1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Silicon vacancy color center photoluminescence enhancement in nanodiamond particles by isolated substitutional nitrogen on {100} surfaces
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/4/10.1063/1.4783958
1.
1. C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, Proc. Natl. Acad. Sci. U.S.A. 104, 727732 (2007).
http://dx.doi.org/10.1073/pnas.0605409104
2.
2. R. Hardman, Environ. Health Perspect. 114, 165172 (2006).
http://dx.doi.org/10.1289/ehp.8284
3.
3. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, Science 307, 538544 (2005).
http://dx.doi.org/10.1126/science.1104274
4.
4. C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. Stolzle, N. Fertig, and W. J. Parak, Nano Lett. 5, 331338 (2005).
http://dx.doi.org/10.1021/nl047996m
5.
5. C. Bradac, T. Gaebel, N. Naidoo, M. J. Sellars, J. Twamley, L. J. Brown, A. S. Barnard, T. Plakhotnik, A. V. Zvyagin, and J. R. Rabeau, Nat. Nanotechnol. 5, 345349 (2010).
http://dx.doi.org/10.1038/nnano.2010.56
6.
6. C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, Nano Lett. 9, 35553564 (2009).
http://dx.doi.org/10.1021/nl9017379
7.
7. O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C. Gesset, J. C. Arnault, A. Thorel, J. P. Boudou, P. A. Curmi, and F. Treussart, ACS Nano 3, 39553962 (2009).
http://dx.doi.org/10.1021/nn901014j
8.
8. Y. Yuan, Y. W. Chen, J. H. Lui, H. F. Wang, and Y. F. Liu, Diamond Relat. Mater. 18, 95100 (2009).
http://dx.doi.org/10.1016/j.diamond.2008.10.031
9.
9. R. Lam and D. Ho, Expert Opin. Drug Delivery 6, 883895 (2009).
http://dx.doi.org/10.1517/17425240903156382
10.
10. J. R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, and J. Wrachtrup, Nano Lett. 7, 34333437 (2007).
http://dx.doi.org/10.1021/nl0719271
11.
11. E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmuller-Nethl, Y. Liang, A. Krueger, and C. Becher, Appl. Phys. Lett. 98, 243107 (2011).
http://dx.doi.org/10.1063/1.3599608
12.
12. A. S. Barnard, I. I. Vlasov, and V. G. Ralchenko, J. Mater. Chem. 19, 360365 (2009).
http://dx.doi.org/10.1039/b813515k
13.
13. I. I. Vlasov, O. Shenderova, S. Turner, O. I. Lebedev, A. A. Basov, I. Sildos, M. Rahn, A. A. Shiryaev, and G. Van Tendeloo, Small 6, 687694 (2010).
http://dx.doi.org/10.1002/smll.200901587
14.
14. A. A. Basov, M. Rahn, M. Pars, I. I. Vlasov, I. Sildos, A. P. Bolshakov, V. G. Golubev, and V. G. Ralchenko, Phys. Status Solidi A 206, 20092011 (2009).
http://dx.doi.org/10.1002/pssa.200982220
15.
15. I. I. Vlasov, A. S. Barnard, V. G. Ralchenko, O. I. Lebedev, M. V. Kanzyuba, A. V. Saveliev, V. I. Konov, and E. Goovaerts, Adv. Mater. 21, 808 (2009).
http://dx.doi.org/10.1002/adma.200802160
16.
16. C. L. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, J. Phys. B 39, 3741 (2006).
http://dx.doi.org/10.1088/0953-4075/39/1/005
17.
17. S. A. Catledge and S. Sonal, Adv. Sci. Lett. 4, 512515 (2011).
http://dx.doi.org/10.1166/asl.2011.1264
18.
18. A. V. Turukhin, C. H. Liu, A. A. Gorokhovsky, R. R. Alfano, and W. Phillips, Phys. Rev. B 54, 1644816451 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.16448
19.
19. S. Dunst, H. Sternschulte, and M. Schreck, Appl. Phys. Lett. 94, 224101 (2009).
http://dx.doi.org/10.1063/1.3143631
20.
20. R. Samlenski, C. Haug, R. Brenn, C. Wild, R. Locher, and P. Koidl, Appl. Phys. Lett. 67, 27982800 (1995).
http://dx.doi.org/10.1063/1.114788
21.
21. G. Z. Cao, J. J. Schermer, W. J. P. vanEnckevort, W. Elst, and L. J. Giling, J. Appl. Phys. 79, 13571364 (1996).
http://dx.doi.org/10.1063/1.361033
22.
22. J. J. Schermer, J. E. M. Hogenkamp, G. C. J. Otter, G. Janssen, W. J. P. Vanenckevort, and L. J. Giling, Diamond Relat. Mater. 2, 11491155 (1993).
http://dx.doi.org/10.1016/0925-9635(93)90160-4
23.
23. D. V. Musale, S. R. Sainkar, and S. T. Kshirsagar, Diamond Relat. Mater. 11, 7586 (2002).
http://dx.doi.org/10.1016/S0925-9635(01)00521-0
24.
24. A. T. Collins, M. Kamo, and Y. Sato, J. Mater. Res. 5, 25072514 (1990).
http://dx.doi.org/10.1557/JMR.1990.2507
25.
25. B. Yam and T. D. Moustakas, Nature 342, 786787 (1989).
http://dx.doi.org/10.1038/342786a0
26.
26. C. S. Yan and Y. K. Vohra, Diamond Relat. Mater. 8, 20222031 (1999).
http://dx.doi.org/10.1016/S0925-9635(99)00148-X
27.
27. C. F. O. Graeff, E. Rohrer, C. E. Nebel, M. Stutzmann, H. Guttler, and R. Zachai, Appl. Phys. Lett. 69, 32153217 (1996).
http://dx.doi.org/10.1063/1.117965
28.
28. S. Jin and T. D. Moustakas, Appl. Phys. Lett. 65, 403405 (1994).
http://dx.doi.org/10.1063/1.112315
29.
29. S. A. Grudinkin, N. A. Feoktistov, A. V. Medvedev, K. V. Bogdanov, A. V. Baranov, A. Y. Vul, and V. G. Golubev, J. Phys. D: Appl. Phys. 45, 062001 (2012).
http://dx.doi.org/10.1088/0022-3727/45/6/062001
30.
30. S. Bohr, R. Haubner, and B. Lux, Appl. Phys. Lett. 68, 10751077 (1996).
http://dx.doi.org/10.1063/1.115717
31.
31.See supplementary material at http://dx.doi.org/10.1063/1.4783958 for a plot showing the nitrogen-dependant SiV luminescence for large (4 × 4 mm2) irradiation areas. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/4/10.1063/1.4783958
Loading
/content/aip/journal/jap/113/4/10.1063/1.4783958
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/113/4/10.1063/1.4783958
2013-01-22
2014-11-28

Abstract

Fluorescent nanodiamonds were produced by incorporation of silicon-vacancy (Si-V) defect centers in as-received diamonds of averaged size ∼255 nm using microwave plasma chemical vapor deposition. The potential for further enhancement of Si-V emission in nanodiamonds (NDs) is demonstrated through controlled nitrogen doping by adding varying amounts of N2 in a H2 + CH4 feedgas mixture. Nitrogen doping promoted strong narrow-band (FWHM ∼ 10 nm) emission from the Si-V defects in NDs, as confirmed by room temperature photoluminescence. At low levels, isolated substitutional nitrogen in {100} growth sectors is believed to act as a donor to increase the population of optically active (Si-V) at the expense of optically inactive Si-V defects, thus increasing the observed luminescence from this center. At higher levels, clustered nitrogen leads to deterioration of diamond quality with twinning and increased surface roughness primarily on {111} faces, leading to a quenching of the Si-V luminescence. Enhancement of the Si-V defect through controlled nitrogen doping offers a viable alternative to nitrogen-vacancy defects in biolabeling/sensing applications involving sub-10 nm diamonds for which luminescent activity and stability are reportedly poor.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/4/1.4783958.html;jsessionid=16ed4o4a0d19f.x-aip-live-02?itemId=/content/aip/journal/jap/113/4/10.1063/1.4783958&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Silicon vacancy color center photoluminescence enhancement in nanodiamond particles by isolated substitutional nitrogen on {100} surfaces
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/4/10.1063/1.4783958
10.1063/1.4783958
SEARCH_EXPAND_ITEM