief review of dual-frequency capacitively coupled discharges,” Curr. Appl. Phys. 11, S2S8 (2011).
http://dx.doi.org/10.1016/j.cap.2011.07.002
25.
25. M. A. Lieberman, J. P. Booth, P. Chabert, J. M. Rax, and M. M. Turner, “ Standing wave and skin effects in large-area, high-frequency capacitive discharges,” Plasma Sources Sci. Technol. 11, 283 (2002).
http://dx.doi.org/10.1088/0963-0252/11/3/310
26.
26. C. Petit-Etienne, M. Darnon, L. Vallier, E. Pargon, G. Cunge, F. Boulard, and O. Joubert, “ Reducing damage to Si substrates during gate etching processes by synchronous plasma pulsing,” J. Vac. Sci. Technol. B 28(5 ), 926 (2010).
http://dx.doi.org/10.1116/1.3483165
27.
27. J. P. Booth, N. St. J. Braithwaite, A. Goodyear, and P. Barroy, Rev. Sci. Instrum. 71(7 ), 2722 (2000).
http://dx.doi.org/10.1063/1.1150681
28.
28. V. M. Donnelly, J. Guha, and L. Stafford, “ Critical review: Plasma-surface reactions and the spinning wall method,” J. Vac. Sci. Technol. A 29, 010801 (2011).
http://dx.doi.org/10.1116/1.3517478
29.
29. J. Bao, H. Shi, J. Liu, H. Huang, P. S. Ho, M. D. Goodner, M. Moinpour, and G. M. Kloster, “ Mechanistic study of plasma damage of low k dielectric surfaces,” J. Vac. Sci. Technol. B 26, 219 (2008).
http://dx.doi.org/10.1116/1.2834562
30.
30. A. M. Urbanowicz, M. R. Baklanov, J. Heijlen, Y. Travaly, and A. Cockburn, “ Damage reduction and sealing of low-k films by combined He and NH3 plasma treatment,” Electrochem. Solid-State Lett. 10, G76 (2007).
http://dx.doi.org/10.1149/1.2760189
31.
31. M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsev, “ Determination of pore size distribution in thin films by ellipsometric porosimetry,” J. Vac. Sci. Technol. B 18, 1385 (2000).
http://dx.doi.org/10.1116/1.591390
32.
32. M. R. Baklanov, K. P. Mogilnikov, and Q. T. Le, “ Quantification of processing damage in porous low dielectric constant films,” Microelectron. Eng. 83, 2287 (2006).
http://dx.doi.org/10.1016/j.mee.2006.10.019
33.
33. D. Shamiryan, M. R. Baklanov, and K. Maex, “ Diffusion barrier integrity evaluation by ellipsometric porosimetry,” J. Vac. Sci. Technol. B 21, 220 (2003).
http://dx.doi.org/10.1116/1.1539067
34.
34. J. N. Sun, D. W. Gidley, T. L. Dull, W. E. Frieze, A. F. Yee, E. T. Ryan, S. Lin, and J. Wetzel, “ Probing diffusion barrier integrity on porous silica low-k thin films using positron annihilation lifetime spectroscopy,” J. Appl. Phys. 89, 5138 (2001).
http://dx.doi.org/10.1063/1.1360704
35.
35. F. Iacopi, Y. Travaly, M. Van Hove, A. M. Jonas, J. M. Molina-Aldareguia, M. R. Elizalde, and I. Ocaña, “ Extent of plasma damage to porous organosilicate films characterized with nanoindentation, x-ray reflectivity, and surface acoustic waves,” J. Mater. Res. 21, 3161 (2006).
http://dx.doi.org/10.1557/jmr.2006.0386
36.
36. K. Yonekura, K. Goto, M. Matsuura, N. Fujiwara, and K. Tsujimoto, “ Low-damage damascene patterning using porous inorganic low-dielectric-constant materials,” Jpn. J. Appl. Phys. 44, 2976 (2005).
http://dx.doi.org/10.1143/JJAP.44.2976
37.
37. P. Marsik, A. M. Urbanowicz, K. Vinokur, Y. Cohen, and M. R. Baklanov, “ Changes of UV optical properties of plasma damaged low-k dielectrics for sidewall damage scatterometry, materials and processes for advanced interconnects for microelectronics,” Mater. Res. Soc. Symp. Proc. 1079E, 1079N07 (2008).
38.
38. Y. Chen, M. Yamamoto, D. Likhachev, G. He, A. Sonoda, and V. Vuong, “ Low-k n&k variation impact on CD accuracy of scatterometry,” Proc. SPIE 6922, 69223R (2008).
39.
39. R. Bouyssou, M. El. Kodaji, C. Licitra, T. Chevolleau, M. Besacier, N. Posseme, O. Joubert, and P. Schiavone, “ Scatterometric porosimetry: A new characterization technique for porous material patterned structures,” J. Vac. Sci. Technol. B 28(4 ), L31 (2010).
http://dx.doi.org/10.1116/1.3457489
40.
40. C. Licitra, R. Bouyssou, M. El Kodadi, G. Haberfehlner, T. Chevolleau, J. Hazart, L. Virot, M. Besacier, P. Schiavone, and F. Bertin, “ Application of scatterometric porosimetry to characterize porous ultra low-k patterned layers,” Thin Solid Films 519, 2825 (2011).
http://dx.doi.org/10.1016/j.tsf.2010.12.114
41.
41. V. V. Talanov, A. Scherz, R. L. Moreland, and A. R. Schwartz, “ Noncontact dielectric constant metrology of low-k interconnect films using a near-field scanned microwave probe,” Appl. Phys. Lett. 88, 192906 (2006).
http://dx.doi.org/10.1063/1.2203238
42.
42. H. Seki, K. Inoue, N. Nagai, M. Shimada, K. Inukai, H. Hashimoto, and S. Ogawa, Proc. Adv. Metall. Conf. 2004, 375 (2005).
43.
43. M. R. Baklanov, L. Zhao, E. Van Besien, and M. Pantouvaki, “ Effect of porogen residue on electrical characteristics of ultra low-k materials,” Microelectron. Eng. 88(5 ), 990 (2011).
http://dx.doi.org/10.1016/j.mee.2010.12.077
44.
44. M. R. Baklanov, S. Vanhaelemeersch, H. Bender, and K. Maex, “ Effects of oxygen and fluorine on the dry etch characteristics of organic low-k dielectrics,” J. Vac. Sci. Technol. B 17, 372 (1999).
http://dx.doi.org/10.1116/1.590660
45.
45. E. Smirnov, A. K. Ferchichi, C. Huffman, and M. R. Baklanov, “ Impact of plasma exposure on organic low-k materials,” Proc. SPIE 7521, 752107 (2010).
46.
46. M. Pantouvaki, C. Huffman, L. Zhao, N. Heylen, Y. Ono, M. Nakajima, K. Nakatani, G. P. Beyer, and M. R. Baklanov, “ Advanced organic polymer for the aggressive scaling of low-k materials,” Jpn. J. Appl. Phys. 50, 04DB01 (2011).
http://dx.doi.org/10.1143/JJAP.50.04DB01
47.
47. C. S. Moon, K. Takeda, M. Sekine, Y. Setsuhara, M. Shiratani, and M. Hori, “ Etching characteristics of organic low-k films interpreted by internal parameters employing a combinatorial plasma process in an inductively coupled H2/N2 plasma,” J. Appl. Phys. 107, 113310 (2010).
http://dx.doi.org/10.1063/1.3415535
48.
48. H. Nagai, S. Takashima, M. Hiramatsu, M. Hori, and T. Goto, “ Behavior of atomic radicals and their effects on organic low dielectric constant film etching in high density N2/H2 and N2/NH3 Plasmas,” J. Appl. Phys. 91, 2615 (2002).
http://dx.doi.org/10.1063/1.1435825
49.
49. S. Uchida, S. Takashima, M. Hori, M. Fukasawa, K. Ohshima, K. Nagahata, and T. Tatsumi, “ Evaluation of property changes due to radiation, radicals, and ions on organic low-k films in H2/N2 plasma etching,” Jpn. J. Appl. Phys. 47, 3621 (2008).
http://dx.doi.org/10.1143/JJAP.47.3621
50.
50. D. Fuard, O. Joubert, L. Vallier, and M. Bonvalot, “ High density plasma etching of low k dielectric polymers in oxygen-based chemistries,” J. Vac. Sci. Technol. B 19, 447 (2001).
http://dx.doi.org/10.1116/1.1358856
51.
51. M. R. Baklanov, Q. T. Le, E. Kesters, F. Iacopi, J. Van Aelst, H. Struyf, W. Boullart, S. Vanhaelemeersch, and K. Maex, “ Challenges of clean/strip processing for Cu/low-k technology,” in Proceedings of International Interconnect Technology Conference, San Francisco, 2004.
52.
52. F. Bailly, T. David, T. Chevolleau, M. Darnon, N. Posseme, R. Bouyssou, J. Ducote, O. Joubert, and C. Cardinaud, “ Roughening of porous SiCOH materials in fluorocarbon plasmas,” J. Appl. Phys. 108, 014906 (2010).
http://dx.doi.org/10.1063/1.3446820
53.
53. S. A. Vitale and H. H. Sawin, “ Etching of organosilicate glass low-k dielectric films in halogen plasmas,” J. Vac. Sci. Technol. A 20, 651 (2002).
http://dx.doi.org/10.1116/1.1460891
54.
54. E. Soda, S. Kondo, S. Saito, Y. Ichihashi, A. Sato, H. Ohtake, and S. Samukawa, “ Low-damage low-k etching with an environmentally friendly CF3I plasma,” J. Vac. Sci. Technnol. A 26(4 ), 875 (2008).
http://dx.doi.org/10.1116/1.2919137
55.
55. H. Ohtake and S. Samukawa, “ Charging-damage-free and precise dielectric etching in pulsed C2F4 /CF3I plasma,” J. Vac. Sci. Technol. B 20, 1026 (2002).
http://dx.doi.org/10.1116/1.1479737
56.
56. M. Darnon, T. Chevolleau, O. Joubert, S. Maitrejean, J. C. Barbe, and J. Torres, “ Undulation of sub-100  nm porous dielectric structures: A mechanical analysis,” Appl. Phys. Lett. 91, 194103 (2007).
http://dx.doi.org/10.1063/1.2805774
57.
57. L.-Q. Xia, D. Cui, M. Balseanu, V. Nguyen, K. Zhou, J. Pender, and M. Naik, “ Novel hardmask for sub-20nm copper/low-k backend dual damascene integration,” ECS Trans. 35(4 ), 651 (2011).
58.
58. M. K. Shi, B. Lamontagne, A. Selmani, L. Martinu, E. Sacher, M. R. Wertheimer, and A. Yelon, “ Metallization or Teflon PFA. II. Interactions of Ti, Ag, and Au measured by x-ray photoelectron spectroscopy,” J. Vac. Sci. Technol. A 12(3 ), 807 (1994).
http://dx.doi.org/10.1116/1.578827
59.
59. M. Kakuchi, M. Hikita, and T. Tamamura, “ Amorphous carbon films as resist masks with high reactive ion etching resistance for nanometer lithography,” Appl. Phys. Lett. 48, 835 (1986).
http://dx.doi.org/10.1063/1.96683
60.
60. K. Kragler, E. Gunther, R. Leuschner, G. Falk, A. Hammerschmidt, H. von Seggern, and G. Saemann-Ischenko, “ Scanning tunneling microscopy based lithography employing amorphous hydrogenated carbon as a high resolution resist mask,” Appl. Phys. Lett. 67, 1163 (1995).
http://dx.doi.org/10.1063/1.114995
61.
61. D. Eon, V. Raballand, G. Cartry, M.-C. Peignon-Fernandez, and Ch. Cardinaud, “ Etching of low-k materials in high density fluorocarbon plasma,” Europhys. J. Appl. Phys. 28, 331 (2004).
http://dx.doi.org/10.1051/epjap:2004195
62.
62. I. Kume, M. Ueki, N. Inoue, J. Kawahara, N. Ikarashi, N. Furutake, S. Saitoh, and Y. Hayashi, “ Improvement of uniformity and reliability of scaled-down cu interconnects with carbon-rich low-k films,” Jpn. J. Appl. Phys. 50, 04DB02 (2011).
http://dx.doi.org/10.1143/JJAP.50.04DB02
63.
63. D. L. Flamm, C. J. Mogab, and E. R. Sklaver, “ Reaction of fluorine atoms with SiO2,” J. Appl. Phys. 50, 6211 (1979).
http://dx.doi.org/10.1063/1.325755
64.
64. H. F. Winters and J. W. Coburn, “ Surface science aspects of etching reactions,” Surf. Sci. Rep. 14, 162 (1992).
http://dx.doi.org/10.1016/0167-5729(92)90009-Z
65.
65. F. D. Egitto, “ Plasma etching and modification of organic polymers,” Pure Appl. Chem. 62(9 ), 1699 (1990).
http://dx.doi.org/10.1351/pac199062091699
66.
66. Yu. A. Mankelevich, private communications (2007).
67.
67. H. Cui, R. J. Carter, D. L. Moore, H.-G. Peng D. W. Gidley, and P. A. Burke, “ Impact of reductive N2/H2 plasma on porous low-dielectric constant SiCOH thin films,” J. Appl. Phys. 97, 113302 (2005).
http://dx.doi.org/10.1063/1.1926392
68.
68. H. Yamamoto, K. Takeda, K. Ishikawa, M. Ito, M. Sekine, M. Hori, T. Kaminatsui, H. Hayashi, I. Sakai, and T. Ohiwa, “ H2/N2 plasma damage on porous dielectric SiOCH film evaluated by in situ film characterization and plasma diagnostics,” J. Appl. Phys. 109, 084112 (2011).
http://dx.doi.org/10.1063/1.3562161
69.
69. V. V. Smirnov, A. V. Stengach, K. G. Gaynullin, V. A. Pavlovsky, S. Rauf, and P. L. G. Ventzek, “ A molecular dynamics model for the interaction of energetic ions with SiOCH low-k dielectric,” J. Appl. Phys. 101, 053307 (2007).
http://dx.doi.org/10.1063/1.2512700
70.
70. Ch. Cardinaud and G. Turban, “ Mechanistic studies of the initial stages of etching of Si and SiO2 in a CHF3 plasma,” Appl. Surf. Sci. 45, 109 (1990).
http://dx.doi.org/10.1016/0169-4332(90)90061-4
71.
71. T. E. F. M. Standaert, P. J. Matsuo, S. D. Allen, G. S. Orehlein, and T. J. Dalton, “ Patterning of fluorine-, hydrogen-, and carbon-containing SiO2-like low dielectric constant materials in high-density fluorocarbon plasmas: Comparison with SiO2,” J. Vac. Sci. Technol. A 17, 741 (1999).
http://dx.doi.org/10.1116/1.581643
72.
72. N. Posseme, T. Chevolleau, O. Joubert, L. Vallier, and P. Mangiagalli, “ Etching mechanisms of low-k SiOCH and selectivity to SiCH and SiO2 in fluorocarbon based plasmas,” J. Vac. Sci. Technol. B 21, 2432 (2003).
http://dx.doi.org/10.1116/1.1627337
73.
73. A. Furuya, E. Soda, M. Shimada, and S. Ogawa, “ Etch-byproduct pore sealing for atomic-layer-deposited-TaN deposition on porous low-k film,” Jpn. J. Appl. Phys. 44(10 ), 7430 (2005).
http://dx.doi.org/10.1143/JJAP.44.7430
74.
74. Y. Iba, T. Kirimura, M. Sasaki, Y. Kobayashi, Y. Nakata, and M. Nakaishi, “ Effects of etch rate on plasma-induced damage to porous low-k films,” Jpn. J. Appl. Phys. 47, 6923 (2008).
http://dx.doi.org/10.1143/JJAP.47.6923
75.
75. T. E. F. M. Standaert, E. A. Joseph, G. S. Oehrlein, A. Jain, W. N. Gill, P. C. Wayner, Jr., and J. L. Plawsky, “ Etching of xerogel in high-density fluorocarbon plasmas,” J. Vac. Sci. Technol. A 18, 2742 (2000).
http://dx.doi.org/10.1116/1.1290376
76.
76. D. Zhang and M. Kushner, “ Investigation of surface reactions during C2F6 plasma ething of SiO2 with equipment and feature scale models,” J. Vac. Sci. Technol. A 19, 524 (2001).
http://dx.doi.org/10.1116/1.1349728
77.
77. N. Posseme, T. Chevolleau, O. Joubert, L. Vallier, and N. Rochat, “ Etching of porous SiOCH materials in fluorocarbon-based plasmas,” J. Vac. Sci. Technol. B 22, 2772 (2004).
http://dx.doi.org/10.1116/1.1815316
78.
78. X. Hua, C. Stolz, G. S. Oehrlein, P. Lazzeri, N. Coghe, M. Anderle, C. K. Inoki, T. S. Kuan, and P. Jiang, “ Plasma-surface interactions of nanoporous silica during plasma-based pattern transfer using C4F8 and C4F8/Ar gas mixtures,” J. Vac. Sci. Technol. A 23, 151 (2005).
http://dx.doi.org/10.1116/1.1821584
79.
79. P. Lazzeri, X. Hua, G. S. Oehrlein, M. Barozzi, E. Iacob, and M. Anderle, “ Porosity-induced effects during C4F8/90% Ar plasma etching of silica-based ultralow-k dielectrics,” J. Vac. Sci. Technol. B 23, 1491 (2005).
http://dx.doi.org/10.1116/1.1943439
80.
80. Y. Yin, S. Rasgon, and H. H. Sawin, “ Investigation of surface roughening of low-k films during etching using fluorocarbon plasma beams,” J. Vac. Sci. Technol. A 24, 2360 (2006).
http://dx.doi.org/10.1116/1.2338044
81.
81. Y. Yin and H. H. Sawin, “ Impact of etching kinetics on the roughening of thermal SiO2 and low-k dielectric coral films in fluorocarbon plasmas,” J. Vac. Sci. Technol. A 25, 802 (2007).
http://dx.doi.org/10.1116/1.2748797
82.
82. Y. Yin and H. H. Sawin, “ Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma,” J. Vac. Sci. Technol. A 26, 151 (2008).
http://dx.doi.org/10.1116/1.2821747
83.
83. T. Tatsumi, K. Urata, K. Nagahata, T. Saitoh. Y. Nogami, and K. Shinohara, “ Quantitative control of etching reactions on various SiOCH materials,” J. Vac. Sci. Technol. A 23, 938 (2005).
http://dx.doi.org/10.1116/1.1861938
84.
84. K. Kurihara, Y. Yamaoka, K. Karahashi, and M. Sekine, “ Measurements of desorbed products by plasma beam irradiation on SiO2,” J. Vac. Sci. Technol. A 22, 2311 (2004).
http://dx.doi.org/10.1116/1.1795830
85.
85. K. Kurihara, T. Ono, K. Kohmura, H. Tanaka, N. Fujii, N. Hata, and T. Kikkawa, “ Carbon loss induced by plasma beam irradiation in porous silica films,” J. Appl. Phys. 101, 113301 (2007).
http://dx.doi.org/10.1063/1.2740334
86.
86. H. Ren, G. Jiang, G. A. Antonelli, Y. Nishi, and J. L. Shohet, “ The nature of the defects generated from plasma exposure in pristine and ultraviolet-cured low-k organosilicate glass,” Appl. Phys. Lett. 98, 252902 (2011).
http://dx.doi.org/10.1063/1.3601922
87.
87. B. C. Bittel, P. M. Lenahan, and S. W. King, “ Ultraviolet radiation effects on paramagnetic defects in low-k dielectrics for ultralarge scale integrated circuit interconnects,” Appl. Phys. Lett. 97, 063506 (2010).
http://dx.doi.org/10.1063/1.3478235
88.
88. H. Sinha, D. B. Straight, J. L. Lauer, N. C. Fuller, S. U. Engelmann, Y. Zhang, G. A. Antonelli, N. Severson, Y. Nishi, and J. L. Shohet, “ Reflectance and substrate currents of dielectric layers under vacuum ultraviolet radiation,” J. Vac. Sci. Technol. A 28(6 ), 1316 (2010).
http://dx.doi.org/10.1116/1.3488594
89.
89. V. V. Afanas'ev, K. Keunen, A. Stesmans, M. Jivanescu, Zs. Tokei, M. R. Baklanov, and G. P. Beyer, “ Electron spin resonance spectroscopy of defects in low-k oxide insulators (k = 2.5–2.0),” Microelectron. Eng. 88, 15031506 (2011).
http://dx.doi.org/10.1016/j.mee.2011.03.077
90.
90. A. P. Palov, Yu. A. Mankelevich, T. V. Rakhimova, and D. Shamiryan, “ Charging and the secondary electron-electron emission on a trench surface: Broadening and shift of ion energy spectrum at plasma trench etching,” J. Phys. D: Appl. Phys. 43(7 ), 075203 (2010).
http://dx.doi.org/10.1088/0022-3727/43/7/075203
91.
91. D. Shamiryan, M. R. Baklanov, S. Vanhaelemeersch, and K. Maex, “ Comparative study of SiOCH low-k films with varied porosity interacting with etching and cleaning plasma,” J. Vac. Sci. Technol. B 20(5 ), 1923 (2002).
http://dx.doi.org/10.1116/1.1502699
92.
92. E. Kunnen, M. R. Baklanov, A. Franquet, D. Shamiryan, T. V. Rakhimova, A. M. Urbanowicz, H. Struyf, and W. Boullart, “ Effect of energetic ions on plasma damage of porous SiCOH low-k materials,” J. Vac. Sci. Technol. B 28(3 ), 450 (2010).
http://dx.doi.org/10.1116/1.3372838
93.
93. N. Matsunaga, H. Okumura, B. Jinnai, and S. Samukawa, “ Hard-mask-through UV-light-induced damage to low-k film during plasma process for dual damascene,” Jpn. J. Appl. Phys. 49, 04DB06 (2010).
http://dx.doi.org/10.1143/JJAP.49.04DB06
94.
94. K. Yanai, T. Hasebe, K. Sumiya, S. Oguni, and K. Koga, “ Double-layered Structure of Surface Modification of Low-k Dielectrics Induced by He Plasma,” Mater. Res. Soc. Symp. Proc. 863, B23 (2005).
95.
95. J. Shoeb and M. J. Kushner, “ Mechanism for sealing of porous low-k SiOCH by combined He and NH3 plasma treatment,” J. Vac. Sci. Technol. A 29(5 ), 051305 (2011).
http://dx.doi.org/10.1116/1.3626534
96.
96. J. Bao, H. Shi, H. Huang, P. S. Ho, M. L. McSwiney, M. D. Goodner, M. Moinpour, and G. M. Kloster, “ Oxygen plasma damage to blanket and patterned ultralow-kappa surfaces,” J. Vac. Sci. Technol. A 28(2 ), 207 (2010).
http://dx.doi.org/10.1116/1.3281525
97.
97. M. A. Goldman, D. B. Graves, G. A. Antonelli, S. P. Behera, and J. A. Kelber, “ Oxygen radical and plasma damage of low-k organosilicate glass materials: Diffusion-controlled mechanism for carbon depletion,” J. Appl. Phys. 106(1 ), 013311 (2009).
http://dx.doi.org/10.1063/1.3168428
98.
98. O. V. Braginsky, A. S. Kovalev, D. V. Lopaev, E. M. Malykhin, Yu. A. Mankelevich, O. V. Proshina, T. V. Rakhimova, A. T. Rakhimov, D. G. Voloshin, A. N. Vasilieva, S. M. Zyryanov, E. A. Smirnov, and M. R. Baklanov, “ The effect of He plasma treatment on properties of organosilicate glass low-k films,” J. Appl. Phys. 109, 043303 (2011).
http://dx.doi.org/10.1063/1.3549733
99.
99. L. Zheng, L. Ling, X. Hua, G. S. Oerhlein, and E. A. Hudson, “ Studies of film deposition in fluorocarbon plasmas employing a small gap structure,” J. Vac. Sci. Technol. A 23(4 ), 634 (2005).
http://dx.doi.org/10.1116/1.1931680
100.
100. S. Uchida, S. Takashima, M. Hori, M. Fukasawa, K. Ohshima, K. Nagahata, and T. Tatsumi, “ Plasma damage mechanisms for low-k porous SiOCH films due to radiation, radicals, and ions in the plasma etching process,” J. Appl. Phys. 103, 073303 (2008).
http://dx.doi.org/10.1063/1.2891787
101.
101. X. Hua, M. Kuo, G. S. Oehrlein, P. Lazzeri, E. Iacob, M. Anderle, C. K. Inoki, T. S. Kuan, P. Jiang, and W. Wu, “ Damage of ultralow k materials during photoresist mask stripping process,” J. Vac. Sci. Technol. B 24(3 ), 1238 (2006).
http://dx.doi.org/10.1116/1.2194947
102.
102. H. Shi, H. Huang, J. Bao, J. Im, P. S. Ho, Y. Zhou, J. T. Pender, M. Armacost, and D. Kyser, “ Plasma altered layer model for plasma damage characterization of porous OSG films,” in Proceedings of the IEEE International Interconnect Technology Conference, 2009, p. 78.
103.
103. K. Takeda, Y. Miyawaki, S. Takashima, M. Fukasawa, K. Oshima, K. Nagahata, T. Tatsumi, and M. Hori, “ Mechanism of plasma-induced damage to low-k SiOCH films during plasma ashing of organic resists,” J. Appl. Phys. 109, 033303 (2011).
http://dx.doi.org/10.1063/1.3544304
104.
104. D. L. Flamm, V. M. Donnelly, and J. A. Mucha, “ The reaction of fluorine atoms with silicon,” J. Appl. Phys. 52, 3633 (1981).
http://dx.doi.org/10.1063/1.329098
105.
105. K. Ninomiya, K. Suzuki, S. Nishimatsu, and O. Okada, “ Reaction of atomic fluorine with silicon,” J. Appl. Phys. 58(3 ), 1177 (1985).
http://dx.doi.org/10.1063/1.336133
106.
106. H. F. Winters and I. C. Plumbs, “ Etching reactions for silicon with F atoms: Product distributions and ion enhancement mechanisms,” J. Vac. Sci. Technol. B 9, 197 (1991).
http://dx.doi.org/10.1116/1.585593
107.
107. J. W. Coburn and H. F. Winters, “ Ion‐ and electron‐assisted gas‐surface chemistry—An important effect in plasma etching,” J. Appl. Phys. 50, 3189 (1979).
http://dx.doi.org/10.1063/1.326355
108.
108. D. L. Flamm, “ Mechanisms of silicon etching in fluorine- and chlorine-containing plasmas,” Pure Appl. Chem. 62(9 ), 1709 (1990).
http://dx.doi.org/10.1351/pac199062091709
109.
109. M. Chaudhari, J. Du, S. P. Behera, S. Manandhar, and J. A. Kelber, “ Fundamental mechanisms of oxygen plasma-induced damage of ultralow-k organosilicate materials: The role of thermal 3P atomic oxygen,” Appl. Phys. Lett. 94, 204102 (2009).
http://dx.doi.org/10.1063/1.3134487
110.
110. S. P. Behera, J. Lee, S. Gaddam, S. Pokharel, J. Wilks, F. Pasquale, D. Graves, and J. A. Kelber, “ Interaction of vacuum ultraviolet light with a low-k organosilicate glass film in the presence of NH3,” Appl. Phys. Lett. 97(3 ), 034104 (2010).
http://dx.doi.org/10.1063/1.3466905
111.
111. S. P. Behera, Q. Wang, and J. A. Kelber, “ He plasma pretreatment effects on oxygen plasma-induced carbon loss and surface roughening in an ultralow-k organosilicate glass film,” J. Phys. D: Appl. Phys. 44, 155204 (2011).
http://dx.doi.org/10.1088/0022-3727/44/15/155204
112.
112. B. Jinnai, S. Fukuda, H. Ohtake, and S. Samukawa, “ Prediction of UV spectra and UV-radiation damage in actual plasma etching processes using on-wafer monitoring technique,” J. Appl. Phys. 107, 043302 (2010).
http://dx.doi.org/10.1063/1.3313924
113.
113. S. Eslava, G. Eymery, P. Marsik, F. Iacopi, C. E. A. Kirschhock, K. Maex, J. A. Martens, and M. R. Baklanov, “ Optical property changes in low-k films upon ultraviolet-assisted curing,” J. Electrochem. Soc. 155, G115 (2008).
http://dx.doi.org/10.1149/1.2885041
114.
114. H. Shi, H. Huang, J. Bao, J. Liu, P. S. Ho, Y. Zhou, J. T. Pender, M. D. Armacost, and D. Kyser, “ Role of ions, photons, and radicals in inducing plasma damage to ultra low-k Dielectrics,” J. Vac. Sci. Technol. B 30(1 ), 0112061 (2012).
http://dx.doi.org/10.1116/1.3671008
115.
115. H. Nagai, M. Hiramatsu, M. Hori, and T. Goto, “ Measurement of oxygen atom density employing vacuum ultraviolet absorption spectroscopy with microdischarge hollow cathode lamp,” Rev. Sci. Instrum. 74(7 ), 3453 (2003).
http://dx.doi.org/10.1063/1.1582386
116.
116. M. A. Worsley, S. F. Bent, S. M. Gates, N. C. M. Fuller, W. Volksen, M. Steen, and T. Dalton, “ Effect of plasma interactions with low-k films as a function of porosity, plasma, chemistry, and temperature,” J. Vac. Sci. Technol. B 23(2 ), 395 (2005).
http://dx.doi.org/10.1116/1.1861038
117.
117. H. J. Lee, C. L. Soles, E. K. Lin, and W. Wu, “ Nonuniform structural degradation in porous organosilicate films exposed to plasma, etching, and ashing as characterized by x-ray porosimetry,” Appl. Phys. Lett. 91(17 ), 172908 (2007).
http://dx.doi.org/10.1063/1.2800376
118.
118. J. N. Sun, D. W. Gidley, Y. Hu, W. E. Frieze, and E. T. Ryan, “ Depth-profiling plasma-induced densification of porous low-k thin films using positronium annihilation lifetime spectroscopy,” Appl. Phys. Lett. 81(8 ), 1447 (2002).
http://dx.doi.org/10.1063/1.1501767
119.
119. A. M. Urbanowicz, D. Shamiryan, A. Zaka, P. Verdonck, S. De Gendt, and M. R. Baklanov, “ Effects of He plasma pretreatment on low-k damage during Cu surface cleaning with NH3 plasma,” J. Electrochem. Soc. 157, H565 (2010).
http://dx.doi.org/10.1149/1.3355881
120.
120. E. T. Ryan, J. Martin, K. Junker, J. J. Lee, T. Guenther, J. Wetzel, S. Lin, D. W. Gidley, and J. Sun, “ Integration damage in organosilicate glass films,” in Proceedings of the IEEE International Interconnect Technology Conference, 2002, p. 27.
121.
121. H.-G. Peng, D.-Z. Chi, W.-D. Wang, J.-H. Li, K.-Y. Zeng, R. S. Vallery, W. E. Frieze, M. A. Skalsey, D. W. Gidley, and A. F. Yee, “ Pore sealing by NH3 plasma treatment of porous low dielectric constant films,” J. Electrochem. Soc. 154(4 ), G85G94 (2007).
http://dx.doi.org/10.1149/1.2435625
122.
122. Y. Morikawa, S. Yasunami, W. Chen, T. Hayashi, and T. Uchida, “ Low-k materials etching in magnetic neutral loop discharge plasma,” J. Vac. Sci. Techn. A 19, 1747 (2001).
http://dx.doi.org/10.1116/1.1355362
123.
123. T. Shibano, N. Fujiwara, M. Hirayama, H. Nagata, and K. Demizu, “ Etching yields of SiO2 by low-energy CFx+ and F+ ions,” Appl. Phys. Lett. 63(17 ), 23362338 (1993).
http://dx.doi.org/10.1063/1.110518
124.
124. S. S. Todorov and E. R. Fossum, “ Sputtering of silicon dioxide near threshold,” Appl. Phys. Lett. 52(5 ), 365 (1988).
http://dx.doi.org/10.1063/1.99466
125.
125. G. S. Oehrlein, Y. Zhang, D. Vender, and M. Haverlag, “ Fluorocarbon high-density plasmas. I. Fluorocarbon film deposition and etching using CF4 and CHF3,” J. Vac. Sci. Technol. A 12, 323 (1994).
http://dx.doi.org/10.1116/1.578876
126.
126. G. S. Oehrlein, Y. Zhang, D. Vender, and O. Joubert, “ Fluorocarbon high-density plasmas. II. Silicon dioxide and silicon etching using CF4 and CHF3,” J. Vac. Sci. Technol. A 12, 333 (1994).
http://dx.doi.org/10.1116/1.578877
127.
127. N. Rueger, J. J. Beulens, M. Schaepkens, M. F. Doemling, J. M. Mirza, T. E. F. M. Standaert, and G. S. Oehrlein, “ Role of steady state fluorocarbon films in the etching of silicon dioxide using CHF3 in an inductively coupled plasma reactor,” J. Vac. Sci. Technol. A 15(4 ), 1881 (1997).
http://dx.doi.org/10.1116/1.580655
128.
128. P. C. Zalm, “ Some useful yield estimates for ion-beam sputtering and ion plating at low bombarding energies,” J. Vac. Sci. Technol. B 2(2 ), 151 (1984).
http://dx.doi.org/10.1116/1.582936
129.
129. C. Steinbruchel, “ Universal energy-dependence of physical and ion-enhanced chemical etch yields at low ion energy,” Appl. Phys. Lett. 55(19 ), 1960 (1989).
http://dx.doi.org/10.1063/1.102336
130.
130. J. L. Lauer, H. Sinha, M. T. Nichols, G. A. Antonelli, Y. Nishi, and J. L. Shohet, “ Charge trapping within UV and vacuum UV irradiated low-k porous organosilicate dielectrics,” J. Electrochem. Soc. 157(8 ), G177G182 (2010).
http://dx.doi.org/10.1149/1.3435285
131.
131. H. Sinha, G. A. Antonelli, G. Jiang, Y. Nishi, and J. L. Shohet, “ Effect of vacuum ultraviolet radiation on deposited and ultraviolet-cured low-k porous organosilicate glass,” J. Vac. Sci. Technol. A 29(3 ), 030602 (2011).
http://dx.doi.org/10.1116/1.3570818
132.
132. H. Ren, G. A. Antonelli, Y. Nishi, and J. L. Shohet, “ Plasma damage effects on low-k porous organosilicate glass,” J. Appl. Phys. 108, 094110 (2010).
http://dx.doi.org/10.1063/1.3506523
133.
133. H. Yamamoto, K. Asano, K. Ishikawa, M. Sekine, H. Hayashi, I. Sakai, T. Ohiwa, K. Takeda, H. Kondo, and M. Hori, “ Chemical bond modification in porous SiOCH films by H2 and H2/N2 plasmas investigated by in situ infrared reflection absorption spectroscopy,” J. Appl. Phys. 110, 123301 (2011).
http://dx.doi.org/10.1063/1.3671547
134.
134. J.-F. de Marneffe, R. Ljazouli, L. Souriau, L. Zhang, C. Wilson, and M. R. Baklanov, “ Study of ion and VUV effects on self-assembled organic low-k material exposed to Ar plasma,” in Spring MRS Meeting, 2012.
135.
135. J. Lee and D. B. Graves, “ Synergistic damage effects of vacuum ultraviolet photons and O2 in SiOCH ultra-lowk dielectric films,” J. Phys. D: Appl. Phys. 43, 425201 (2010).
http://dx.doi.org/10.1088/0022-3727/43/42/425201
136.
136. H. Okabe, Photochemistry of Small Molecules (John Wiley & Sons, Inc., 1978).
137.
137. T. Tatsumi, S. Fukuda, and S. Kadomura, “ Radiation damage of SiO2 surface induced by vacuum ultraviolet photons of high-density plasma,” Jpn. J. Appl. Phys. 33, 2175 (1994).
http://dx.doi.org/10.1143/JJAP.33.2175
138.
138. E. W. Thiele, “ Relation between catalytic activity and size of particle,” Ind. Eng. Chem. 31, 916 (1939).
http://dx.doi.org/10.1021/ie50355a027
139.
139. J. Marschall and J. E. Boulter, “ An analytic model for atom diffusion and heterogeneous recombination in a porous medium,” J. Phys. D: Appl. Phys. 39(17 ), 3849 (2006).
http://dx.doi.org/10.1088/0022-3727/39/17/022
140.
140. W. Cho, R. Saxena, O. Rodriguez, M. Ojha, R. Achanta, J. L. Plawsky, and W. N. Gill, “ Polymer penetration and pore sealing in nanoporous silica by CHF3 plasma exposure,” J. Electrochem. Soc. 152(6 ), F61 (2005).
http://dx.doi.org/10.1149/1.1901664
141.
141. M. R. Baklanov, A. Urbanowicz, G. Mannaert, and S. Vanhaelemeersch, “ Low-k dielectric materials: Challenges of plasma damage,” in Proceedings of 8th International Conference on Solid-State and Integrated Circuit Technology, Shanghai, China, 2006, p. 291.
142.
142. B. N. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching (Wiley, New-York, 1980).
143.
143. T. V. Rakhimova, O. V. Braginsky, A. S. Kovalev, D. V. Lopaev, Y. A. Mankelevich, E. M. Malykhin, A. T. Rakhimov, A. N. Vasilieva, S. M. Zyryanov, and M. R. Baklanov, “ Recombination of O and H atoms on the surface of nanoporous dielectrics,” IEEE Trans. Plasma Sci. 37(9 ), 1697 (2009).
http://dx.doi.org/10.1109/TPS.2009.2023991
144.
144. J. Shoeb, M. M. Wang, and M. J. Kushner, “ Damage by radicals and photons during plasma cleaning of porous low-k SiOCH. I. Ar/O2 and He/H2 plasmas,” J. Vac. Sci. Technol. A 30, 041303 (2012).
http://dx.doi.org/10.1116/1.4718444
145.
145. J. Shoeb and M. J. Kushner, “ Damage by radicals and photons during plasma cleaning of porous low-k SiOCH. II. Water uptake and change in dielectric constant,” J. Vac. Sci. Technol. A 30, 041304 (2012).
http://dx.doi.org/10.1116/1.4718447
146.
146. M. F. A. M. Hest, A. Klayer, D. C. Schram, and M. C. M. Van de Sanden, “ Argon-oxygen plasma treatment of deposited organosilicom thin films,” Thin Solid Films 449, 40 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.10.012
147.
147. V. Braginsky, A. S. Kovalev, D. V. Lopaev, E. M. Malykhin, Yu. A. Mankelevich, T. V. Rakhimova, A. T. Rakhimov, A. N. Vasilieva, S. M. Zyryanov, and M. R. Baklanov, “ The mechanism of low-k SiOCH film modification by oxygen atoms,” J. Appl. Phys. 108, 073303 (2010).
http://dx.doi.org/10.1063/1.3486084
148.
148. Y. C. Kim and M. Boudart, “ Recombination of O, N, and H atoms on silica: Kinetics and mechanism,” Langmuir 7, 2999 (1991).
http://dx.doi.org/10.1021/la00060a016
149.
149. D. Moore, R. Carter, H. Cui, P. Burke, P. McGrath, S. Q. Gu, D. Gidley, and H. Peng, “ Process integration compatibility of low-k and ultra-low-k dielectrics,” J. Vac. Sci. Technol. B 23(1 ), 332 (2005).
http://dx.doi.org/10.1116/1.1835315
150.
150. D. L. Moore, R. J. Carter, H. Cui, P. Burke, S. Q. Gu, H. Peng, R. S. Valley, D. W. Gidley, C. Waldfried, and O. Escorciac, “ Damage of low-k and ultralow-k dielectrics from reductive plasma discharges used for photoresist removal,” J. Electrochem. Soc. 152(7 ), G528 (2005).
http://dx.doi.org/10.1149/1.1921848
151.
151. E. Kunnen, G. T. Barkema, C. Maes, D. Shamiryan, A. Urbanowicz, H. Struyf, and M. R. Baklanov, “ Integrated diffusion–recombination model for describing the logarithmic time dependence of plasma damage in porous low-k materials,” Microelectron. Eng. 88, 631 (2011).
http://dx.doi.org/10.1016/j.mee.2010.07.014
152.
152. S. Safaverdi, G. T. Barkema, E. Kunnen, A. M. Urbanowicz, and C. Maes, “ Saturation of front propagation in a reaction diffusion process describing plasma damage in porous low-k materials,” Phys. Rev. B 83, 245320 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.245320
153.
153. D. G. Levitt, “ Dynamics of a single-file pore–Non-fickian behaviour,” Phys. Rev. A 8(6 ), 3050 (1973).
http://dx.doi.org/10.1103/PhysRevA.8.3050
154.
154. P. B. Weisz, “ Zeolites–New horizons in catalysis,” Chem. Tech. 3, 498 (1973).
155.
155. M. Kollmann, “ Single-file diffusion of atomic and colloidal systems: Asymptotic laws,” Phys. Rev. Lett. 90(18 ), 180602 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.180602
156.
156. V. E. Arkhincheev, E. Kunnen, and M. R. Baklanov, “ Active species in porous media: Random walk and capture in traps,” Microelectron. Eng. 88(5 ), 694 (2011).
http://dx.doi.org/10.1016/j.mee.2010.08.028
157.
157. Q. Y. Han, B. White, I. L. Berry, C. Waldfried, and O. Escorcia, “ Activated He:H2 strip of photoresist over porous low-k materials,” Solid State Phenom. 103–104, 341 (2005).
http://dx.doi.org/10.4028/www.scientific.net/SSP.103-104.341
158.
158. A. Matshushita, N. Ohashi, K. Inukai, H. J. Shin, S. Sone, K. Sudou, K. Misawa, I. Matsumoto, and N. Kobayashi, “ Low damage ashing using H2/He plasma for porous ultra low-k,” in International Interconnect Technology Conference, Burlingame, CA, 2003.
159.
159. X. Fu, J. Forester, J. Yu, P. Gopalraja, S. Ahn, A. Demos, and P. Ho, in IEEE Electron Devices Meeting, Electron Devices Society, 2006, p. 51.
160.
160. P. Lazzeri, G. J. Stueber, G. S. Oehrlein, R. McGowan, E. Busch, S. Pederzoli, M. Bersani, and M. Anderle, “ Time of flight secondary ion mass spectroscopy investigation of ultralow-k dielectric modifications in hydrogen and deuterium plasmas,” J. Vac. Sci. Technol. B 24, 2695 (2006).
http://dx.doi.org/10.1116/1.2382949
161.
161. A. M. Urbanowicz, K. Vanstreels, D. Shamiryan, S. De Gendt, and M. R. Baklanov, “ Effect of porogen residue on chemical, optical, and mechanical properties of CVD SiCOH low-k materials,” Electrochem. Solid-State Lett. 12, H292 (2009).
http://dx.doi.org/10.1149/1.3139741
162.
162. M. Matsuura, K. Goto, N. Miura, J. M. Haag, S. Hashii, and K. Asai, Mater. Res. Soc. Symp. Proc. 914, F01 (2006).
http://dx.doi.org/10.1557/PROC-0914-F01-06
163.
163. P. Marsik, P. Verdonck, D. De Roest, and M. R. Baklanov, “ Porogen residues detection in optical properties of low-k dielectrics cured by ultraviolet radiation,” Thin Solid Films 518, 4266 (2010).
http://dx.doi.org/10.1016/j.tsf.2009.12.110
164.
164. P. Verdonck et al., IMEC's Internal Report (2010).
165.
165. E. Van Besien, M. Pantouvaki, L. Zhao, D. De Roest, M. R. Baklanov, Zs. Tokei, and G. Beyer, “ Influence of porosity on electrical properties of low-k dielectrics,” Microelectron. Eng. 92, 59 (2012).
http://dx.doi.org/10.1016/j.mee.2011.04.015
166.
166. N. Posseme, T. Chevolleau, T. David, M. Darnon, O. Louveau, and O. Joubert, “ Mechanisms of porous dielectric film modification induced by reducing and oxidizing ash plasmas,” J. Vac. Sci. Technol. B 25, 1928 (2007).
http://dx.doi.org/10.1116/1.2804615
167.
167. E. T. Ryan, S. M. Gates, A. Grill, S. Molis, P. Flaitz, J. Arnold, M. Sankarapandian, S. A. Cohen, Y. Ostrovski, and C. Dimitrakopoulos, “ Property modifications of nanoporous pSiCOH dielectrics to enhance resistance to plasma-induced damage,” J. Appl. Phys. 104(9 ), 094109 (2008).
http://dx.doi.org/10.1063/1.3006438
168.
168. L. Souriau, F. Lazzarino, L. Carbonell, I. Ciofi, P. Verdonck, J. Versluijs, J. F. de Marneffe, and M. R. Baklanov, “ Plasma induced damage reduction in porous SiOCH dielectrics by replacement of H2 and N2 by CH2F2 and Ar in fluorocarbon based plasmas,” in AVS 58th International Conference, Nashville, Tennessee, USA, November 2011.
169.
169. S. Zimmermann, N. Ahner, F. Blaschta, M. Schaller, H. Zimmermann, H. Ruelke, N. Lang, J. Roepcke, S. E. Schulz, and T. Gessner, “ Influence of the additives argon, O2, C4F8, H2, N2 and CO on plasma conditions and process results during the etch of SiCOH in CF4 plasma,” Microelectron. Eng. 88, 671 (2011).
http://dx.doi.org/10.1016/j.mee.2010.07.001
170.
170. J. R. Woodworth, M. E. Riley, V. A. Amatucci, T. W. Hamilton, and B. P. Aragon, “ Absolute intensities of the vacuum ultraviolet spectra in oxide etch plasma processing discharges,” J. Vac. Sci. Technol. A 19, 45 (2001).
http://dx.doi.org/10.1116/1.1335685
171.
171. H. Shi, H. Huang, J. Bao, Y. Sun, P. S. Ho, Y. Zhou, J. T. P. Pender, M. Armacost, and D. Ryser, “ Impact of CO2 plasma on porous organosilicate low-k dielectrics,” Future Fab Int. 27, 88 (2008).
172.
172. H. Liu, J. Widodo, S. L. Liew, Z. H. Wang, Y. H. Wang, B. F. Lin, L. Z. Wu, C. S. Seet, W. Lu, C. H. Low, W. P. Liu, M. S. Zhou, and L. C. Hsia, “ Challenges of ultra low-k integration in BEOL interconnect for 45nm and beyond,” in Proceedings of the IEEE International Interconnect Technology Conference, 2009, p. 258.
173.
173. B. Kong, T. Choi, S. Sirard, D. J. Kim, and N.-E. Lee, “ Etch induced sidewall damage evaluation in porous low-k methyl silsesquioxane films,” J. Vac. Sci.Technol. A 25(4 ), 986 (2007).
http://dx.doi.org/10.1116/1.2717192
174.
174. J. M. Calvert and M. K. Gallagher, “ A new approach to ultralow-k dielectrics,” Semicond. Int. 26(12) , 56 (2003).
175.
175. V. Jousseaume, M. Assous, A. Zenasni, S. Maitrejean, B. Rémiat, P. Leduc, H. Trouvé, Ch. Le Cornec, M. Fayolle, A. Roule, F. Ciaramella, D. Bouchu, T. David, A. Roman, D. Scevola, T. Morel, D. Rebiscoul, G. Prokopowicz, M. Jackman, C. Guedj, D. Louis, M. Gallagher, and G. Passemard, “ Cu/ULK integration for 45 nm node and below using an improvedhybrid material with conventionnal BEOL processing and a late porogen removal,” in Proceedings of the IEEE International Interconnect Technology Conference, 2005, pp. 6062.
176.
176. L. Favennec, V. Jousseaume, A. Zenasni, M. Assous, T. David, and G. Passemard, “ PECVD ultra low k material appropriate to the post-integration porogen removal approach,” in Proceedings of the Advanced Metallization Conference 2006 – Asian Session, Tokyo, Japan, 2007, p. 345.
177.
177. V. Jousseaume, L. Favennec, A. Zenasni, and G. Passemard, “ Plasma-enhanced chemical-vapor-deposited ultra low k for a post-integration porogen removal approach,” Appl. Phys. Lett. 88, 182908 (2006).
http://dx.doi.org/10.1063/1.2201612
178.
178. M. Fayolle, V. Jousseaume, M. Assous, E. Tabouret, C. le Cornec, P. H. Haumesser, P. Leduc, H. Feldis, O. Louveau, G. Passemard, and F. Fusalba, “ Cu/ULK integration using a post integration porogen removal approach,” in Proceedings of the IEEE International Interconnect Technology Conference, 2004, p. 208.
179.
179. R. Caluwaerts, M. Van Hove, G. Beyer, R. J. O. M. Hoofman, H. Struyf, G. J. A. M. Verheyden, J. Waeterloos, Z. Tokei, F. Iacopi, L. Carbonell, Q. T. Le, A. Das, I. Vos, S. Demuynck, and K. Maex, “ Post patterning meso porosity creation: A potential solution for pore sealing,” in Proceedings of the IEEE International Interconnect Technology Conference (IITC), 2003, pp. 242244.
180.
180. D. Eon, M. Darnon, T. Chevolleau, T. David, L. Vallier, and O. Joubert, “ Etch mechanisms of hybrid low-k material SiOCH with porogen in fluorocarbon based plasma,” J. Vac. Sci. Technol. B 25, 715 (2007).
http://dx.doi.org/10.1116/1.2723756
181.
181. A. Castex, L. Favennec, V. Jousseaume, J. Bruat, J. Deval, B. Remiat, G. Passemard, and M. Pons, “ Study of plasma mechanism of hybrid a-SiOC:H low-k film deposition from decamethylcyclopentasil-oxane and cyclohexene oxide,” Microelectron. Eng. 82, 416 (2005).
http://dx.doi.org/10.1016/j.mee.2005.07.025
182.
182. T. Frot, W. Volksen, S. Purushothaman, R. Bruce, and G. Dubois, “ Application of the protection/deprotection strategy to the science of porous materials,” Adv. Mater. 23(25 ), 2828 (2011).
http://dx.doi.org/10.1002/adma.201100569
183.
183. T. Frot, W. Volksen, S. Purushothaman, R. L. Bruce, T. Magbitang, D. C. Miller, V. R. Deline, and G. Dubois, “ Post porosity plasma protection: Scaling of efficiency with porosity,” Adv. Funct. Mater. 22(14 ), 3043 (2012).
http://dx.doi.org/10.1002/adfm.201200152
184.
184. F. Iacopi, J. H. Choi, K. Terashima, P. M. Riceb, and G. Dubois, “ Cryogenic plasmas for controlled processing of nanoporous materials,” Phys. Chem. Chem. Phys. 13, 3634 (2011).
http://dx.doi.org/10.1039/c0cp02660c
185.
185. M. R. Baklanov, S. Vanhaelemeersch, and F. Iacopi, patent pending.
186.
186. F. Iacopi, S. Stauss, K. Terashima, and M. R. Baklanov, “ Cryogenic approaches to low- damage patterning of porous low-k films,” PESM Workshop, Grenoble, 2012.
187.
187. L. Zhang, R. Ljazouli, T. Tillocher, P. Lefaucheux, R. Dussart, Y. Mankelevich, J.-F. de Marneffe, S. de Gendt, and M. R. Baklanov, “ Damage free cryogenic etching of porous OSG ultralow-k film,” in AVS 59th Annual International Symposium, Tampa, USA, 28 October 2012.
188.
188. F. N. Dultsev, A. M. Urbanowicz, and M. R. Baklanov, “ Plasma modification of Si-O-Si bond structure in porous SiCOH films,” Mater. Res. Soc. Symp. Proc. 1079, N0703 (2008).
http://dx.doi.org/10.1557/PROC-1079-N07-03
189.
189. T. C. Chang, Y. S. Mor, P. T. Liu, T. M. Tsai, C. W. Chen, C. J. Chu, F. M. Pan, W. Lur, and S. M. Sze, “ Trimethylchlorosilane treatment of ultralow dielectric constant material after photoresist removal processing,” J. Electrochem. Soc. 149(10 ), F145 (2002).
http://dx.doi.org/10.1149/1.1504456
190.
190. T. C. Chang, Y. S. Mor, P. T. Liu, T. M. Tsai, C. W. Chen, Y. J. Mei, and S. M. Sze, “ Recovering dielectric loss of low dielectric constant organic siloxane during the photoresist removal process,” J. Electrochem. Soc. 149(8 ), F81 (2002).
http://dx.doi.org/10.1149/1.1485776
191.
191. Y. S. Mor, T. C. Chang, P. T. Liu, T. M. Tsai, C. W. Chen, S. T. Yan, C. J. Chu, W. F. Wu, F. M. Pan, W. Lur, and S. M. Sze, “ Effective repair to ultra-low-k dielectric material (k-2.0) by hexamethyidisilazane treatment,” J. Vac. Sci. Technol. B 20(4 ), 1334 (2002).
http://dx.doi.org/10.1116/1.1488645
192.
192. T. C. Chang, P. T. Liu, Y. S. Mor, T. M. Tsai, C. W. Chen, Y. J. Mei, F. M. Pan, W. F. Wu, and S. M. Sze, “ Eliminating dielectric degradation of low-k organosilicate glass by trimethylchlorosilane treatment,” J. Vac. Sci. Technol. B 20(4 ), 1561 (2002).
http://dx.doi.org/10.1116/1.1495876
193.
193. J. C. Hu, C. W. Wu, W. C. Gau, C. P. Chen, L. J. Chen, C. H. Li, T. C. Chang, and C. J. Chu, “ Self-organized nanomolecular films on low-dielectric constant porous methyl silsesquioxane at room temperature,” J. Electrochem. Soc. 150(4 ), F61 (2003).
http://dx.doi.org/10.1149/1.1554728
194.
194. J. Liu, W. Kim, J. Bao, H. Shi, W. Baek, and P. S. Ho, “ Restoration and pore sealing of plasma damaged porous organosilicate low k dielectrics with phenyl containing agents,” J. Vac. Sci. Technol. B 25(3 ), 906 (2007).
http://dx.doi.org/10.1116/1.2738489
195.
195. B. P. Gorman, R. A. Orozco-Teran, Z. Zhang, P. D. Matz, D. W. Mueller, and R. F. Reidy, “ Rapid repair of plasma ash damage in low-k dielectrics using supercritical CO2,” J. Vac. Sci. Technol. B 22(3 ), 1210 (2004).
http://dx.doi.org/10.1116/1.1755220
196.
196. B. Xie and A. J. Muscat, “ The restoration of porous methylsilsesquioxane (p-MSQ) films using trimethylhalosilanes dissolved in supercritical carbon dioxide,” Microelectron. Eng. 82, 434 (2005).
http://dx.doi.org/10.1016/j.mee.2005.07.027
197.
197. C. Smith, D. Mueller, P. Matz, and R. Reidy, “ Topographical and chemical surface modification of porous MSQ using silylating agents with different numbers of methoxy groups,” Mater. Res. Soc. Symp. Proc. 914, F0404 (2006).
http://dx.doi.org/10.1557/PROC-0914-F04-04
198.
198. N. Chakrapani, M. E. Colburn, C. D. Dimitrakopoulos, D. Pfeiffer, S. Purushothaman, and S. V. Nitta, “ Recovery of hydrophobicity of low-k and ultra low-k organosilicate films used as inter metal dielectrics,” U.S. patent 0,003,402 (2011).
199.
199. S. Eslava, S. Delahaye, M. R. Baklanov, F. Iacopi, C. E. A. Kirschhock, K. Maex, and J. A. Martens, “ Reaction of trimethylchlorosilane in spin-on silicalite-1 zeolite film,” Langmuir 24, 4894 (2008).
http://dx.doi.org/10.1021/la800086y
200.
200. T. Oszinda, M. Schaller, and S. E. Schulz, “ Chemical repair of plasma damaged porous ultra low-κ SiOCH film using a vapor phase process,” J. Electrochem. Soc. 157, H1140 (2010).
http://dx.doi.org/10.1149/1.3503596
201.
201. D. D. Gandhi, B. Singh, A. P. Singh, R. Moore, E. Simonyi, M. W. Lane, and G. Ramanath, “ Effects of silylation on fracture and mechanical properties of mesoporous silica films interfaced with copper,” J. Appl. Phys. 106, 054502 (2009).
http://dx.doi.org/10.1063/1.3183933
202.
202. S. V. Nitta, S. Putushothaman, N. Chakrapani, O. Rodriguez, N. Klymko, E. T. Ryan, G. Bonilla, S. Cohen, S. Molis, and K. McCullough, “ Use of difunctional silylation agents for enhanced repair of post plasma damaged porous low k dielectrics,” in Proceedings of the Advanced Metallization Conference, 2005, p. 325.
203.
203. H. L. Shi, “ Mechanistic study of plasma damage to porous low-k: Process development and dielectric recovery,” Ph.D. dissertation (The University of Texas at Austin, 2010).
204.
204. V. M. Gun'ko, M. S. Vedamuthu, G. L. Henderson, and J. P. Blitz, “ Mechanism and kinetics of hexamethyldisilazane reaction with a fumed silica surface,” J. Colloid Interface Sci. 228(1 ), 157 (2000).
http://dx.doi.org/10.1006/jcis.2000.6934
205.
205. M. Aimadeddine, V. Arnal, D. Roy, A. Farcy, T. David, T. Chevolleau, N. Possémé, J. Vitiello, L. L. Chapelon, C. Guedj, Y. Brechet, F. Volpi, and J. Torres, “ Effect of CH4 plasma on porous dielectric modification and pore sealing for advanced interconnect technology nodes,” in Proceedings of the IEEE International Interconnect Technology Conference, 2006, p. 81.
206.
206. J. J. Bao, H. L. Shi, J. J. Liu, H. Huang, P.S. Ho, M. D. Goodner, M. Moinpour, and G. M. Kloster, “ Mechanistic study of plasma damage and CH4 recovery of low k dielectric surface,” in Proceedings of the IEEE 2007 International Interconnect Technology Conference, 2007, p. 147.
207.
207. H. Shi, J. Bao, J. J. Liu, H. Huang, P. S. Ho, M. D. Goodner, M. Moinpour, and G. M. Kloster, “ Effect of CH4 plasma treatment on O2 plasma ashed organosilicate low-k dielectrics,” Mater. Res. Soc. Proc. B 990, B0312 (2007).
208.
208. R. K. Iler, The Chemistry of Silica (Wiley, 1979), pp. 637645.
209.
209. I. Ciofi, M. R. Baklanov, G. Calbo, Z. Tőkei, and G. P. Beyer, “ Characterization of plasma damage in low-k films by TVS measurements,” Mater. Res. Soc. Symp. Proc. 1156, D0108 (2009).
http://dx.doi.org/10.1557/PROC-1156-D01-08
210.
210. Y. Li, I. Ciofi, L. Carbonell, N. Heylen, J. Van Aelst, M. R. Baklanov, G. Groeseneken, K. Maex, and Zs. Tőkei, “ Influence of absorbed water components on SiOCH low-k reliability,” J. Appl. Phys. 104, 034113 (2008).
http://dx.doi.org/10.1063/1.2966578
211.
211. J. Proost, M. Baklanov, K. Maex, and L. Delaey, “ Compensation effect during water desorption from siloxane-based spin-on dielectric thin films,” J. Vac. Sci. Technol. B 18(1 ), 303 (2000).
http://dx.doi.org/10.1116/1.591189
212.
212. H. L. Shi, J. J. Bao, J. J. Liu, H. Huang, R. S. Smith, Q. Zha, P. S. Ho, M. D. Goodner, M. Moinpour, and G. M. Moster, “ Dielectric recoveries on O2 plasma damaged organosilicate low-k dielectrics,” in Proceedings of the Advanced Metallization Conference, 2007, Vol. 23, p. 447.
213.
213. H. Huang, J. J. Bao, H. Huang, J. J. Liu, R. S. Smith, Y. Sun, P. S. Ho, M. L. McSwiney, M. Moinpour, and G. M. Kloster, “ Dielectric recovery of plasma damaged organosilicate low-k films by combining UV and silylation treatments,” Mater. Res. Soc. Symp. Proc. D 1079, N0210 (2010).
214.
214. A. Nakano, Y. Kimura, I. Yanagisawa, K. Matsushita, D. De Roest, and N. Kobayashi, “ Comparison of restoration effects between UV and plasma-assisted process,” in Proceedings of Advanced Metallization Conference, 2010, p. 40.
215.
215. Y. Kimura, D. Ishikawa, A. Nakano, A. Kobayashi, K. Matsushita, D. De Roest, and N. Kobayashi, “ Impact of hydrocarbon control in ultraviolet-assisted restoration process for extremely porous plasma enhanced chemical vapor deposition SiOCH films with k = 2.0,” Jpn. J. Appl. Phys. 51, 05EC04 (2012).
http://dx.doi.org/10.1143/JJAP.51.05EC04
216.
216. E. P. Guyer and R. H. Dauskardt, “ Fracture of nanoporous thin-film glasses,” Nat. Mater. 3, 53 (2004).
http://dx.doi.org/10.1038/nmat1037
217.
217. E. P. Guyer and R. H. Dauskardt, “ Effect of solution pH on the accelerated cracking of nanoporous thin-films glasses,” J. Mater. Res. 20, 680 (2005).
http://dx.doi.org/10.1557/JMR.2005.0079
218.
218. M. R. Baklanov, D. O'Dwyer, A. M. Urbanowicz, Q. T. Le, S. Demuynck, and E. Hong, “ Moisture induced degradation of porous low-k materials,” Mater. Res. Soc. Symp. Proc. 914, 0914F02 (2006).
http://dx.doi.org/10.1557/PROC-0914-F02-06
219.
219. Y. Lin, T. Y. Tsui, and J. J. Vlassak, “ Adhesion degradation and water diffusion in nanoporous organosilicate glass thin film stacks,” J. Electrochem. Soc. 157, G53 (2010).
http://dx.doi.org/10.1149/1.3267313
220.
220. H. Li, T. Y. Tsui, and J. J. Vlassak, “ Water diffusion and fracture behavior in nanoporous low-k dielectric film stacks,” J. Appl. Phys. 106(3 ), 033503 (2009).
http://dx.doi.org/10.1063/1.3187931
221.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/4/10.1063/1.4765297
Loading
/content/aip/journal/jap/113/4/10.1063/1.4765297
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/4/10.1063/1.4765297
2013-01-22
2014-09-21

Abstract

This paper presents an in-depth overview of the present status and novel developments in the field of plasma processing of low dielectric constant (low-k) materials developed for advanced interconnects in ULSI technology. The paper summarizes the major achievements accomplished during the last 10 years. It includes analysis of advanced experimental techniques that have been used, which are most appropriate for low-k patterning and resist strip, selection of chemistries, patterning strategies, masking materials, analytical techniques, and challenges appearing during the integration. Detailed discussions are devoted to the etch mechanisms of low-k materials and their degradation during the plasma processing. The problem of k-value degradation (plasma damage) is a key issue for the integration, and it is becoming more difficult and challenging as the dielectric constant of low-k materials scales down. Results obtained with new experimental methods, like the small gap technique and multi-beams systems with separated sources of ions, vacuum ultraviolet light, and radicals, are discussed in detail. The methods allowing reduction of plasma damage and restoration of dielectric properties of damaged low-k materials are also discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/4/1.4765297.html;jsessionid=1k9tpc7fvrs8r.x-aip-live-03?itemId=/content/aip/journal/jap/113/4/10.1063/1.4765297&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Plasma processing of low-k dielectrics
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/4/10.1063/1.4765297
10.1063/1.4765297
SEARCH_EXPAND_ITEM