1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Silicon vacancy color center photoluminescence enhancement in nanodiamond particles by isolated substitutional nitrogen on {100} surfaces
Rent:
Rent this article for
Access full text Article
/content/aip/journal/jap/113/4/10.1063/1.4783958
1.
1. C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, and W. Fann, Proc. Natl. Acad. Sci. U.S.A. 104, 727732 (2007).
http://dx.doi.org/10.1073/pnas.0605409104
2.
2. R. Hardman, Environ. Health Perspect. 114, 165172 (2006).
http://dx.doi.org/10.1289/ehp.8284
3.
3. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, Science 307, 538544 (2005).
http://dx.doi.org/10.1126/science.1104274
4.
4. C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. Stolzle, N. Fertig, and W. J. Parak, Nano Lett. 5, 331338 (2005).
http://dx.doi.org/10.1021/nl047996m
5.
5. C. Bradac, T. Gaebel, N. Naidoo, M. J. Sellars, J. Twamley, L. J. Brown, A. S. Barnard, T. Plakhotnik, A. V. Zvyagin, and J. R. Rabeau, Nat. Nanotechnol. 5, 345349 (2010).
http://dx.doi.org/10.1038/nnano.2010.56
6.
6. C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, and A. S. Barnard, Nano Lett. 9, 35553564 (2009).
http://dx.doi.org/10.1021/nl9017379
7.
7. O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C. Gesset, J. C. Arnault, A. Thorel, J. P. Boudou, P. A. Curmi, and F. Treussart, ACS Nano 3, 39553962 (2009).
http://dx.doi.org/10.1021/nn901014j
8.
8. Y. Yuan, Y. W. Chen, J. H. Lui, H. F. Wang, and Y. F. Liu, Diamond Relat. Mater. 18, 95100 (2009).
http://dx.doi.org/10.1016/j.diamond.2008.10.031
9.
9. R. Lam and D. Ho, Expert Opin. Drug Delivery 6, 883895 (2009).
http://dx.doi.org/10.1517/17425240903156382
10.
10. J. R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza, and J. Wrachtrup, Nano Lett. 7, 34333437 (2007).
http://dx.doi.org/10.1021/nl0719271
11.
11. E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmuller-Nethl, Y. Liang, A. Krueger, and C. Becher, Appl. Phys. Lett. 98, 243107 (2011).
http://dx.doi.org/10.1063/1.3599608
12.
12. A. S. Barnard, I. I. Vlasov, and V. G. Ralchenko, J. Mater. Chem. 19, 360365 (2009).
http://dx.doi.org/10.1039/b813515k
13.
13. I. I. Vlasov, O. Shenderova, S. Turner, O. I. Lebedev, A. A. Basov, I. Sildos, M. Rahn, A. A. Shiryaev, and G. Van Tendeloo, Small 6, 687694 (2010).
http://dx.doi.org/10.1002/smll.200901587
14.
14. A. A. Basov, M. Rahn, M. Pars, I. I. Vlasov, I. Sildos, A. P. Bolshakov, V. G. Golubev, and V. G. Ralchenko, Phys. Status Solidi A 206, 20092011 (2009).
http://dx.doi.org/10.1002/pssa.200982220
15.
15. I. I. Vlasov, A. S. Barnard, V. G. Ralchenko, O. I. Lebedev, M. V. Kanzyuba, A. V. Saveliev, V. I. Konov, and E. Goovaerts, Adv. Mater. 21, 808 (2009).
http://dx.doi.org/10.1002/adma.200802160
16.
16. C. L. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, J. Phys. B 39, 3741 (2006).
http://dx.doi.org/10.1088/0953-4075/39/1/005
17.
17. S. A. Catledge and S. Sonal, Adv. Sci. Lett. 4, 512515 (2011).
http://dx.doi.org/10.1166/asl.2011.1264
18.
18. A. V. Turukhin, C. H. Liu, A. A. Gorokhovsky, R. R. Alfano, and W. Phillips, Phys. Rev. B 54, 1644816451 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.16448
19.
19. S. Dunst, H. Sternschulte, and M. Schreck, Appl. Phys. Lett. 94, 224101 (2009).
http://dx.doi.org/10.1063/1.3143631
20.
20. R. Samlenski, C. Haug, R. Brenn, C. Wild, R. Locher, and P. Koidl, Appl. Phys. Lett. 67, 27982800 (1995).
http://dx.doi.org/10.1063/1.114788
21.
21. G. Z. Cao, J. J. Schermer, W. J. P. vanEnckevort, W. Elst, and L. J. Giling, J. Appl. Phys. 79, 13571364 (1996).
http://dx.doi.org/10.1063/1.361033
22.
22. J. J. Schermer, J. E. M. Hogenkamp, G. C. J. Otter, G. Janssen, W. J. P. Vanenckevort, and L. J. Giling, Diamond Relat. Mater. 2, 11491155 (1993).
http://dx.doi.org/10.1016/0925-9635(93)90160-4
23.
23. D. V. Musale, S. R. Sainkar, and S. T. Kshirsagar, Diamond Relat. Mater. 11, 7586 (2002).
http://dx.doi.org/10.1016/S0925-9635(01)00521-0
24.
24. A. T. Collins, M. Kamo, and Y. Sato, J. Mater. Res. 5, 25072514 (1990).
http://dx.doi.org/10.1557/JMR.1990.2507
25.
25. B. Yam and T. D. Moustakas, Nature 342, 786787 (1989).
http://dx.doi.org/10.1038/342786a0
26.
26. C. S. Yan and Y. K. Vohra, Diamond Relat. Mater. 8, 20222031 (1999).
http://dx.doi.org/10.1016/S0925-9635(99)00148-X
27.
27. C. F. O. Graeff, E. Rohrer, C. E. Nebel, M. Stutzmann, H. Guttler, and R. Zachai, Appl. Phys. Lett. 69, 32153217 (1996).
http://dx.doi.org/10.1063/1.117965
28.
28. S. Jin and T. D. Moustakas, Appl. Phys. Lett. 65, 403405 (1994).
http://dx.doi.org/10.1063/1.112315
29.
29. S. A. Grudinkin, N. A. Feoktistov, A. V. Medvedev, K. V. Bogdanov, A. V. Baranov, A. Y. Vul, and V. G. Golubev, J. Phys. D: Appl. Phys. 45, 062001 (2012).
http://dx.doi.org/10.1088/0022-3727/45/6/062001
30.
30. S. Bohr, R. Haubner, and B. Lux, Appl. Phys. Lett. 68, 10751077 (1996).
http://dx.doi.org/10.1063/1.115717
31.
31.See supplementary material at http://dx.doi.org/10.1063/1.4783958 for a plot showing the nitrogen-dependant SiV luminescence for large (4 × 4 mm2) irradiation areas. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/4/10.1063/1.4783958
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SEM images of (a) pre-CVD, (b) undoped, (c) nitrogen doped with N2 = 0.04%, and (d) nitrogen doped with N2 = 0.115% ND particles. Surface roughening, primarily on {111} faces, increases with nitrogen doping. The presence of non-diamond carbon phase is a result of the deterioration of the crystallites, especially {111} faces by the nitrogen-induced micro-twinning on its surface, 21,30 eventually leading to a highly twinned nanocrystalline appearance. The 2 μm scale bar is the same for each image.

Image of FIG. 2.

Click to view

FIG. 2.

AFM images of four isolated nanodiamond particles for each nitrogen feedgas concentration (0%, 0.04%, and 0.115%). Deterioration/roughening is enhanced on {111} faces with increasing N2 feedgas concentration. Each scale bar corresponds to 0.2 μm.

Image of FIG. 3.

Click to view

FIG. 3.

RMS roughness of the {111} and {100} facets with various nitrogen flows, averaged over 4 particles for each N2 concentration.

Image of FIG. 4.

Click to view

FIG. 4.

Normalized Raman spectra of ∼255 nm as-received (pre-CVD), undoped and nitrogen doped NDs.

Image of FIG. 5.

Click to view

FIG. 5.

Integrated intensity and FWHM of 1332 cm−1 Raman line as a function of N2 concentration.

Image of FIG. 6.

Click to view

FIG. 6.

The room temperature photoluminescence (excitation 532 nm) of nanodiamonds with varying nitrogen flow 0%-0.115% in hydrogen feedgas, along with as-received (pre-CVD) nanodiamonds. An increased amount of nitrogen enhances the intensity from Si-V color centers up to a maximum nitrogen flow of 0.04%. The average size of as-received ND is 255 nm.

Image of FIG. 7.

Click to view

FIG. 7.

Variation of room temperature integrated photoluminescence intensity of Si-V zero phonon line at ∼738 nm with nitrogen concentration in NDs. Error bars represent the standard deviation from 3 experiments. The average size of as-received ND is 255 nm.

Image of FIG. 8.

Click to view

FIG. 8.

Schematic showing the position of optically active and inactive charge states for Si-V center in the diamond band gap.

Loading

Article metrics loading...

/content/aip/journal/jap/113/4/10.1063/1.4783958
2013-01-22
2014-04-21

Abstract

Fluorescent nanodiamonds were produced by incorporation of silicon-vacancy (Si-V) defect centers in as-received diamonds of averaged size ∼255 nm using microwave plasma chemical vapor deposition. The potential for further enhancement of Si-V emission in nanodiamonds (NDs) is demonstrated through controlled nitrogen doping by adding varying amounts of N2 in a H2 + CH4 feedgas mixture. Nitrogen doping promoted strong narrow-band (FWHM ∼ 10 nm) emission from the Si-V defects in NDs, as confirmed by room temperature photoluminescence. At low levels, isolated substitutional nitrogen in {100} growth sectors is believed to act as a donor to increase the population of optically active (Si-V) at the expense of optically inactive Si-V defects, thus increasing the observed luminescence from this center. At higher levels, clustered nitrogen leads to deterioration of diamond quality with twinning and increased surface roughness primarily on {111} faces, leading to a quenching of the Si-V luminescence. Enhancement of the Si-V defect through controlled nitrogen doping offers a viable alternative to nitrogen-vacancy defects in biolabeling/sensing applications involving sub-10 nm diamonds for which luminescent activity and stability are reportedly poor.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/113/4/1.4783958.html;jsessionid=edkj09k14i14l.x-aip-live-06?itemId=/content/aip/journal/jap/113/4/10.1063/1.4783958&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Silicon vacancy color center photoluminescence enhancement in nanodiamond particles by isolated substitutional nitrogen on {100} surfaces
http://aip.metastore.ingenta.com/content/aip/journal/jap/113/4/10.1063/1.4783958
10.1063/1.4783958
SEARCH_EXPAND_ITEM